1 | |
---|
2 | ! SUBROUTINE WSA_ROSA_NEW |
---|
3 | ! SUBROUTINE ITERWV WSA pour un WV |
---|
4 | ! SUBROUTINE BRACWV Bracket de ITERWV |
---|
5 | ! SUBROUTINE BRACWSA Bracket de KEEQ |
---|
6 | ! FUNCTION IRFRMWV Iterative Root Finder Ridder's Method for WV |
---|
7 | ! FUNCTION IRFRMSA Iterative Root Finder Ridder's Method for SA |
---|
8 | ! FUNCTION KEEQ Kelvin Equation EQuality |
---|
9 | ! FUNCTION WVCOND H2O Condensation with WSA, T, P and H2SO4tot |
---|
10 | |
---|
11 | |
---|
12 | !---------------------------------------------------------------------------- |
---|
13 | SUBROUTINE WSA_ROSA_NEW(TAIR,PAIR,RADIUS,WSAS,MSAD) |
---|
14 | |
---|
15 | !* This subroutine calculates the acid mass fraction, density, and |
---|
16 | !* mass of sulfuric acid in a single aerosol droplet of a specified |
---|
17 | !* radius in equilibrium with ambient water vapor partial pressure |
---|
18 | !* and temperature. |
---|
19 | !* |
---|
20 | !* The calculation is performed by iteration of |
---|
21 | !* ln(PPWV) - [(2Mh2o sigma)/(R T r rho) - ln(ph2osa)] = 0 |
---|
22 | !* using the secant method. Vapor pressures by Gmitro and Vermeulen |
---|
23 | !* (PWVSAS_GV) are used. |
---|
24 | !* Zeleznik valid only up to 350 K |
---|
25 | !* |
---|
26 | !* Input/output variables: |
---|
27 | !* REAL(KIND=4) RADIUS,TAIR,PPWV,WSAS,RHOSA,MSA |
---|
28 | !* |
---|
29 | !* Input: |
---|
30 | !* RADIUS: m Radius of aerosol droplet |
---|
31 | !* TAIR: K Temperature of ambient air |
---|
32 | !* PPWV: Pa Partial pressure of ambient water vapor |
---|
33 | !* |
---|
34 | !* Output: |
---|
35 | !* WSAS: mass fraction of sulfuric acid. [0.1;1] |
---|
36 | !* RHOSA: kg/m**3 Density of sulfuric acid solution droplet |
---|
37 | !* MSAD: kg Mass of sulfuric acid in droplet |
---|
38 | !* modified from |
---|
39 | !* PROGRAM PSC_MODEL_E |
---|
40 | !* by A. Määttänen & Slimane Bekki |
---|
41 | !* subroutine for LMDZ+photochemistry VENUS |
---|
42 | !* by A. Stolzenbach |
---|
43 | !* |
---|
44 | !* Modified by S.Guilbon for microphysical module to Venus GCM |
---|
45 | !* |
---|
46 | |
---|
47 | USE donnees |
---|
48 | USE free_param |
---|
49 | |
---|
50 | IMPLICIT NONE |
---|
51 | |
---|
52 | ! Inputs |
---|
53 | REAL, intent(in) :: RADIUS, TAIR, PAIR |
---|
54 | ! Outputs |
---|
55 | REAL, intent(out) :: WSAS, MSAD |
---|
56 | ! Auxilary variables: |
---|
57 | REAL :: mrt_wv, mrt_sa |
---|
58 | REAL :: N_H2SO4, N_H2O |
---|
59 | REAL :: H2SO4_liq, H2O_liq |
---|
