1 | SUBROUTINE conduction(nlon, nlev,ptimestep,pplay,pplev,pt, |
---|
2 | $ tsurf,zzlev,zzlay,d_t_conduc) |
---|
3 | |
---|
4 | use dimphy |
---|
5 | use conc, only: akknew, rnew, cpnew |
---|
6 | IMPLICIT NONE |
---|
7 | |
---|
8 | c======================================================================= |
---|
9 | c |
---|
10 | c Molecular thermal conduction |
---|
11 | c |
---|
12 | c N. Descamp, F. Forget 05/1999 |
---|
13 | c |
---|
14 | c======================================================================= |
---|
15 | |
---|
16 | c----------------------------------------------------------------------- |
---|
17 | c declarations: |
---|
18 | c----------------------------------------------------------------------- |
---|
19 | |
---|
20 | !#include "dimensions.h" |
---|
21 | !#include "dimphys.h" |
---|
22 | !#include "comcstfi.h" |
---|
23 | !#include "surfdat.h" |
---|
24 | !#include "chimiedata.h" |
---|
25 | !#include "conc.h" |
---|
26 | |
---|
27 | c arguments: |
---|
28 | c ---------- |
---|
29 | |
---|
30 | integer,intent(in) :: nlon ! number of atmospheric columns |
---|
31 | integer,intent(in) :: nlev ! number of atmospheric layers |
---|
32 | real,intent(in) :: ptimestep |
---|
33 | REAL,intent(in) :: pplay(nlon,nlev) ! pressure at middle of layers (Pa) |
---|
34 | real,intent(in) :: pplev(nlon,nlev+1) |
---|
35 | REAL,intent(in) :: zzlay(nlon,nlev) ! (m) |
---|
36 | real,intent(in) :: zzlev(nlon,nlev+1) |
---|
37 | REAL,intent(in) :: pt(nlon,nlev) |
---|
38 | real,intent(in) :: tsurf(nlon) |
---|
39 | |
---|
40 | real,intent(out) :: d_t_conduc(nlon,nlev) |
---|
41 | |
---|
42 | c local: |
---|
43 | c ------ |
---|
44 | |
---|
45 | INTEGER i,ig,l |
---|
46 | real Akk |
---|
47 | real,save :: phitop |
---|
48 | real m,tmean |
---|
49 | REAL alpha(nlev) |
---|
50 | real zt(nlev) |
---|
51 | REAL lambda(nlev) |
---|
52 | real muvol(nlev) ! kg m-3 |
---|
53 | REAL C(nlev) |
---|
54 | real D(nlev) |
---|
55 | real den(nlev) |
---|
56 | REAL pdtc(nlev) |
---|
57 | real zlay(nlev) |
---|
58 | real zlev(nlev+1) |
---|
59 | |
---|
60 | c constants used locally |
---|
61 | c --------------------- |
---|
62 | c The atmospheric conductivity is a function of temperature T : |
---|
63 | c conductivity = Akk* T**skk |
---|
64 | REAL,PARAMETER :: skk=0.69 |
---|
65 | |
---|
66 | logical,save :: firstcall=.true. |
---|
67 | |
---|
68 | c----------------------------------------------------------------------- |
---|
69 | c calcul des coefficients alpha et lambda |
---|
70 | c----------------------------------------------------------------------- |
---|
71 | |
---|
72 | IF (firstcall) THEN |
---|
73 | ! write (*,*)'conduction: coeff to compute molecular', |
---|
74 | ! & ' conductivity Akk,skk' |
---|
75 | ! write(*,*) Akk,skk |
---|
76 | ! NB: Akk is undefined at this stage |
---|
77 | write (*,*)'conduction: coeff to compute molecular', |
---|
78 | & ' conductivity skk = ', skk |
---|
79 | |
---|
80 | ! Initialize phitop |
---|
81 | phitop=0.0 |
---|
82 | |
---|
83 | firstcall = .false. |
---|
84 | ENDIF ! of IF (firstcall) |
---|
85 | |
---|
86 | do ig=1,nlon |
---|
87 | |
---|
88 | c zt(1)=pt(ig,1)+pdt(ig,1)*ptimestep |
---|
89 | zt(1)=pt(ig,1) |
---|
90 | |
---|
91 | c zlay(1)=-log(pplay(ig,1)/pplev(ig,1))*Rnew(ig,1)*zt(1)/g |
---|
92 | c zlev(1)=0.0 |
---|
93 | zlay(1)=zzlay(ig,1) |
---|
94 | zlev(1)=zzlev(ig,1) |
---|
