| 1 | SUBROUTINE FLOTT_GWD_RAN(NLON,NLEV,DTIME, pp, pn2, & |
|---|
| 2 | tt,uu,vv, plevmoy, & |
|---|
| 3 | zustr,zvstr,d_t, d_u, d_v) |
|---|
| 4 | |
|---|
| 5 | !---------------------------------------------------------------------- |
|---|
| 6 | ! Parametrization of the momentum flux deposition due to a discrete |
|---|
| 7 | ! number of gravity waves. |
|---|
| 8 | ! F. Lott |
|---|
| 9 | ! Version 14, Gaussian distribution of the source |
|---|
| 10 | ! LMDz model online version |
|---|
| 11 | ! ADAPTED FOR VENUS / F. LOTT + S. LEBONNOIS |
|---|
| 12 | ! Version adapted on 03/04/2013: |
|---|
| 13 | ! - input flux compensated in the deepest layers |
|---|
| 14 | !--------------------------------------------------------------------- |
|---|
| 15 | |
|---|
| 16 | use dimphy |
|---|
| 17 | USE geometry_mod, only: cell_area, latitude_deg |
|---|
| 18 | implicit none |
|---|
| 19 | |
|---|
| 20 | #include "YOEGWD.h" |
|---|
| 21 | #include "YOMCST.h" |
|---|
| 22 | |
|---|
| 23 | ! 0. DECLARATIONS: |
|---|
| 24 | |
|---|
| 25 | ! 0.1 INPUTS |
|---|
| 26 | INTEGER, intent(in):: NLON, NLEV |
|---|
| 27 | REAL, intent(in):: DTIME ! Time step of the Physics |
|---|
| 28 | REAL, intent(in):: pp(NLON, NLEV) ! Pressure at full levels |
|---|
| 29 | ! VENUS ATTENTION: CP VARIABLE PN2 CALCULE EN AMONT DES PARAMETRISATIONS |
|---|
| 30 | REAL, intent(in):: pn2(NLON,NLEV) ! N2 (BV^2) at 1/2 levels |
|---|
| 31 | REAL, intent(in):: TT(NLON, NLEV) ! Temp at full levels |
|---|
| 32 | |
|---|
| 33 | REAL, intent(in):: UU(NLON, NLEV) , VV(NLON, NLEV) |
|---|
| 34 | ! Hor winds at full levels |
|---|
| 35 | REAL, intent(in) :: plevmoy(NLEV+1) ! press (Pa) at interlayers, at klon/2+1 |
|---|
| 36 | |
|---|
| 37 | ! 0.2 OUTPUTS |
|---|
| 38 | REAL, intent(out):: zustr(NLON), zvstr(NLON) ! Surface Stresses |
|---|
| 39 | REAL, intent(inout):: d_t(NLON, NLEV) ! Tendency on Temp. |
|---|
| 40 | |
|---|
| 41 | REAL, intent(inout):: d_u(NLON, NLEV), d_v(NLON, NLEV) |
|---|
| 42 | ! Tendencies on winds |
|---|
| 43 | |
|---|
| 44 | ! O.3 INTERNAL ARRAYS |
|---|
| 45 | |
|---|
| 46 | INTEGER II, LL |
|---|
| 47 | |
|---|
| 48 | ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED |
|---|
| 49 | |
|---|
| 50 | REAL DELTAT |
|---|
| 51 | |
|---|
| 52 | ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS |
|---|
| 53 | |
|---|
| 54 | !VENUS |
|---|
| 55 | INTEGER, PARAMETER:: NK = 2, NP = 2, NO = 2, NW = NK * NP * NO |
|---|
| 56 | !Online output: change NO |
|---|
| 57 | ! INTEGER, PARAMETER:: NK = 1, NP = 2, NO = 11, NW = NK * NP * NO |
|---|
| 58 | INTEGER JK, JP, JO, JW |
|---|
| 59 | REAL KMIN, KMAX ! Min and Max horizontal wavenumbers |
|---|
| 60 | REAL KSTAR ! Min horizontal wavenumber constrained by resolution |
|---|
| 61 | REAL CMIN, CMAX ! Min and Max absolute ph. vel. |
|---|
| 62 | REAL CPHA ! absolute PHASE VELOCITY frequency |
|---|
| 63 | REAL ZK(NW, KLON) ! Horizontal wavenumber amplitude |
|---|
| 64 | REAL ZP(NW) ! Horizontal wavenumber angle |
|---|
| 65 | REAL ZO(NW, KLON) ! Absolute frequency ! |
|---|
| 66 | |
|---|
| 67 | ! Waves Intr. freq. at the 1/2 lev surrounding the full level |
|---|
| 68 | REAL ZOM(NW, KLON), ZOP(NW, KLON) |
|---|
| 69 | |
|---|
| 70 | ! Wave EP-fluxes at the 2 semi levels surrounding the full level |
|---|
| 71 | REAL WWM(NW, KLON), WWP(NW, KLON) |
|---|
| 72 | ! Fluxes X and Y for each waves at 1/2 Levels |
|---|
| 73 | REAL RUWP(NW, KLON), RVWP(NW, KLON) |
|---|