60 | REAL :: CONCM |
---|
61 | REAL :: MCONDTOT |
---|
62 | REAL :: RMODE |
---|
63 | REAL :: WSAFLAG |
---|
64 | REAL :: power |
---|
65 | ! Ridder's Method variables: |
---|
66 | REAL :: WVMIN, WVMAX, WVACC |
---|
67 | |
---|
68 | INTEGER :: NBROOT |
---|
69 | |
---|
70 | INTEGER :: MAXITE |
---|
71 | PARAMETER(MAXITE=20) |
---|
72 | |
---|
73 | INTEGER :: NBRAC |
---|
74 | PARAMETER(NBRAC=5) |
---|
75 | |
---|
76 | INTEGER :: FLAG |
---|
77 | |
---|
78 | ! External functions needed: |
---|
79 | REAL :: IRFRMWV |
---|
80 | |
---|
81 | ! Physical constants: |
---|
82 | REAL :: MH2O |
---|
83 | |
---|
84 | ! External functions needed: |
---|
85 | REAL :: PWVSAS_GV,STSAS,ROSAS |
---|
86 | ! PWVSAS_GV: Natural logaritm of water vapor pressure over |
---|
87 | ! sulfuric acid solution |
---|
88 | ! STSAS: Surface tension of sulfuric acid solution |
---|
89 | ! ROSAS: Density of sulfuric acid solution |
---|
90 | |
---|
91 | ! Auxiliary local variables: |
---|
92 | REAL :: DELW,DELLP,C1,C2,W0,W1,W2,F0,F1,WGUESS,LPPWV,RO |
---|
93 | REAL :: psatwv,watact |
---|
94 | INTEGER :: ITERAT |
---|
95 | ! write(*,*)'WSA ROSA NEW', RADIUS |
---|
96 | MH2O=MWV |
---|
97 | |
---|
98 | C1=2.0D0*MH2O/RGAS |
---|
99 | C2=4.0D0*PI/3.0D0 |
---|
100 | |
---|
101 | mrt_sa=ppsa/pair |
---|
102 | mrt_wv=ppwv/pair |
---|
103 | |
---|
104 | ! Initialisation des bornes pour WV |
---|
105 | WVMIN=1.D-35 |
---|
106 | WVMAX=mrt_wv |
---|
107 | |
---|
108 | ! Accuracy de WVeq |
---|
109 | WVACC=WVMAX*1.0D-3 |
---|
110 | |
---|
111 | ! BRACWV borne la fonction f(WV) - WV = 0 |
---|
112 | ! de WV=0 WV=WVtot on cherche l'intervalle o f(WV) - WV = 0 |
---|
113 | ! avec prcisment f(WVliq de WSA<=WVinput) + WVinput - WVtot = 0 |
---|
114 | ! Elle fait appel la fct/ssrtine ITERWV() |
---|
115 | CALL BRACWV(TAIR,PAIR,WVMIN,WVMAX,NBRAC,RADIUS,mrt_wv,mrt_sa,FLAG,WSAFLAG,NBROOT) |
---|
116 | |
---|
117 | SELECT CASE(FLAG) |
---|
118 | |
---|
119 | CASE(1) |
---|
120 | ! Cas NROOT=1 ou NROOT>1 mais dans un intervalle restreint WVTOT (cas courant) |
---|
121 | ! IRFRMWV Ridder's method pour trouver, sur [WVmin,WVmax], WVo tel que f(WVo) - WVo = 0 |
---|
122 | ! Elle fait appel la fct/ssrtine ITERWV() |
---|
123 | |
---|
124 | WSAS=IRFRMWV(TAIR,PAIR,WVMIN,WVMAX,WVACC,MAXITE,RADIUS,mrt_wv,mrt_sa,NBROOT) |
---|
125 | RHOSA = ROSAS(TAIR,WSAS) |
---|
126 | MSAD = C2*WSAS*RHOSA*RADIUS**3 |
---|
127 | |
---|
128 | CASE(2) |
---|
129 | ! Cas NROOT=0 mais proche de 0 |
---|
130 | WSAS=WSAFLAG |
