[1305] | 1 | SUBROUTINE new_cloud_sedim(n_lon,n_lev,ptimestep, |
---|
| 2 | & pmidlay,pbndlay, |
---|
[1442] | 3 | & pt, |
---|
| 4 | & pq, pdqsed,pdqs_sed,nq,F_sed) |
---|
[1305] | 5 | |
---|
| 6 | USE ioipsl |
---|
| 7 | USE infotrac |
---|
| 8 | USE dimphy |
---|
| 9 | USE chemparam_mod |
---|
| 10 | IMPLICIT NONE |
---|
| 11 | |
---|
| 12 | c======================================================================= |
---|
| 13 | c |
---|
| 14 | c======================================================================= |
---|
| 15 | |
---|
| 16 | c----------------------------------------------------------------------- |
---|
| 17 | c declarations: |
---|
| 18 | c ------------- |
---|
| 19 | #include "YOMCST.h" |
---|
| 20 | c#include "dimphys.h" |
---|
| 21 | c#include "comcstfi.h" |
---|
| 22 | c#include "tracer.h" |
---|
| 23 | c#include "callkeys.h" |
---|
| 24 | |
---|
| 25 | c |
---|
| 26 | c arguments: |
---|
| 27 | c ---------- |
---|
| 28 | |
---|
| 29 | INTEGER n_lon ! number of horizontal grid points |
---|
| 30 | INTEGER n_lev ! number of atmospheric layers |
---|
| 31 | REAL ptimestep ! physics time step (s) |
---|
| 32 | REAL pmidlay(n_lon,n_lev) ! pressure at middle layers (Pa) |
---|
| 33 | REAL pt(n_lon,n_lev) ! temperature at mid-layer (l) |
---|
| 34 | REAL pbndlay(n_lon,n_lev+1) ! pressure at layer boundaries |
---|
| 35 | |
---|
| 36 | c Traceurs : |
---|
| 37 | integer nq ! number of tracers |
---|
| 38 | real pq(n_lon,n_lev,nq) ! tracers (kg/kg) |
---|
| 39 | c real pdqfi(n_lon,n_lev,nq) ! tendency before sedimentation (kg/kg.s-1) |
---|
| 40 | real pdqsed(n_lon,n_lev,2) ! tendency due to sedimentation (kg/kg) |
---|
| 41 | real pdqs_sed(n_lon) ! surface density (Flux if /ptimestep) at surface due to sedimentation (kg.m-2) |
---|
| 42 | |
---|
| 43 | c local: |
---|
| 44 | c ------ |
---|
[1442] | 45 | integer imode |
---|
[1305] | 46 | integer ig |
---|
| 47 | integer iq |
---|
| 48 | integer l |
---|
| 49 | |
---|
| 50 | real zlev(n_lon,n_lev+1) ! altitude at layer boundaries |
---|
| 51 | real zlay(n_lon,n_lev) ! altitude at the midlle layer |
---|
| 52 | real zqi_wv(n_lon,n_lev) ! to locally store H2O tracer |
---|
| 53 | real zqi_sa(n_lon,n_lev) ! to locally store H2SO4 tracer |
---|
[1442] | 54 | real m_lay (n_lon,n_lev) ! Layer Pressure over gravity (Dp/g == kg.m-2) |
---|
[1305] | 55 | real wq(n_lon,n_lev+1) ! displaced tracer mass (kg.m-2) |
---|
| 56 | |
---|
| 57 | c Physical constant |
---|
| 58 | c ~~~~~~~~~~~~~~~~~ |
---|
| 59 | c Gas molecular viscosity (N.s.m-2) |
---|
[1442] | 60 | c real,parameter :: visc=1.e-5 ! CO2 |
---|
| 61 | REAL :: VISCOSITY_CO2 |
---|
[1305] | 62 | c Effective gas molecular radius (m) |
---|
| 63 | real,parameter :: molrad=2.2e-10 ! CO2 |
---|
| 64 | |
---|
| 65 | c Cloud density (kg.m-3) |
---|
| 66 | c ~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1442] | 67 | c real, DIMENSION(n_lon,n_lev) :: rho_droplet |
---|