| 74 | REAL RUW(KLON, KLEV + 1) ! Flux x at semi levels |
|---|
| 75 | REAL RVW(KLON, KLEV + 1) ! Flux y at semi levels |
|---|
| 76 | |
|---|
| 77 | REAL RUW0(NW, KLON) ! Fluxes at launching level |
|---|
| 78 | REAL RUWMAX ! Max value |
|---|
| 79 | INTEGER LAUNCH ! Launching altitude |
|---|
| 80 | REAL XLAUNCH ! Control the launching altitude |
|---|
| 81 | |
|---|
| 82 | ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS |
|---|
| 83 | |
|---|
| 84 | REAL SAT ! saturation parameter |
|---|
| 85 | REAL RDISS, ZOISEC ! COEFF DE DISSIPATION, SECURITY FOR INTRINSIC FREQ |
|---|
| 86 | |
|---|
| 87 | ! 0.3.3 BACKGROUND FLOW AT 1/2 LEVELS AND VERTICAL COORDINATE |
|---|
| 88 | |
|---|
| 89 | REAL H0bis(KLON, KLEV) ! Characteristic Height of the atmosphere |
|---|
| 90 | REAL H0 ! Characteristic Height of the atmosphere |
|---|
| 91 | REAL PR, TR ! Reference Pressure and Temperature |
|---|
| 92 | |
|---|
| 93 | REAL ZH(KLON, KLEV + 1) ! Log-pressure altitude (constant H0) |
|---|
| 94 | REAL ZHbis(KLON, KLEV + 1) ! Log-pressure altitude (varying H) |
|---|
| 95 | |
|---|
| 96 | REAL UH(KLON, KLEV + 1), VH(KLON, KLEV + 1) ! Winds at 1/2 levels |
|---|
| 97 | REAL PH(KLON, KLEV + 1) ! Pressure at 1/2 levels |
|---|
| 98 | REAL PSEC ! Security to avoid division by 0 pressure |
|---|
| 99 | REAL BV(KLON, KLEV + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels |
|---|
| 100 | REAL BVSEC ! Security to avoid negative BVF |
|---|
| 101 | |
|---|
| 102 | ! COSMETICS TO DIAGNOSE EACH WAVES CONTRIBUTION. |
|---|
| 103 | logical output |
|---|
| 104 | data output/.false./ |
|---|
| 105 | ! data output/.true./ |
|---|
| 106 | ! CAUTION ! IF output is .true. THEN change NO to 10 at least ! |
|---|
| 107 | character*14 outform |
|---|
| 108 | character*2 str2 |
|---|
| 109 | integer ieq |
|---|
| 110 | |
|---|
| 111 | ! ON CONSERVE LA MEMOIRE un certain temps AVEC UN SAVE |
|---|
| 112 | real,save,allocatable :: d_u_sav(:,:),d_v_sav(:,:) |
|---|
| 113 | LOGICAL firstcall |
|---|
| 114 | SAVE firstcall |
|---|
| 115 | DATA firstcall/.true./ |
|---|
| 116 | |
|---|
| 117 | REAL ALEAS |
|---|
| 118 | EXTERNAL ALEAS |
|---|
| 119 | |
|---|
| 120 | !----------------------------------------------------------------- |
|---|
| 121 | ! 1. INITIALISATIONS |
|---|
| 122 | |
|---|
| 123 | IF (firstcall) THEN |
|---|
| 124 | allocate(d_u_sav(NLON,NLEV),d_v_sav(NLON,NLEV)) |
|---|
| 125 | d_u_sav = 0. |
|---|
| 126 | d_v_sav = 0. |
|---|
| 127 | firstcall=.false. |
|---|
| 128 | ENDIF |
|---|
| 129 | |
|---|
| 130 | ! 1.1 Basic parameter |
|---|
| 131 | |
|---|
| 132 | ! PARAMETERS CORRESPONDING TO V3: |
|---|
| 133 | RUWMAX = 0.005 ! Max EP-Flux at Launch altitude (Nominal as Gilli2017) |
|---|
| 134 | ! RUWMAX = 0.0025 ! Half-nominal |
|---|
| 135 | ! RUWMAX = 0.01 ! Double-nominal |
|---|
| 136 | SAT = 0.85 ! Saturation parameter: Sc in (12) |
|---|
| 137 | RDISS = 0.1 ! Diffusion parameter |
|---|
| 138 | |
|---|
| 139 | DELTAT=24.*3600. ! Time scale of the waves (first introduced in 9b) |
|---|
| 140 | |
|---|
| 141 | !!!! TESTS |
|---|
| 142 | ! KMIN = 1.E-5 ! Min horizontal wavenumber (lambda max 628) |
|---|
| 143 | ! KMIN = 6.3E-6 ! Min horizontal wavenumber (lambda max 1000 km) |
|---|
| 144 | ! KMIN = 1.2E-6 ! Min horizontal wavenumber (lambda max 5000 km) |
|---|
| 145 | ! KMAX = 1.E-4 ! Max horizontal wavenumber (lambda min 50 km) |
|---|
| 146 | |
|---|
| 147 | !!! TEST Kobs and BestFit Diogo |
|---|