---|
131 | RHOSA=ROSAS(TAIR,WSAS) |
---|
132 | MSAD=C2*WSAS*RHOSA*RADIUS**3 |
---|
133 | ! ATTENTION ce IF ne sert a rien en fait, juste a retenir une situation |
---|
134 | ! ubuesque dans mon code ou sans ce IF les valeurs de rho_droplets sont |
---|
135 | ! incohrentes avec TT et WH2SO4 (a priori lorsque NTOT=0) |
---|
136 | ! Juste le fait de METTRE un IF fait que rho_droplet a la bonne valeur |
---|
137 | ! donne par ROSAS (cf test externe en Python), sinon, la valeur est trop |
---|
138 | ! basse (de l'ordre de 1000 kg/m3) et correspond parfois la valeur avec |
---|
139 | ! WSA=0.1 (pas totalement sr) |
---|
140 | ! En tous cas, incohrent avec ce qui est attendue pour le WSA et T donn |
---|
141 | ! La version avec le IF (rho<1100 & WSA>0.1) est CORRECTE, rho_droplet a |
---|
142 | ! la bonne valeur (tests externes Python confirment) |
---|
143 | |
---|
144 | IF ((RHOSA.LT.1100.0D0).AND. (WSAS.GT.0.1D0))THEN |
---|
145 | PRINT*,'PROBLEM RHO_DROPLET' |
---|
146 | PRINT*,'rho_droplet',RHOSA |
---|
147 | PRINT*,'T',TAIR,'WSA',WSAS |
---|
148 | PRINT*,'ROSAS',ROSAS(TAIR, WSAS) |
---|
149 | PRINT*,'FLAG',FLAG,'NROOT',NBROOT |
---|
150 | STOP |
---|
151 | ENDIF |
---|
152 | |
---|
153 | CASE(3) |
---|
154 | write(*,*)'Case 0 NROOT' |
---|
155 | RHOSA=0.0D+0 |
---|
156 | WSAS=0.0D+0 |
---|
157 | MSAD=0.0D+0 |
---|
158 | |
---|
159 | END SELECT |
---|
160 | |
---|
161 | |
---|
162 | |
---|
163 | RETURN |
---|
164 | |
---|
165 | END SUBROUTINE WSA_ROSA_NEW |
---|
166 | |
---|
167 | |
---|
168 | !***************************************************************************** |
---|
169 | SUBROUTINE ITERWV(TAIR,PAIR,WV,WVLIQ,WVEQOUT,WVTOT,WSAOUT,SATOT,RADIUS) |
---|
170 | !* Cette routine est la solution par itration afin de trouver WSA pour un WV, |
---|
171 | !* et donc LPPWV, donn. Ce qui nous donne egalement le WV correspondant au |
---|
172 | !* WSA solution |
---|
173 | !* For VenusGCM by A. Stolzenbach 07/2014 |
---|
174 | !* OUTPUT: WVEQ et WSAOUT |
---|
175 | |
---|
176 | USE donnees |
---|
177 | USE free_param |
---|
178 | IMPLICIT NONE |
---|
179 | |
---|
180 | REAL, INTENT(IN) :: TAIR, PAIR |
---|
181 | REAL, INTENT(IN) :: WV, WVTOT, SATOT, RADIUS |
---|
182 | REAL, INTENT(OUT) :: WVEQOUT, WSAOUT, WVLIQ |
---|
183 | |
---|
184 | REAL :: LPPWV |
---|
185 | |
---|
186 | REAL :: WSAMIN, WSAMAX, WSAACC |
---|
187 | PARAMETER(WSAACC=0.01D0) |
---|
188 | |
---|
189 | INTEGER :: MAXITSA, NBRACSA, NBROOT |
---|
190 | PARAMETER(MAXITSA=20) |