[1305] | 68 | |
---|
| 69 | REAL, DIMENSION(n_lon,n_lev+1) :: |
---|
| 70 | + wgt_SA ! Fraction of H2SO4 in droplet local |
---|
| 71 | |
---|
| 72 | c Stokes speed and sedimentation flux variable |
---|
| 73 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 74 | |
---|
| 75 | REAL :: A1,A2,A3,A4, ! coeff du DL du Flux de sedimentation |
---|
| 76 | + D_stokes, ! coeff de la vitesse de Stokes |
---|
| 77 | + Rp_DL, ! "Point" du DL |
---|
| 78 | + l_mean, ! libre parcours moyen (m) |
---|
| 79 | + a,b_exp,c ! coeff du calcul du Flux de sedimentation |
---|
| 80 | REAL, DIMENSION(n_lon,n_lev+1) :: |
---|
| 81 | + F_sed ! Flux de sedimentation (kg.m-2.s-1 puis en output kg.m-2) |
---|
| 82 | |
---|
| 83 | |
---|
| 84 | REAL :: R_mode0 ! Rayon mode 0 (m), rayon le plus frequent |
---|
| 85 | |
---|
| 86 | |
---|
| 87 | |
---|
[1442] | 88 | ! PRINT*,'RHO_DROPLET new_cloud_sedim.F' |
---|
| 89 | ! PRINT*,'rho_droplet',rho_droplet(16,21) |
---|
| 90 | ! PRINT*,'T',pt(16,21),'WSA',WH2SO4(16,21) |
---|
| 91 | |
---|
[1305] | 92 | c----------------------------------------------------------------------- |
---|
| 93 | c 1. Initialization |
---|
| 94 | c ----------------- |
---|
| 95 | |
---|
| 96 | c Updating the droplet mass mixing ratio with the partition H2O/H2SO4 |
---|
| 97 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 98 | |
---|
| 99 | do l=1,n_lev |
---|
| 100 | do ig=1,n_lon |
---|
| 101 | zqi_wv(ig,l) = pq(ig,l,i_h2oliq) |
---|
| 102 | zqi_sa(ig,l) = pq(ig,l,i_h2so4liq) |
---|
[1442] | 103 | wgt_SA(ig,l) = WH2SO4(ig,l) |
---|
[1305] | 104 | enddo |
---|
| 105 | enddo |
---|
| 106 | |
---|
[1442] | 107 | c Init F_sed |
---|
| 108 | F_sed(:,:) = 0.0E+0 |
---|
| 109 | |
---|
| 110 | c Au niveau top+1 , tout égal a 0 |
---|
| 111 | wgt_SA(:,n_lev+1) = 0.0E+0 |
---|
| 112 | |
---|
[1305] | 113 | c Computing the different layer properties |
---|
| 114 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1442] | 115 | c m_lay (kg.m-2) |
---|
[1305] | 116 | c Ici g=8.87, conflit pour g entre #include "YOMCST.h" |
---|
| 117 | c et #include "comcstfi.h" |
---|
| 118 | |
---|
| 119 | do l=1,n_lev |
---|
| 120 | do ig=1, n_lon |
---|
[1442] | 121 | m_lay(ig,l)=(pbndlay(ig,l) - pbndlay(ig,l+1)) /8.87E+0 |
---|
[1305] | 122 | IF (m_lay(ig,l).LE.0.0) THEN |
---|
| 123 | PRINT*,'!!!! STOP PROBLEME SEDIMENTATION!!!!' |
---|
| 124 | PRINT*,'!!!! m_lay <= 0 !!!!' |
---|
| 125 | PRINT*,'!!!! STOP PROBLEME SEDIMENTATION!!!!' |
---|
| 126 | ENDIF |
---|
| 127 | end do |
---|
| 128 | end do |
---|
| 129 | |
---|
| 130 | c Computing sedimentation for droplet "tracer" |
---|
| 131 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 132 | c pbndlay(:,51)=0 (en parallèle c'est sûr), ne pas l'utiliser pour Fse |
---|
| 133 | |
---|
[1442] | 134 | DO imode=1, nbr_mode |
---|
| 135 | DO l = cloudmin, cloudmax |
---|
| 136 | DO ig=1,n_lon |
---|
[1305] | 137 | |
---|