| 148 | KMIN = 1.E-5 ! Min horizontal wavenumber (lambda max 628) |
|---|
| 149 | KMAX = 1.E-4 ! Max horizontal wavenumber (lambda min 50 km) |
|---|
| 150 | |
|---|
| 151 | !!! TEST GW8 |
|---|
| 152 | |
|---|
| 153 | ! KMIN = 1.25E-5 ! Min horizontal wavenumber (lambda max 500 km) |
|---|
| 154 | ! KMAX = 1.E-4 ! Max horizontal wavenumber (lambda min 50 km) |
|---|
| 155 | |
|---|
| 156 | !!! TEST GW9 |
|---|
| 157 | |
|---|
| 158 | ! KMIN = 1.E-6 ! Min horizontal wavenumber (lambda max 6000 km) |
|---|
| 159 | ! KMAX = 2.E-5 ! Max horizontal wavenumber (lambda min 300 km) |
|---|
| 160 | |
|---|
| 161 | !!! TEST BestFit GG |
|---|
| 162 | ! KMIN = 6.3E-6 ! Min horizontal wavenumber (lambda max 1000 km) |
|---|
| 163 | ! KMAX = 1.E-4 ! Max horizontal wavenumber (lambda min 50 km) |
|---|
| 164 | |
|---|
| 165 | !Online output: one value only |
|---|
| 166 | if (output) then |
|---|
| 167 | KMIN = 3E-5 |
|---|
| 168 | KMAX = 3E-5 |
|---|
| 169 | endif |
|---|
| 170 | |
|---|
| 171 | !! |
|---|
| 172 | CMIN = 1. ! Min phase velocity |
|---|
| 173 | CMAX = 61. ! Max phase speed velocity TestGW6 |
|---|
| 174 | ! CMAX= 111. ! TestGW2 |
|---|
| 175 | ! XLAUNCH=0.6 ! Parameter that control launching altitude |
|---|
| 176 | XLAUNCH=5e-3 ! Value for top of cloud convective region |
|---|
| 177 | ! XLAUNCH=2.e-4 ! Value for ~ 70 km? Review this |
|---|
| 178 | |
|---|
| 179 | ! PR = 9.2e6 ! Reference pressure ! VENUS!! |
|---|
| 180 | PR = 5e5 ! Reference pressure ! VENUS: cloud layer |
|---|
| 181 | TR = 300. ! Reference Temperature ! VENUS: cloud layer |
|---|
| 182 | H0 = RD * TR / RG ! Characteristic vertical scale height |
|---|
| 183 | |
|---|
| 184 | BVSEC = 1.E-5 ! Security to avoid negative BVF |
|---|
| 185 | PSEC = 1.E-8 ! Security to avoid division by 0 pressure |
|---|
| 186 | ZOISEC = 1.E-8 ! Security FOR 0 INTRINSIC FREQ |
|---|
| 187 | |
|---|
| 188 | IF(DELTAT.LT.DTIME)THEN |
|---|
| 189 | PRINT *,'GWD RANDO: DELTAT LT DTIME!' |
|---|
| 190 | STOP |
|---|
| 191 | ENDIF |
|---|
| 192 | |
|---|
| 193 | |
|---|
| 194 | IF (NLEV < NW) THEN |
|---|
| 195 | PRINT *, 'YOU WILL HAVE PROBLEM WITH RANDOM NUMBERS' |
|---|
| 196 | PRINT *, 'FLOTT GWD STOP' |
|---|
| 197 | STOP 1 |
|---|
| 198 | ENDIF |
|---|
| 199 | |
|---|
| 200 | ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS |
|---|
| 201 | !------------------------------------------------------------- |
|---|
| 202 | |
|---|
| 203 | !Online output |
|---|
| 204 | if (output) OPEN(11,file="impact-gwno.dat") |
|---|
| 205 | |
|---|
| 206 | ! Pressure and Inv of pressure, Temperature / at 1/2 level |
|---|
| 207 | DO LL = 2, KLEV |
|---|
| 208 | PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.) |
|---|
| 209 | end DO |
|---|
| 210 | |
|---|
| 211 | PH(:, KLEV + 1) = 0. |
|---|
| 212 | PH(:, 1) = 2. * PP(:, 1) - PH(:, 2) |
|---|
| 213 | |
|---|
| 214 | ! Launching altitude |
|---|
| 215 | |
|---|
| 216 | DO LL = 1, NLEV |
|---|
| 217 | IF (plevmoy(LL) / plevmoy(1) > XLAUNCH) LAUNCH = LL |
|---|
| 218 | ENDDO |
|---|
| 219 | ! test |
|---|
| 220 | ! print*,"launch=",LAUNCH |
|---|
| 221 | ! print*,"launch p,N2=",plevmoy(LAUNCH),pn2(nlon/2+1,LAUNCH) |
|---|
| 222 | |
|---|
| 223 | ! Log pressure vert. coordinate |
|---|
| 224 | DO LL = 1, KLEV + 1 |
|---|
| 225 | ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC)) |
|---|
| 226 | end DO |
|---|
| 227 | |
|---|
| 228 | if (output) then |
|---|
| 229 | ! altitude above surface |
|---|
| 230 | ZHbis(:,1) = 0. |