---|
191 | PARAMETER(NBRACSA=5) |
---|
192 | |
---|
193 | LOGICAl :: FLAG1,FLAG2 |
---|
194 | |
---|
195 | ! External Function |
---|
196 | REAL :: IRFRMSA, WVCOND |
---|
197 | |
---|
198 | IF (RADIUS.LT.1D-30) THEN |
---|
199 | PRINT*,'RMODE == 0 FLAG 3', RADIUS |
---|
200 | STOP |
---|
201 | ENDIF |
---|
202 | |
---|
203 | ! Initialisation WSA=[0.1,1.0] |
---|
204 | WSAMIN = 0.1D0 |
---|
205 | WSAMAX = 1.0D0 |
---|
206 | LPPWV = DLOG(PAIR*WV) |
---|
207 | |
---|
208 | ! Appel Bracket de KEEQ |
---|
209 | CALL BRACWSA(WSAMIN,WSAMAX,NBRACSA,RADIUS,TAIR,LPPWV,FLAG1,FLAG2,NBROOT) |
---|
210 | |
---|
211 | IF ((.NOT.FLAG1).AND.(.NOT.FLAG2).AND.(NBROOT.EQ.1)) THEN |
---|
212 | |
---|
213 | WSAOUT=IRFRMSA(TAIR,PAIR,WSAMIN,WSAMAX,WSAACC,MAXITSA,RADIUS,LPPWV,NBROOT) |
---|
214 | |
---|
215 | !!$ ! AM uncommented the two following lines to avoid problems with nucleation |
---|
216 | !!$ IF (WSAOUT.GT.1.0) WSAOUT=0.999999 |
---|
217 | !!$ IF (WSAOUT.LT.0.1) WSAOUT=0.1 |
---|
218 | !!$ write(*,*) 'in 1 wsaout 2', WSAOUT |
---|
219 | |
---|
220 | ! Si BRACWSA ne trouve aucun ensemble solution KEEQ=0 on fixe WSA a 0.9999 ou 0.1 |
---|
221 | ELSE |
---|
222 | IF (FLAG1.AND.(.NOT.FLAG2)) WSAOUT = 0.999999D0 |
---|
223 | IF (FLAG2.AND.(.NOT.FLAG1)) WSAOUT = WSAMIN |
---|
224 | IF (FLAG1.AND.FLAG2) THEN |
---|
225 | PRINT*,'FLAGs BARCWSA tous TRUE' |
---|
226 | STOP |
---|
227 | ENDIF |
---|
228 | ENDIF |
---|
229 | |
---|
230 | ! WVEQ output correspondant a WVliq lie a WSA calcule |
---|
231 | WVLIQ=WVCOND(WSAOUT,TAIR,PAIR,SATOT) |
---|
232 | WVEQOUT=(WVLIQ+WV)/WVTOT-1.0D0 |
---|
233 | |
---|
234 | END SUBROUTINE ITERWV |
---|
235 | |
---|
236 | |
---|
237 | !***************************************************************************** |
---|
238 | SUBROUTINE BRACWV(TAIR,PAIR,XA,XB,N,RADIUS,WVTOT,SATOT,FLAGWV,WSAFLAG,NROOT) |
---|
239 | |
---|
240 | !* Bracket de ITERWV |
---|
241 | !* From Numerical Recipes |
---|
242 | !* Adapted for VenusGCM A. Stolzenbach 07/2014 |
---|
243 | !* X est WVinput |
---|
244 | !* OUTPUT: XA et XB |
---|
245 | |
---|
246 | USE donnees |
---|
247 | USE free_param |
---|
248 | |
---|
249 | IMPLICIT NONE |
---|
250 | |
---|
251 | REAL, INTENT(IN) :: WVTOT,SATOT,RADIUS,TAIR, PAIR |
---|
252 | INTEGER, INTENT(IN) :: N |
---|
253 | |
---|
254 | REAL, INTENT(INOUT) :: XA,XB |
---|
255 | REAL, INTENT(OUT) :: WSAFLAG |
---|
256 | |
---|
257 | INTEGER :: I,J |
---|
258 | |
---|
259 | INTEGER, INTENT(OUT) :: NROOT |
---|