| 138 | c RD=1000.*RNAVO*RKBOL/RMD avec RMD=43.44 Masse molaire atm venus en g.mol-1 |
---|
[1442] | 139 | D_stokes=((rho_droplet(ig,l)-pmidlay(ig,l)/(RD*pt(ig,l)))) |
---|
| 140 | & *(2./9.)*(RG/VISCOSITY_CO2(pt(ig,l))) |
---|
[1305] | 141 | |
---|
| 142 | l_mean=(pt(ig,l)/pmidlay(ig,l))* |
---|
| 143 | & (0.707*R/(4.*RPI* molrad*molrad * RNAVO)) |
---|
| 144 | |
---|
[1442] | 145 | R_mode0=R_MEDIAN(ig,l,imode)* |
---|
| 146 | & EXP(-LOG(STDDEV(ig,l,imode))**2.) |
---|
| 147 | IF ((l_mean/(R_mode0)).GT.10.) THEN |
---|
| 148 | Rp_DL=R_MEDIAN(ig,l,imode)* |
---|
| 149 | & EXP(3.*LOG(STDDEV(ig,l,imode))**2.) |
---|
[1305] | 150 | ELSE |
---|
[1442] | 151 | Rp_DL=R_MEDIAN(ig,l,imode)* |
---|
| 152 | & EXP(4.*LOG(STDDEV(ig,l,imode))**2.) |
---|
[1305] | 153 | ENDIF |
---|
| 154 | |
---|
| 155 | a=1.246*l_mean |
---|
| 156 | |
---|
| 157 | c=0.87/l_mean |
---|
| 158 | |
---|
| 159 | b_exp=0.42*l_mean*EXP(-c*Rp_DL) |
---|
| 160 | |
---|
| 161 | A1=a+b_exp*(1.+c*Rp_DL |
---|
| 162 | & +0.5*(Rp_DL*c)**2 |
---|
| 163 | & +1./6.*(Rp_DL*c)**3) |
---|
| 164 | |
---|
| 165 | A2=1.-b_exp*(c |
---|
| 166 | & +Rp_DL*c**2 |
---|
[1442] | 167 | & +0.5*(Rp_DL**2)*(c**3)) |
---|
[1305] | 168 | |
---|
| 169 | A3=0.5*b_exp*(c**2+Rp_DL*c**3) |
---|
| 170 | |
---|
| 171 | A4=-b_exp*1./6.*c**3 |
---|
[1442] | 172 | |
---|
| 173 | c Addition des Flux de tous les modes presents |
---|
| 174 | F_sed(ig,l)=F_sed(ig,l)+(rho_droplet(ig,l)*4./3.*RPI* |
---|
| 175 | & NBRTOT(ig,l,imode)*1.0E6*D_stokes*( |
---|
| 176 | & A1*R_MEDIAN(ig,l,imode)**4 |
---|
| 177 | & *EXP(8.0*LOG(STDDEV(ig,l,imode))**2.) |
---|
| 178 | & +A2*R_MEDIAN(ig,l,imode)**5 |
---|
| 179 | & *EXP(12.5*LOG(STDDEV(ig,l,imode))**2.) |
---|
| 180 | & +A3*R_MEDIAN(ig,l,imode)**6 |
---|
| 181 | & *EXP(18.0*LOG(STDDEV(ig,l,imode))**2.) |
---|
| 182 | & +A4*R_MEDIAN(ig,l,imode)**7 |
---|
| 183 | & *EXP(24.5*LOG(STDDEV(ig,l,imode))**2.))) |
---|
[1305] | 184 | |
---|
| 185 | c PRINT*,' APRES dTime: F_sed=',F_sed(ig,l), ig, l |
---|
| 186 | |
---|
[1442] | 187 | IF (F_sed(ig,l).GT.m_lay(ig,l)) THEN |
---|
| 188 | PRINT*,'===============================================' |
---|
| 189 | PRINT*,'WARNING On a epuise la couche', ig, l |
---|
| 190 | PRINT*,'On epuise pas une couche avec une espèce |
---|
| 191 | & minoritaire, c est pas bien maaaaaal' |
---|
| 192 | PRINT*,'Water',zqi_wv(ig,l),'Sulfuric Acid',zqi_sa(ig,l) |
---|
| 193 | PRINT*,'F_sed:',F_sed(ig,l),'m_lay:',m_lay(ig,l) |
---|
| 194 | PRINT*,'F_sed/dtphy',F_sed(ig,l)/ptimestep |
---|
| 195 | PRINT*,'Pbnd top',pbndlay(ig,l+1),'Temp',pt(ig,l),'Rho', |
---|
| 196 | & rho_droplet(ig,l) |
---|
| 197 | PRINT*,'Ntot',NBRTOT(ig,l,:) |
---|
| 198 | PRINT*,'StdDev',STDDEV(ig,l,:),'Rmed',R_MEDIAN(ig,l,:) |
---|
| 199 | PRINT*,'K_MASS',K_MASS(ig,l,:) |
---|
| 200 | PRINT*,'WSA',WH2SO4(ig,l),'RHO',rho_droplet(ig,l) |
---|
[1305] | 201 | |
---|
| 202 | c ELSE |
---|
| 203 | c |
---|
| 204 | c PRINT*,'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