|---|
| 231 | DO LL = 2, KLEV + 1 |
|---|
| 232 | H0bis(:, LL-1) = RD * TT(:, LL-1) / RG |
|---|
| 233 | ZHbis(:, LL) = ZHbis(:, LL-1) & |
|---|
| 234 | + H0bis(:, LL-1)*(PH(:, LL-1)-PH(:,LL))/PP(:, LL-1) |
|---|
| 235 | end DO |
|---|
| 236 | endif |
|---|
| 237 | |
|---|
| 238 | ! Winds and BV frequency |
|---|
| 239 | DO LL = 2, KLEV |
|---|
| 240 | UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind |
|---|
| 241 | VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind |
|---|
| 242 | ! BVSEC: BV Frequency |
|---|
| 243 | ! VENUS ATTENTION: CP VARIABLE PSTAB CALCULE EN AMONT DES PARAMETRISATIONS |
|---|
| 244 | BV(:, LL) = MAX(BVSEC,SQRT(pn2(:,LL))) |
|---|
| 245 | end DO |
|---|
| 246 | BV(:, 1) = BV(:, 2) |
|---|
| 247 | UH(:, 1) = 0. |
|---|
| 248 | VH(:, 1) = 0. |
|---|
| 249 | BV(:, KLEV + 1) = BV(:, KLEV) |
|---|
| 250 | UH(:, KLEV + 1) = UU(:, KLEV) |
|---|
| 251 | VH(:, KLEV + 1) = VV(:, KLEV) |
|---|
| 252 | |
|---|
| 253 | |
|---|
| 254 | ! 3. WAVES CHARACTERISTICS CHOSEN RANDOMLY |
|---|
| 255 | !------------------------------------------- |
|---|
| 256 | |
|---|
| 257 | ! The mod function of here a weird arguments |
|---|
| 258 | ! are used to produce the waves characteristics |
|---|
| 259 | ! in a stochastic way |
|---|
| 260 | |
|---|
| 261 | !! A REVOIR: |
|---|
| 262 | !! - utilisation de MOD ou bien de aleas ? |
|---|
| 263 | !! - distribution gaussienne des CPHA ? (avec signe ZP qui est ajuste apres) |
|---|
| 264 | |
|---|
| 265 | JW = 0 |
|---|
| 266 | DO JP = 1, NP |
|---|
| 267 | DO JK = 1, NK |
|---|
| 268 | DO JO = 1, NO |
|---|
| 269 | JW = JW + 1 |
|---|
| 270 | ! Angle |
|---|
| 271 | ZP(JW) = 2. * RPI * REAL(JP - 1) / REAL(NP) |
|---|
| 272 | DO II = 1, KLON |
|---|
| 273 | ! Horizontal wavenumber amplitude |
|---|
| 274 | ! ZK(JW, II) = KMIN + (KMAX - KMIN) * MOD(TT(II, JW) * 100., 1.) |
|---|
| 275 | ! TN+GG April/June 2020 - "Individual waves are not supposed to occupy |
|---|
| 276 | ! the entire domain, but only a fraction of it" [Lott+2012]: |
|---|
| 277 | KSTAR = RPI/SQRT(cell_area(II)) ! KSTAR should be < KMAX... |
|---|
| 278 | ZK(JW, II) = MAX(KMIN,KSTAR) + (KMAX - MAX(KMIN,KSTAR)) * ALEAS(0.) |
|---|
| 279 | ! ZK(JW, II) = KMIN + (KMAX - KMIN) * ALEAS(0.) |
|---|
| 280 | ! Horizontal phase speed |
|---|
| 281 | ! CPHA = CMIN + (CMAX - CMIN) * MOD(TT(II, JW)**2, 1.) |
|---|
| 282 | CPHA = CMIN + (CMAX - CMIN) * ALEAS(0.) |
|---|
| 283 | !Online output: linear |
|---|
| 284 | if (output) CPHA = CMIN + (CMAX - CMIN) * (JO-1)/(NO-1) |
|---|
| 285 | ! Intrinsic frequency |
|---|
| 286 | ZO(JW, II) = CPHA * ZK(JW, II) |
|---|
| 287 | ! Intrinsic frequency is imposed |
|---|
| 288 | ZO(JW, II) = ZO(JW, II) & |
|---|
| 289 | + ZK(JW, II) * COS(ZP(JW)) * UH(II, LAUNCH) & |
|---|
| 290 | + ZK(JW, II) * SIN(ZP(JW)) * VH(II, LAUNCH) |
|---|
| 291 | ! Momentum flux at launch lev |
|---|
| 292 | ! RUW0(JW, II) = RUWMAX / REAL(NW) & |
|---|
| 293 | RUW0(JW, II) = RUWMAX & |
|---|
| 294 | ! * MOD(100. * (UU(II, JW)**2 + VV(II, JW)**2), 1.) |
|---|
| 295 | * ALEAS(0.) |
|---|
| 296 | !Online output: fixed to max |
|---|
| 297 | if (output) RUW0(JW, II) = RUWMAX |
|---|
| 298 | ENDDO |
|---|
| 299 | end DO |
|---|
| 300 | end DO |
|---|
| 301 | end DO |
|---|
| 302 | |
|---|
| 303 | ! 4. COMPUTE THE FLUXES |
|---|
| 304 | !-------------------------- |
|---|
| 305 | |
|---|
| 306 | ! 4.1 Vertical velocity at launching altitude to ensure |
|---|
| 307 | ! the correct value to the imposed fluxes. |
