[3] | 1 | SUBROUTINE gwstress |
---|
| 2 | * ( nlon , nlev |
---|
| 3 | * , kkcrit, ksect, kkhlim, ktest, kkcrith, kcrit, kkenvh |
---|
| 4 | * , kknu |
---|
| 5 | * , prho , pstab , pvph , pstd, psig |
---|
| 6 | * , pmea , ppic , pval , ptfr , ptau |
---|
[2047] | 7 | * , pgeom1 , pgamma , pd1 , pd2 , pdmod , pnu |
---|
| 8 | * , zeff ) |
---|
[3] | 9 | c |
---|
| 10 | c**** *gwstress* |
---|
| 11 | c |
---|
| 12 | c purpose. |
---|
| 13 | c -------- |
---|
| 14 | c Compute the surface stress due to Gravity Waves, according |
---|
| 15 | c to the Phillips (1979) theory of 3-D flow above |
---|
| 16 | c anisotropic elliptic ridges. |
---|
| 17 | |
---|
| 18 | C The stress is reduced two account for cut-off flow over |
---|
| 19 | C hill. The flow only see that part of the ridge located |
---|
| 20 | c above the blocked layer (see zeff). |
---|
| 21 | c |
---|
| 22 | c** interface. |
---|
| 23 | c ---------- |
---|
| 24 | c call *gwstress* from *gwdrag* |
---|
| 25 | c |
---|
| 26 | c explicit arguments : |
---|
| 27 | c -------------------- |
---|
| 28 | c ==== inputs === |
---|
| 29 | c ==== outputs === |
---|
| 30 | c |
---|
| 31 | c implicit arguments : none |
---|
| 32 | c -------------------- |
---|
| 33 | c |
---|
| 34 | c method. |
---|
| 35 | c ------- |
---|
| 36 | c |
---|
| 37 | c |
---|
| 38 | c externals. |
---|
| 39 | c ---------- |
---|
| 40 | c |
---|
| 41 | c |
---|
| 42 | c reference. |
---|
| 43 | c ---------- |
---|
| 44 | c |
---|
| 45 | c LOTT and MILLER (1997) & LOTT (1999) |
---|
| 46 | c |
---|
| 47 | c author. |
---|
| 48 | c ------- |
---|
| 49 | c |
---|
| 50 | c modifications. |
---|
| 51 | c -------------- |
---|
| 52 | c f. lott put the new gwd on ifs 22/11/93 |
---|
| 53 | c |
---|
| 54 | c----------------------------------------------------------------------- |
---|
[101] | 55 | use dimphy |
---|
[3] | 56 | implicit none |
---|
| 57 | |
---|
| 58 | #include "YOMCST.h" |
---|
| 59 | #include "YOEGWD.h" |
---|
| 60 | |
---|
| 61 | c----------------------------------------------------------------------- |
---|
| 62 | c |
---|
| 63 | c* 0.1 arguments |
---|
| 64 | c --------- |
---|
| 65 | c |
---|
| 66 | integer nlon,nlev |
---|
| 67 | integer kkcrit(nlon),kkcrith(nlon),kcrit(nlon),ksect(nlon), |
---|
| 68 | * kkhlim(nlon),ktest(nlon),kkenvh(nlon),kknu(nlon) |
---|
| 69 | c |
---|
| 70 | real prho(nlon,nlev+1),pstab(nlon,nlev+1),ptau(nlon,nlev+1), |
---|
| 71 | * pvph(nlon,nlev+1),ptfr(nlon), |
---|
| 72 | * pgeom1(nlon,nlev),pstd(nlon) |
---|
| 73 | c |
---|
| 74 | real pd1(nlon),pd2(nlon),pnu(nlon),psig(nlon),pgamma(nlon) |
---|
| 75 | real pmea(nlon),ppic(nlon),pval(nlon) |
---|
| 76 | real pdmod(nlon) |
---|
[2047] | 77 | real zeff(nlon) ! effective height seen by the flow when there is blocking |
---|
[3] | 78 | c |
---|
| 79 | c----------------------------------------------------------------------- |
---|
| 80 | c |
---|
| 81 | c* 0.2 local arrays |
---|
| 82 | c ------------ |
---|
| 83 | |
---|
| 84 | integer jl |
---|
| 85 | c |
---|
| 86 | c----------------------------------------------------------------------- |
---|
| 87 | c |
---|
| 88 | c* 0.3 functions |
---|
| 89 | c --------- |
---|
| 90 | c ------------------------------------------------------------------ |
---|
| 91 | c |
---|
| 92 | c* 1. initialization |
---|
| 93 | c -------------- |
---|
| 94 | c |
---|
| 95 | c PRINT *,' in gwstress' |
---|
| 96 | 100 continue |
---|
| 97 | c |
---|
| 98 | c* 3.1 gravity wave stress. |
---|
| 99 | c |
---|
| 100 | 300 continue |
---|
| 101 | c |
---|
| 102 | c |
---|
[2047] | 103 | zeff = 0. |
---|
[3] | 104 | do 301 jl=kidia,kfdia |
---|
| 105 | if(ktest(jl).eq.1) then |
---|
| 106 | |
---|
| 107 | c effective mountain height above the blocked flow |
---|
| 108 | |
---|
[2047] | 109 | zeff(jl)=ppic(jl)-pval(jl) |
---|
[3] | 110 | if(kkenvh(jl).lt.klev)then |
---|
[2047] | 111 | zeff(jl)=amin1(GFRCRIT*pvph(jl,klev+1)/sqrt(pstab(jl,klev+1)) |
---|
| 112 | c ,zeff(jl)) |
---|
[3] | 113 | endif |
---|
| 114 | |
---|
| 115 | |
---|
| 116 | ptau(jl,klev+1)=gkdrag*prho(jl,klev+1) |
---|
| 117 | * *psig(jl)*pdmod(jl)/4./pstd(jl) |
---|
| 118 | * *pvph(jl,klev+1)*sqrt(pstab(jl,klev+1)) |
---|
[2047] | 119 | * *zeff(jl)**2 |
---|
[3] | 120 | |
---|
| 121 | |
---|
| 122 | c too small value of stress or low level flow include critical level |
---|
| 123 | c or low level flow: gravity wave stress nul. |
---|
| 124 | |
---|
| 125 | c lo=(ptau(jl,klev+1).lt.gtsec).or.(kcrit(jl).ge.kknu(jl)) |
---|
| 126 | c * .or.(pvph(jl,klev+1).lt.gvcrit) |
---|
| 127 | c if(lo) ptau(jl,klev+1)=0.0 |
---|
| 128 | |
---|
| 129 | c print *,jl,ptau(jl,klev+1) |
---|
| 130 | |
---|
| 131 | else |
---|
| 132 | |
---|
| 133 | ptau(jl,klev+1)=0.0 |
---|
| 134 | |
---|
| 135 | endif |
---|
| 136 | |
---|
| 137 | 301 continue |
---|
| 138 | |
---|
| 139 | c write(21)(ptau(jl,klev+1),jl=kidia,kfdia) |
---|
| 140 | |
---|
| 141 | return |
---|
| 142 | end |
---|
| 143 | |
---|
| 144 | |
---|