| 205 | c PRINT*,'WARNING On a PAS epuise la couche', ig, l |
---|
| 206 | c PRINT*,'F_sed:',F_sed(ig,l),'m_lay:',m_lay(ig,l) |
---|
| 207 | c PRINT*,'F_sed/dtphy',F_sed(ig,l)/ptimestep |
---|
| 208 | c PRINT*,'Pbnd top',pbndlay(ig,l+1),'Temp',pt(ig,l),'Rho', |
---|
[1442] | 209 | c & rho_droplet(ig,l)(ig,l) |
---|
| 210 | c PRINT*,'Ntot',NBRTOT(ig,l),'Ntot m3',NBRTOT(ig,l)*1.0e6 |
---|
| 211 | c PRINT*,'StdDev',STDDEV(ig,l),'Rmed',R_MEDIAN(ig,l) |
---|
| 212 | STOP |
---|
| 213 | ENDIF |
---|
[1305] | 214 | |
---|
[1442] | 215 | IF (F_sed(ig,l).LT.0.0d0) THEN |
---|
[1305] | 216 | PRINT*,"F_sed est négatif !!!" |
---|
| 217 | PRINT*,'F_sed:',F_sed(ig,l),'m_lay:',m_lay(ig,l) |
---|
| 218 | PRINT*,'F_sed/dtphy',F_sed(ig,l)/ptimestep |
---|
| 219 | PRINT*,'Pbnd top',pbndlay(ig,l+1),'Pmid',pmidlay(ig,l) |
---|
| 220 | PRINT*,'Temp',pt(ig,l),'Rho', |
---|
[1442] | 221 | & rho_droplet(ig,l) |
---|
| 222 | PRINT*,'Ntot',NBRTOT(ig,l,imode),'Ntot m3', |
---|
| 223 | & NBRTOT(ig,l,imode)*1.0e6 |
---|
| 224 | PRINT*,'StdDev',STDDEV(ig,l,imode),'Rmed', |
---|
| 225 | & R_MEDIAN(ig,l,imode) |
---|
[1305] | 226 | PRINT*,'A1',A1,'A2',A2 |
---|
| 227 | PRINT*,'A3',A1,'A4',A2 |
---|
| 228 | PRINT*,'D_stokes',D_stokes |
---|
| 229 | STOP |
---|
| 230 | ENDIF |
---|
[1442] | 231 | |
---|
| 232 | ENDDO |
---|
| 233 | |
---|
| 234 | c ELSE |
---|
| 235 | c F_sed(:,l)=0.0d0 |
---|
| 236 | c ENDIF |
---|
| 237 | |
---|
[1305] | 238 | ENDDO |
---|
| 239 | ENDDO |
---|
| 240 | |
---|
[1442] | 241 | c Passage du Flux au Flux pour un pas de temps (== kg.m-2) |
---|
| 242 | F_sed(:,:)=F_sed(:,:)*ptimestep |
---|
[1305] | 243 | |
---|
[1442] | 244 | |
---|
[1305] | 245 | c VENUS: le flux à la surface est fixé à 0 |
---|
| 246 | c les conditions P/T en surface ne permettent pas la condensation |
---|
| 247 | DO ig=1,n_lon |
---|
| 248 | pdqs_sed(ig) = 0.0d0 |
---|
| 249 | ENDDO |
---|
| 250 | |
---|
| 251 | c Compute the final tendency: |
---|
| 252 | c --------------------------- |
---|
| 253 | |
---|
| 254 | c Partie H2SO4l |
---|
| 255 | c ~~~~~~~~~~~~ |
---|
| 256 | |
---|
| 257 | DO l = 1, n_lev |
---|
| 258 | DO ig=1,n_lon |
---|
| 259 | zqi_sa(ig,l) = zqi_sa(ig,l) + ( |
---|
| 260 | & F_sed(ig,l+1)*wgt_SA(ig,l+1) |
---|
| 261 | & - F_sed(ig,l)*wgt_SA(ig,l)) |
---|
[1442] | 262 | & / m_lay(ig,l) |
---|
| 263 | c On peut avoir theoriquement le cas ou on epuise tout le VMR present |
---|
| 264 | IF (zqi_sa(ig,l).LT.0.0D0) THEN |
---|
| 265 | PRINT*,'STOP sedimentation on epuise tout le VMR present' |
---|
| 266 | PRINT*,'couche',ig,'level',l |
---|
| 267 | c STOP |
---|
| 268 | c Ce n est pas juste mais il faudrait alors adapter les pas |
---|
| 269 | c de tps de la phys, microphys et chimie |
---|
| 270 | c car dans ce cas, c est comme si on epuisait la couche pour un pdtphys |
---|
| 271 | c mais en fait on l epuise pour un pdt<pdtphys |
---|
| 272 | zqi_sa(ig,l) = 0.0D0 |
---|
| 273 | ENDIF |
---|