|---|
| 308 | ! |
|---|
| 309 | DO JW = 1, NW |
|---|
| 310 | |
|---|
| 311 | ! Evaluate intrinsic frequency at launching altitude: |
|---|
| 312 | ZOP(JW, :) = ZO(JW, :) & |
|---|
| 313 | - ZK(JW, :) * COS(ZP(JW)) * UH(:, LAUNCH) & |
|---|
| 314 | - ZK(JW, :) * SIN(ZP(JW)) * VH(:, LAUNCH) |
|---|
| 315 | ! WW is directly a flux, here, not vertical velocity anymore |
|---|
| 316 | WWP(JW, :) = RUW0(JW,:) |
|---|
| 317 | RUWP(JW, :) = COS(ZP(JW)) * SIGN(1., ZOP(JW, :)) * RUW0(JW, :) |
|---|
| 318 | RVWP(JW, :) = SIN(ZP(JW)) * SIGN(1., ZOP(JW, :)) * RUW0(JW, :) |
|---|
| 319 | |
|---|
| 320 | end DO |
|---|
| 321 | |
|---|
| 322 | ! 4.2 Initial flux at launching altitude |
|---|
| 323 | |
|---|
| 324 | RUW(:, LAUNCH) = 0 |
|---|
| 325 | RVW(:, LAUNCH) = 0 |
|---|
| 326 | DO JW = 1, NW |
|---|
| 327 | RUW(:, LAUNCH) = RUW(:, LAUNCH) + RUWP(JW, :) |
|---|
| 328 | RVW(:, LAUNCH) = RVW(:, LAUNCH) + RVWP(JW, :) |
|---|
| 329 | end DO |
|---|
| 330 | |
|---|
| 331 | ! 4.3 Loop over altitudes, with passage from one level to the |
|---|
| 332 | ! next done by i) conserving the EP flux, ii) dissipating |
|---|
| 333 | ! a little, iii) testing critical levels, and vi) testing |
|---|
| 334 | ! the breaking. |
|---|
| 335 | |
|---|
| 336 | !Online output |
|---|
| 337 | if (output) then |
|---|
| 338 | ieq=nlon/2+1 |
|---|
| 339 | write(str2,'(i2)') NW+2 |
|---|
| 340 | outform="("//str2//"(E12.4,1X))" |
|---|
| 341 | WRITE(11,outform) ZH(IEQ, 1) / 1000., ZHbis(IEQ, 1) / 1000., & |
|---|
| 342 | (ZO(JW, IEQ)/ZK(JW, IEQ)*COS(ZP(JW)), JW = 1, NW) |
|---|
| 343 | endif |
|---|
| 344 | |
|---|
| 345 | DO LL = LAUNCH, KLEV - 1 |
|---|
| 346 | |
|---|
| 347 | |
|---|
| 348 | ! W(KB)ARNING: ALL THE PHYSICS IS HERE (PASSAGE FROM ONE LEVEL |
|---|
| 349 | ! TO THE NEXT) |
|---|
| 350 | DO JW = 1, NW |
|---|
| 351 | ZOM(JW, :) = ZOP(JW, :) |
|---|
| 352 | WWM(JW, :) = WWP(JW, :) |
|---|
| 353 | ! Intrinsic Frequency |
|---|
| 354 | ZOP(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW)) * UH(:, LL + 1) & |
|---|
| 355 | - ZK(JW, :) * SIN(ZP(JW)) * VH(:, LL + 1) |
|---|
| 356 | |
|---|
| 357 | WWP(JW, :) = MIN( & |
|---|
| 358 | ! No breaking (Eq.6) |
|---|
| 359 | WWM(JW, :) & |
|---|
| 360 | ! Dissipation (Eq. 8): |
|---|
| 361 | * EXP(- RDISS * PR / (PH(:, LL + 1) + PH(:, LL)) & |
|---|
| 362 | * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 & |
|---|
| 363 | / MAX(ABS(ZOP(JW, :) + ZOM(JW, :)) / 2., ZOISEC)**4 & |
|---|
| 364 | * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL))), & |
|---|
| 365 | ! Critical levels (forced to zero if intrinsic frequency changes sign) |
|---|
| 366 | MAX(0., SIGN(1., ZOP(JW, :) * ZOM(JW, :))) & |
|---|
| 367 | ! Saturation (Eq. 12) |
|---|
| 368 | * ABS(ZOP(JW, :))**3 /BV(:, LL+1) & |
|---|
| 369 | * EXP(-ZH(:, LL + 1)/H0) * SAT**2*KMIN**2/ZK(JW, :)**4) |
|---|
| 370 | end DO |
|---|
| 371 | |
|---|
| 372 | ! END OF W(KB)ARNING |
|---|
| 373 | ! Evaluate EP-flux from Eq. 7 and |
|---|
| 374 | ! Give the right orientation to the stress |
|---|
| 375 | |
|---|
| 376 | DO JW = 1, NW |
|---|
| 377 | RUWP(JW, :) = SIGN(1.,ZOP(JW, :))*COS(ZP(JW))*WWP(JW, :) |
|---|
| 378 | RVWP(JW, :) = SIGN(1.,ZOP(JW, :))*SIN(ZP(JW))*WWP(JW, :) |
|---|
| 379 | end DO |
|---|
| 380 | ! |
|---|
| 381 | RUW(:, LL + 1) = 0. |
|---|
| 382 | RVW(:, LL + 1) = 0. |
|---|
| 383 | |
|---|
| 384 | DO JW = 1, NW |
|---|
| 385 | RUW(:, LL + 1) = RUW(:, LL + 1) + RUWP(JW, :) |
|---|