260 | |
---|
261 | REAL :: FP, FC, X, WVEQ, WVLIQ, WSAOUT |
---|
262 | REAL :: XMAX,XMIN,WVEQACC |
---|
263 | |
---|
264 | INTEGER, INTENT(OUT) :: FLAGWV |
---|
265 | ! write(*,*)'BRACWV', RADIUS |
---|
266 | ! WVEQACC est le seuil auquel on accorde un WSA correct meme |
---|
267 | ! si il ne fait pas partie d'une borne. Utile quand le modele |
---|
268 | ! s'approche de 0 mais ne l'atteint pas. |
---|
269 | WVEQACC = 1.0D-3 |
---|
270 | FLAGWV = 1 |
---|
271 | NROOT = 0 |
---|
272 | |
---|
273 | ! 25/11/2016 |
---|
274 | ! On change ordre on va du max au min |
---|
275 | X = XB |
---|
276 | XMAX = XB |
---|
277 | XMIN = XA |
---|
278 | |
---|
279 | ! CAS 1 On borne la fonction (WVEQ=0) |
---|
280 | CALL ITERWV(TAIR,PAIR,X,WVLIQ,WVEQ,WVTOT,WSAOUT,SATOT,RADIUS) |
---|
281 | |
---|
282 | FP=WVEQ |
---|
283 | |
---|
284 | DO I=N-1,1,-1 |
---|
285 | X=(1.-DLOG(DBLE(N-I))/DLOG(DBLE(N)))*XMAX |
---|
286 | |
---|
287 | CALL ITERWV(TAIR,PAIR,X,WVLIQ,WVEQ,WVTOT,WSAOUT,SATOT,RADIUS) |
---|
288 | |
---|
289 | FC=WVEQ |
---|
290 | |
---|
291 | IF ((FP*FC).LT.0.D0) THEN |
---|
292 | NROOT=NROOT+1 |
---|
293 | ! Si NROOT>1 on place la borne sup output la borne min du calcul en i |
---|
294 | IF (NROOT.GT.1) THEN |
---|
295 | XB=(1.-DLOG(DBLE(I+1))/DLOG(DBLE(N)))*XMAX |
---|
296 | ENDIF |
---|
297 | |
---|
298 | IF (I.EQ.1) THEN |
---|
299 | XA=XMIN |
---|
300 | ELSE |
---|
301 | XA=X |
---|
302 | ENDIF |
---|
303 | RETURN |
---|
304 | ENDIF |
---|
305 | FP=FC |
---|
306 | ENDDO |
---|
307 | |
---|
308 | ! CAS 2 on refait la boucle pour tester si WVEQ est proche de 0 |
---|
309 | ! avec le seuil WVEQACC |
---|
310 | IF (NROOT.EQ.0) THEN |
---|
311 | X=XMAX |
---|
312 | |
---|
313 | CALL ITERWV(TAIR,PAIR,X,WVLIQ,WVEQ,WVTOT,WSAOUT,SATOT,RADIUS) |
---|
314 | |
---|
315 | DO J=N-1,1,-1 |
---|
316 | X=(1.-DLOG(DBLE(N-J))/DLOG(DBLE(N)))*XMAX |
---|
317 | ! write(*,*) 'BRACWV, bf 4th ITERWV (cas 2) ' |
---|
318 | CALL ITERWV(TAIR,PAIR,X,WVLIQ,WVEQ,WVTOT,WSAOUT,SATOT,RADIUS) |
---|
319 | |
---|
320 | IF (ABS(WVEQ).LE.WVEQACC) THEN |
---|
321 | WSAFLAG=WSAOUT |
---|
322 | FLAGWV=2 |
---|
323 | RETURN |
---|
324 | ENDIF |
---|
325 | ENDDO |
---|
326 | |
---|
327 | ! CAS 3 Pas de borne, WVEQ jamais proche de 0 |
---|
328 | FLAGWV=3 |
---|
329 | RETURN |
---|
330 | ENDIF |
---|
331 | |
---|
332 | END SUBROUTINE BRACWV |
---|
333 | |
---|
334 | |
---|
335 | !***************************************************************************** |
---|