[1305] | 274 | pdqsed(ig,l,1) = zqi_sa(ig,l) - pq(ig,l,i_h2so4liq) |
---|
| 275 | ENDDO |
---|
| 276 | ENDDO |
---|
| 277 | |
---|
| 278 | c Partie H2Ol |
---|
| 279 | c ~~~~~~~~~~~ |
---|
| 280 | |
---|
| 281 | DO l = 1, n_lev |
---|
| 282 | DO ig=1,n_lon |
---|
| 283 | zqi_wv(ig,l) = zqi_wv(ig,l) + ( |
---|
| 284 | & F_sed(ig,l+1)*(1. - wgt_SA(ig,l+1)) |
---|
| 285 | & - F_sed(ig,l)*(1. - wgt_SA(ig,l))) |
---|
| 286 | & / m_lay(ig,l) |
---|
[1442] | 287 | c On peut avoir theoriquement le cas ou on epuise tout le VMR present |
---|
| 288 | IF (zqi_wv(ig,l).LT.0.0D0) THEN |
---|
| 289 | PRINT*,'STOP sedimentation on epuise tout le VMR present' |
---|
| 290 | PRINT*,'couche',ig,'level',l |
---|
| 291 | c STOP |
---|
| 292 | c Ce n est pas juste mais il faudrait alors adapter les pas |
---|
| 293 | c de tps de la phys, microphys et chimie |
---|
| 294 | c car dans ce cas, c est comme si on epuisait la couche pour un pdtphys |
---|
| 295 | c mais en fait on l epuise pour un pdt<pdtphys |
---|
| 296 | zqi_wv(ig,l) = 0.0D0 |
---|
| 297 | ENDIF |
---|
[1305] | 298 | pdqsed(ig,l,2) = zqi_wv(ig,l) - pq(ig,l,i_h2oliq) |
---|
| 299 | ENDDO |
---|
| 300 | ENDDO |
---|
| 301 | |
---|
| 302 | c Save output file in 1D model |
---|
| 303 | c ============================ |
---|
| 304 | |
---|
| 305 | c IF (n_lon .EQ. 1) THEN |
---|
| 306 | c PRINT*,'Save output sedim' |
---|
| 307 | c DO l = 1, n_lev |
---|
| 308 | c DO ig=1,n_lon |
---|
| 309 | c WRITE(77,"(i4,','11(e15.8,','))") l,pdqsed(ig,l),zqi(ig,l), |
---|
[1442] | 310 | c & (WH2SO4(ig,l)*pq(ig,l,i_h2so4liq)+ |
---|
| 311 | c & (1.-WH2SO4(ig,l))*pq(ig,l,i_h2oliq)), |
---|
[1305] | 312 | c & pq(ig,l,i_h2so4liq),pq(ig,l,i_h2oliq) |
---|
| 313 | c ENDDO |
---|
| 314 | c ENDDO |
---|
| 315 | c ENDIF |
---|
| 316 | |
---|
| 317 | RETURN |
---|
| 318 | END |
---|
| 319 | |
---|
[1442] | 320 | ******************************************************************************* |
---|
| 321 | REAL FUNCTION VISCOSITY_CO2(temp) |
---|
| 322 | c Aurélien Stolzenbach 2015 |
---|
| 323 | c Calcul de la viscosité dynamique du CO2 80°K -> 300°K |
---|
| 324 | c Viscosité dynamique en Pa.s |
---|
| 325 | c Source: Johnston & Grilly (1942) |
---|
| 326 | |
---|
| 327 | c température en °K |
---|
| 328 | REAL, INTENT(IN) :: temp |
---|
| 329 | |
---|
| 330 | REAL :: denom, numer |
---|
| 331 | |
---|
| 332 | c Calcul de la viscosité dynamique grâce à la formule de Jones (Lennard-Jones (1924)) |
---|
| 333 | |
---|
| 334 | numer = 200.**(2.27/4.27)-0.435 |
---|
| 335 | denom = temp**(2.27/4.27)-0.435 |
---|
| 336 | |
---|
| 337 | VISCOSITY_CO2 = (numer/denom)*1015.*(temp/200.)**(3./2.) |
---|
| 338 | |
---|
| 339 | c convertion de Poises*1e7 -> Pa.s |
---|
| 340 | VISCOSITY_CO2 = VISCOSITY_CO2*1.e-8 |
---|
| 341 | |
---|
| 342 | END FUNCTION VISCOSITY_CO2 |
---|
| 343 | ******************************************************************************* |
---|
| 344 | |
---|
| 345 | |
---|