| 386 | RVW(:, LL + 1) = RVW(:, LL + 1) + RVWP(JW, :) |
|---|
| 387 | end DO |
|---|
| 388 | !Online output |
|---|
| 389 | if (output) then |
|---|
| 390 | do JW=1,NW |
|---|
| 391 | if(RUWP(JW, IEQ).gt.0.) then |
|---|
| 392 | RUWP(JW, IEQ) = max(RUWP(JW, IEQ), 1.e-99) |
|---|
| 393 | else |
|---|
| 394 | RUWP(JW, IEQ) = min(RUWP(JW, IEQ), -1.e-99) |
|---|
| 395 | endif |
|---|
| 396 | enddo |
|---|
| 397 | WRITE(11,outform) ZH(IEQ, LL+1) / 1000., & |
|---|
| 398 | ZHbis(IEQ, LL+1) / 1000., & |
|---|
| 399 | (RUWP(JW, IEQ), JW = 1, NW) |
|---|
| 400 | endif |
|---|
| 401 | |
|---|
| 402 | end DO |
|---|
| 403 | |
|---|
| 404 | ! 5 CALCUL DES TENDANCES: |
|---|
| 405 | !------------------------ |
|---|
| 406 | |
|---|
| 407 | ! 5.1 Rectification des flux au sommet et dans les basses couches: |
|---|
| 408 | ! MODIF SL |
|---|
| 409 | |
|---|
| 410 | ! Attention, ici c'est le total sur toutes les ondes... |
|---|
| 411 | |
|---|
| 412 | RUW(:, KLEV + 1) = 0. |
|---|
| 413 | RVW(:, KLEV + 1) = 0. |
|---|
| 414 | |
|---|
| 415 | ! Here, big change compared to FLott version: |
|---|
| 416 | ! We compensate (RUW(:, LAUNCH), ie total emitted upward flux |
|---|
| 417 | ! over the layers max(1,LAUNCH-3) to LAUNCH-1 |
|---|
| 418 | DO LL = 1, max(1,LAUNCH-3) |
|---|
| 419 | RUW(:, LL) = 0. |
|---|
| 420 | RVW(:, LL) = 0. |
|---|
| 421 | end DO |
|---|
| 422 | DO LL = max(2,LAUNCH-2), LAUNCH-1 |
|---|
| 423 | RUW(:, LL) = RUW(:, LL - 1) + RUW(:, LAUNCH) * & |
|---|
| 424 | (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
|---|
| 425 | RVW(:, LL) = RVW(:, LL - 1) + RVW(:, LAUNCH) * & |
|---|
| 426 | (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
|---|
| 427 | end DO |
|---|
| 428 | ! This way, the total flux from GW is zero, but there is a net transport |
|---|
| 429 | ! (upward) that should be compensated by circulation |
|---|
| 430 | ! and induce additional friction at the surface |
|---|
| 431 | |
|---|
| 432 | !Online output |
|---|
| 433 | if (output) then |
|---|
| 434 | DO LL = 1, KLEV - 1 |
|---|
| 435 | WRITE(11,*) ZHbis(IEQ, LL)/1000.,RUW(IEQ,LL) |
|---|
| 436 | end DO |
|---|
| 437 | CLOSE(11) |
|---|
| 438 | stop |
|---|
| 439 | endif |
|---|
| 440 | |
|---|
| 441 | ! AR-1 RECURSIVE FORMULA (13) IN VERSION 4 |
|---|
| 442 | DO LL = 1, KLEV |
|---|
| 443 | d_u(:, LL) = RG * (RUW(:, LL + 1) - RUW(:, LL)) & |
|---|
| 444 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
|---|
| 445 | d_v(:, LL) = RG * (RVW(:, LL + 1) - RVW(:, LL)) & |
|---|
| 446 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
|---|
| 447 | ENDDO |
|---|
| 448 | d_t = 0. |
|---|
| 449 | ! ON CONSERVE LA MEMOIRE un certain temps AVEC UN SAVE |
|---|
| 450 | d_u = DTIME/DELTAT/REAL(NW) * d_u + (1.-DTIME/DELTAT) * d_u_sav |
|---|
| 451 | d_v = DTIME/DELTAT/REAL(NW) * d_v + (1.-DTIME/DELTAT) * d_v_sav |
|---|
| 452 | d_u_sav = d_u |
|---|
| 453 | d_v_sav = d_v |
|---|
| 454 | |
|---|
| 455 | ! Cosmetic: evaluation of the cumulated stress |
|---|
| 456 | |
|---|
| 457 | ZUSTR(:) = 0. |
|---|
| 458 | ZVSTR(:) = 0. |
|---|
| 459 | DO LL = 1, KLEV |
|---|
| 460 | ZUSTR(:) = ZUSTR(:) + D_U(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL)) |
|---|
| 461 | ZVSTR(:) = ZVSTR(:) + D_V(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL)) |
|---|
| 462 | ENDDO |
|---|
| 463 | |
|---|
| 464 | END SUBROUTINE FLOTT_GWD_RAN |
|---|
| 465 | |
|---|
| 466 | !=================================================================== |