336 | SUBROUTINE BRACWSA(XA,XB,N,RADIUS,TAIR,LPPWVINP,FLAGH,FLAGL,NROOT) |
---|
337 | |
---|
338 | !* Bracket de KEEQ |
---|
339 | !* From Numerical Recipes |
---|
340 | !* Adapted for Venus GCM A. Stolzenbach 07/2014 |
---|
341 | |
---|
342 | USE donnees |
---|
343 | USE free_param |
---|
344 | IMPLICIT NONE |
---|
345 | |
---|
346 | ! External functions needed: |
---|
347 | REAL :: KEEQ |
---|
348 | |
---|
349 | REAL, INTENT(IN) :: RADIUS,TAIR,LPPWVINP |
---|
350 | INTEGER, INTENT(IN) :: N |
---|
351 | |
---|
352 | REAL, INTENT(INOUT) :: XA,XB |
---|
353 | |
---|
354 | INTEGER, INTENT(OUT) :: NROOT |
---|
355 | |
---|
356 | INTEGER :: I, J |
---|
357 | |
---|
358 | REAL :: DX, FP, FC, X |
---|
359 | |
---|
360 | LOGICAL, INTENT(OUT) :: FLAGH,FLAGL |
---|
361 | |
---|
362 | FLAGL=.FALSE. |
---|
363 | FLAGH=.FALSE. |
---|
364 | NROOT=0 |
---|
365 | DX=(XB-XA)/N |
---|
366 | X=XB |
---|
367 | FP=KEEQ(TAIR,RADIUS,X,LPPWVINP) |
---|
368 | |
---|
369 | DO I=N,1,-1 |
---|
370 | X=X-DX |
---|
371 | |
---|
372 | FC=KEEQ(TAIR,RADIUS,X,LPPWVINP) |
---|
373 | |
---|
374 | IF ((FP*FC).LE.0.) THEN |
---|
375 | NROOT=NROOT+1 |
---|
376 | XA=X |
---|
377 | XB=X+DX |
---|
378 | RETURN |
---|
379 | ENDIF |
---|
380 | |
---|
381 | FP=FC |
---|
382 | ENDDO |
---|
383 | |
---|
384 | IF (NROOT.EQ.0) THEN |
---|
385 | ! Test determine la tendance globale KEEQ sur [WSAMIN,WSAMAX] |
---|
386 | IF ((ABS(KEEQ(TAIR,RADIUS,XA,LPPWVINP))- & |
---|
387 | & ABS(KEEQ(TAIR,RADIUS,XB,LPPWVINP))).GT.0.0) FLAGH=.TRUE. |
---|
388 | ! On fixe flag low TRUE pour WSA = 0.1 |
---|
389 | IF ((ABS(KEEQ(TAIR,RADIUS,XA,LPPWVINP))- & |
---|
390 | & ABS(KEEQ(TAIR,RADIUS,XB,LPPWVINP))).LT.0.0) FLAGL=.TRUE. |
---|
391 | ENDIF |
---|
392 | |
---|
393 | END SUBROUTINE BRACWSA |
---|
394 | |
---|
395 | |
---|
396 | !***************************************************************************** |
---|
397 | FUNCTION IRFRMWV(TAIR,PAIR,X1,X2,XACC,MAXIT,RADIUS,WVTOT,SATOT,NROOT) |
---|
398 | |
---|
399 | !* Iterative Root Finder Ridder's Method for Water Vapor calculus |
---|
400 | !* From Numerical Recipes |
---|
401 | !* Adapted for VenusGCM A. Stolzenbach 07/2014 |
---|
402 | |
---|
403 | !* Les iterations sur [X1,X2] sont [WV1,WV2] |
---|
404 | !* la variable X est WV |
---|
405 | !* IRFRMWV sort en OUTPUT : WSALOC pour ITERWV=0 (ou WVEQ=0) |
---|
406 | |
---|
407 | USE donnees |
---|
408 | USE free_param |
---|
409 | IMPLICIT NONE |
---|
410 | |
---|
411 | REAL, INTENT(IN) :: TAIR, PAIR |
---|