95 | |
---|
96 | do i=2,nlev |
---|
97 | |
---|
98 | zt(i)= pt(ig,i) |
---|
99 | c print*, zt(i) |
---|
100 | |
---|
101 | c tmean=zt(i) |
---|
102 | c if(zt(i).ne.zt(i-1)) |
---|
103 | c & tmean=(zt(i)-zt(i-1))/log(zt(i)/zt(i-1)) |
---|
104 | c zlay(i)= zlay(i-1) |
---|
105 | c & -log(pplay(ig,i)/pplay(ig,i-1))*Rnew(ig,i-1)*tmean/g |
---|
106 | c zlev(i)= zlev(i-1) |
---|
107 | c & -log(pplev(ig,i)/pplev(ig,i-1))*Rnew(ig,i-1)*tmean/g |
---|
108 | zlay(i)=zzlay(ig,i) |
---|
109 | zlev(i)=zzlev(ig,i) |
---|
110 | enddo |
---|
111 | zlev(nlev+1)= zzlev(ig,nlev+1) |
---|
112 | |
---|
113 | Akk=akknew(ig,1) |
---|
114 | lambda(1) = Akk*tsurf(ig)**skk/zlay(1) |
---|
115 | |
---|
116 | DO i = 2 , nlev |
---|
117 | Akk=akknew(ig,i) |
---|
118 | lambda(i)=Akk*zt(i)**skk/(zlay(i)-zlay(i-1)) |
---|
119 | ENDDO |
---|
120 | DO i=1,nlev-1 |
---|
121 | c print*, rnew(1,i) |
---|
122 | muvol(i)=pplay(ig,i)/(rnew(ig,i)*zt(i)) |
---|
123 | alpha(i)=cpnew(ig,i)*(muvol(i)/ptimestep) |
---|
124 | $ *(zlev(i+1)-zlev(i)) |
---|
125 | ENDDO |
---|
126 | |
---|
127 | |
---|
128 | c if (ig .eq. 2) then |
---|
129 | c print*, '---conduction---' |
---|
130 | c print*, i, cpnew(ig,i), zt(i) |
---|
131 | c endif |
---|
132 | C stop |
---|
133 | |
---|
134 | muvol(nlev)=pplay(ig,nlev)/(rnew(ig,nlev)*zt(nlev)) |
---|
135 | alpha(nlev)=cpnew(ig,i)*(muvol(nlev)/ptimestep) |
---|
136 | $ *(zlev(nlev+1)-zlev(nlev)) |
---|
137 | |
---|
138 | c-------------------------------------------------------------------- |
---|
139 | c |
---|
140 | c calcul des coefficients C et D |
---|
141 | c |
---|
142 | c------------------------------------------------------------------- |
---|
143 | |
---|
144 | den(1)=alpha(1)+lambda(2)+lambda(1) |
---|
145 | C(1)=lambda(1)*(tsurf(ig)-zt(1))+lambda(2)*(zt(2)-zt(1)) |
---|
146 | C(1)=C(1)/den(1) |
---|
147 | D(1)=lambda(2)/den(1) |
---|
148 | |
---|
149 | DO i = 2,nlev-1 |
---|
150 | den(i)=alpha(i)+lambda(i+1) |
---|
151 | den(i)=den(i)+lambda(i)*(1-D(i-1)) |
---|
152 | |
---|
153 | C(i) =lambda(i+1)*(zt(i+1)-zt(i)) |
---|
154 | $ +lambda(i)*(zt(i-1)-zt(i)+C(i-1)) |
---|
155 | C(i) =C(i)/den(i) |
---|
156 | |
---|
157 | D(i) =lambda(i+1) / den(i) |
---|
158 | ENDDO |
---|
159 | |
---|
160 | den(nlev)=alpha(nlev) + lambda(nlev) * (1-D(nlev-1)) |
---|
161 | C(nlev)=C(nlev-1)+zt(nlev-1)-zt(nlev) |
---|
162 | C(nlev)=(C(nlev)*lambda(nlev)+phitop) / den(nlev) |
---|
163 | |
---|
164 | c---------------------------------------------------------------------- |
---|
165 | c |
---|
166 | c calcul de la nouvelle temperature ptconduc |
---|
167 | c |
---|
168 | c---------------------------------------------------------------------- |
---|
169 | |
---|
170 | DO i=1,nlev |
---|
171 | pdtc(i)=0. |
---|
172 | ENDDO |
---|
173 | pdtc(nlev)=C(nlev) |
---|
174 | DO i=nlev-1,1,-1 |
---|
175 | pdtc(i)=C(i)+D(i)*pdtc(i+1) |
---|
176 | ENDDO |
---|
177 | c----------------------------------------------------------------------- |
---|
178 | c |
---|
179 | c calcul de la tendance zdtconduc |
---|
180 | c |
---|
181 | c----------------------------------------------------------------------- |
---|
182 | |
---|
183 | DO i=1,nlev |
---|
184 | d_t_conduc(ig,i)=pdtc(i)/ptimestep |
---|
185 | c print*, i, zdtconduc(0, i) |
---|
186 | |
---|
187 | ENDDO |
---|
188 | c |
---|
189 | enddo ! of do ig=1,nlon |
---|
190 | |
---|
191 | RETURN |
---|
192 | END |
---|