|---|
| 467 | !=================================================================== |
|---|
| 468 | !=================================================================== |
|---|
| 469 | !=================================================================== |
|---|
| 470 | |
|---|
| 471 | FUNCTION ALEAS (R) |
|---|
| 472 | !***BEGIN PROLOGUE ALEAS |
|---|
| 473 | !***PURPOSE Generate a uniformly distributed random number. |
|---|
| 474 | !***LIBRARY SLATEC (FNLIB) |
|---|
| 475 | !***CATEGORY L6A21 |
|---|
| 476 | !***TYPE SINGLE PRECISION (ALEAS-S) |
|---|
| 477 | !***KEYWORDS FNLIB, ALEAS NUMBER, SPECIAL FUNCTIONS, UNIFORM |
|---|
| 478 | !***AUTHOR Fullerton, W., (LANL) |
|---|
| 479 | !***DESCRIPTION |
|---|
| 480 | ! |
|---|
| 481 | ! This pseudo-random number generator is portable among a wide |
|---|
| 482 | ! variety of computers. RAND(R) undoubtedly is not as good as many |
|---|
| 483 | ! readily available installation dependent versions, and so this |
|---|
| 484 | ! routine is not recommended for widespread usage. Its redeeming |
|---|
| 485 | ! feature is that the exact same random numbers (to within final round- |
|---|
| 486 | ! off error) can be generated from machine to machine. Thus, programs |
|---|
| 487 | ! that make use of random numbers can be easily transported to and |
|---|
| 488 | ! checked in a new environment. |
|---|
| 489 | ! |
|---|
| 490 | ! The random numbers are generated by the linear congruential |
|---|
| 491 | ! method described, e.g., by Knuth in Seminumerical Methods (p.9), |
|---|
| 492 | ! Addison-Wesley, 1969. Given the I-th number of a pseudo-random |
|---|
| 493 | ! sequence, the I+1 -st number is generated from |
|---|
| 494 | ! X(I+1) = (A*X(I) + C) MOD M, |
|---|
| 495 | ! where here M = 2**22 = 4194304, C = 1731 and several suitable values |
|---|
| 496 | ! of the multiplier A are discussed below. Both the multiplier A and |
|---|
| 497 | ! random number X are represented in double precision as two 11-bit |
|---|
| 498 | ! words. The constants are chosen so that the period is the maximum |
|---|
| 499 | ! possible, 4194304. |
|---|
| 500 | ! |
|---|
| 501 | ! In order that the same numbers be generated from machine to |
|---|
| 502 | ! machine, it is necessary that 23-bit integers be reducible modulo |
|---|
| 503 | ! 2**11 exactly, that 23-bit integers be added exactly, and that 11-bit |
|---|
| 504 | ! integers be multiplied exactly. Furthermore, if the restart option |
|---|
| 505 | ! is used (where R is between 0 and 1), then the product R*2**22 = |
|---|
| 506 | ! R*4194304 must be correct to the nearest integer. |
|---|
| 507 | ! |
|---|
| 508 | ! The first four random numbers should be .0004127026, |
|---|
| 509 | ! .6750836372, .1614754200, and .9086198807. The tenth random number |
|---|
| 510 | ! is .5527787209, and the hundredth is .3600893021 . The thousandth |
|---|
| 511 | ! number should be .2176990509 . |
|---|
| 512 | ! |
|---|
| 513 | ! In order to generate several effectively independent sequences |
|---|
| 514 | ! with the same generator, it is necessary to know the random number |
|---|
| 515 | ! for several widely spaced calls. The I-th random number times 2**22, |
|---|
| 516 | ! where I=K*P/8 and P is the period of the sequence (P = 2**22), is |
|---|
| 517 | ! still of the form L*P/8. In particular we find the I-th random |
|---|
| 518 | ! number multiplied by 2**22 is given by |
|---|
| 519 | ! I = 0 1*P/8 2*P/8 3*P/8 4*P/8 5*P/8 6*P/8 7*P/8 8*P/8 |
|---|
| 520 | ! RAND= 0 5*P/8 2*P/8 7*P/8 4*P/8 1*P/8 6*P/8 3*P/8 0 |
|---|
| 521 | ! Thus the 4*P/8 = 2097152 random number is 2097152/2**22. |
|---|
| 522 | ! |
|---|
| 523 | ! Several multipliers have been subjected to the spectral test |
|---|
| 524 | ! (see Knuth, p. 82). Four suitable multipliers roughly in order of |
|---|
| 525 | ! goodness according to the spectral test are |
|---|
| 526 | ! 3146757 = 1536*2048 + 1029 = 2**21 + 2**20 + 2**10 + 5 |
|---|
| 527 | ! 2098181 = 1024*2048 + 1029 = 2**21 + 2**10 + 5 |
|---|
| 528 | ! 3146245 = 1536*2048 + 517 = 2**21 + 2**20 + 2**9 + 5 |
|---|
| 529 | ! 2776669 = 1355*2048 + 1629 = 5**9 + 7**7 + 1 |
|---|
| 530 | ! |
|---|
| 531 | ! In the table below LOG10(NU(I)) gives roughly the number of |
|---|
| 532 | ! random decimal digits in the random numbers considered I at a time. |
|---|
| 533 | ! C is the primary measure of goodness. In both cases bigger is better. |
|---|
| 534 | ! |
|---|
| 535 | ! LOG10 NU(I) C(I) |
|---|
| 536 | ! A I=2 I=3 I=4 I=5 I=2 I=3 I=4 I=5 |
|---|
| 537 | ! |
|---|
| 538 | ! 3146757 3.3 2.0 1.6 1.3 3.1 1.3 4.6 2.6 |
|---|
| 539 | ! 2098181 3.3 2.0 1.6 1.2 3.2 1.3 4.6 1.7 |
|---|
| 540 | ! 3146245 3.3 2.2 1.5 1.1 3.2 4.2 1.1 0.4 |
|---|
| 541 | ! 2776669 3.3 2.1 1.6 1.3 2.5 2.0 1.9 2.6 |
|---|
| 542 | ! Best |
|---|
| 543 | ! Possible 3.3 2.3 1.7 1.4 3.6 5.9 9.7 14.9 |
|---|
| 544 | ! |
|---|
| 545 | ! Input Argument -- |
|---|
| 546 | ! R If R=0., the next random number of the sequence is generated. |
|---|
| 547 | ! If R .LT. 0., the last generated number will be returned for |
|---|
| 548 | ! possible use in a restart procedure. |
|---|
| 549 | ! If R .GT. 0., the sequence of random numbers will start with |
|---|
| 550 | ! the seed R mod 1. This seed is also returned as the value of |
|---|
| 551 | ! RAND provided the arithmetic is done exactly. |
|---|
| 552 | ! |
|---|
| 553 | ! Output Value -- |
|---|
| 554 | ! RAND a pseudo-random number between 0. and 1. |
|---|
| 555 | ! |
|---|
| 556 | !***REFERENCES (NONE) |
|---|
| 557 | !***ROUTINES CALLED (NONE) |
|---|
| 558 | !***REVISION HISTORY (YYMMDD) |
|---|
| 559 | ! 770401 DATE WRITTEN |
|---|
| 560 | ! 890531 Changed all specific intrinsics to generic. (WRB) |
|---|
| 561 | ! 890531 REVISION DATE from Version 3.2 |
|---|
| 562 | ! 891214 Prologue converted to Version 4.0 format. (BAB) |
|---|
| 563 | !***END PROLOGUE RAND |
|---|
| 564 | SAVE IA1, IA0, IA1MA0, IC, IX1, IX0 |
|---|
| 565 | DATA IA1, IA0, IA1MA0 /1536, 1029, 507/ |
|---|
| 566 | DATA IC /1731/ |
|---|
| 567 | DATA IX1, IX0 /0, 0/ |
|---|
| 568 | !***FIRST EXECUTABLE STATEMENT RAND |
|---|
| 569 | ! |
|---|
| 570 | ! A*X = 2**22*IA1*IX1 + 2**11*(IA1*IX1 + (IA1-IA0)*(IX0-IX1) |
|---|
| 571 | ! + IA0*IX0) + IA0*IX0 |
|---|
| 572 | ! |
|---|
| 573 | IF (R.EQ.0.) THEN |
|---|
| 574 | IY0 = IA0*IX0 |
|---|
| 575 | IY1 = IA1*IX1 + IA1MA0*(IX0-IX1) + IY0 |
|---|
| 576 | IY0 = IY0 + IC |
|---|
| 577 | IX0 = MOD (IY0, 2048) |
|---|
| 578 | IY1 = IY1 + (IY0-IX0)/2048 |
|---|
| 579 | IX1 = MOD (IY1, 2048) |
|---|
| 580 | ENDIF |
|---|
| 581 | |
|---|
| 582 | IF (R.GT.0.) THEN |
|---|
| 583 | IX1 = MOD(R,1.)*4194304. + 0.5 |
|---|
| 584 | IX0 = MOD (IX1, 2048) |
|---|
| 585 | IX1 = (IX1-IX0)/2048 |
|---|
| 586 | ENDIF |
|---|
| 587 | |
|---|
| 588 | ALEAS = IX1*2048 + IX0 |
|---|
| 589 | ALEAS = ALEAS / 4194304. |
|---|
| 590 | RETURN |
|---|
| 591 | |
|---|
| 592 | END |
|---|
| 593 | |
|---|
| 594 | |
|---|