412 | REAL, INTENT(IN) :: X1, X2 |
---|
413 | REAL, INTENT(IN) :: XACC |
---|
414 | REAL :: IRFRMWV |
---|
415 | INTEGER, INTENT(IN) :: MAXIT,NROOT |
---|
416 | |
---|
417 | ! LOCAL VARIABLES |
---|
418 | REAL :: XL, XH, XM, XNEW, X |
---|
419 | REAL :: WSALOC, WVEQ, WVLIQ |
---|
420 | REAL :: FL, FH, FM, FNEW |
---|
421 | REAL :: ANS, S, FSIGN |
---|
422 | INTEGER i |
---|
423 | LOGICAL :: FLAGH,FLAGL |
---|
424 | |
---|
425 | ! External variables needed: |
---|
426 | REAL, INTENT(IN) :: WVTOT,SATOT |
---|
427 | REAL, INTENT(IN) :: RADIUS |
---|
428 | |
---|
429 | ! Initialisation |
---|
430 | X=X1 |
---|
431 | CALL ITERWV(TAIR,PAIR,X,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT,RADIUS) |
---|
432 | FL=WVEQ |
---|
433 | X=X2 |
---|
434 | CALL ITERWV(TAIR,PAIR,X,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT,RADIUS) |
---|
435 | FH=WVEQ |
---|
436 | |
---|
437 | ! Test Bracketed values |
---|
438 | IF (((FL.LT.0.).AND.(FH.GT.0.)).OR. & |
---|
439 | & ((FL.GT.0.).AND.(FH.LT.0.))) & |
---|
440 | & THEN |
---|
441 | XL=X1 |
---|
442 | XH=X2 |
---|
443 | ANS=-1.D38 |
---|
444 | |
---|
445 | DO i=1, MAXIT |
---|
446 | XM=0.5D0*(XL+XH) |
---|
447 | CALL ITERWV(TAIR,PAIR,XM,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT,RADIUS) |
---|
448 | FM=WVEQ |
---|
449 | S=SQRT(FM*FM-FL*FH) |
---|
450 | |
---|
451 | IF (S.EQ.0.0) THEN |
---|
452 | IRFRMWV=WSALOC |
---|
453 | RETURN |
---|
454 | ENDIF |
---|
455 | |
---|
456 | IF (FL.GT.FH) THEN |
---|
457 | FSIGN=1.0D0 |
---|
458 | ELSE |
---|
459 | FSIGN=-1.0D0 |
---|
460 | ENDIF |
---|
461 | |
---|
462 | XNEW=XM+(XM-XL)*(FSIGN*FM/S) |
---|
463 | |
---|
464 | IF (ABS(XNEW-ANS).LE.XACC) THEN |
---|
465 | IRFRMWV=WSALOC |
---|
466 | RETURN |
---|
467 | ENDIF |
---|
468 | |
---|
469 | ANS=XNEW |
---|
470 | CALL ITERWV(TAIR,PAIR,ANS,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT,RADIUS) |
---|
471 | FNEW=WVEQ |
---|
472 | |
---|
473 | IF (FNEW.EQ.0.D0) THEN |
---|
474 | IRFRMWV=WSALOC |
---|
475 | RETURN |
---|
476 | ENDIF |
---|
477 | |
---|
478 | IF (SIGN(FM, FNEW).NE.FM) THEN |
---|
479 | XL=XM |
---|
480 | FL=FM |
---|
481 | XH=ANS |
---|
482 | FH=FNEW |
---|
483 | ELSEIF (SIGN(FL, FNEW).NE.FL) THEN |
---|
484 | XH=ANS |
---|
485 | FH=FNEW |
---|
486 | ELSEIF (SIGN(FH, FNEW).NE.FH) THEN |
---|
487 | XL=ANS |
---|
488 | FL=FNEW |
---|
489 | ELSE |
---|
490 | PRINT*,'PROBLEM IRFRMWV dans new_cloud_venus' |
---|
491 | PRINT*,'you shall not PAAAAAASS' |
---|
492 | STOP |
---|
493 | ENDIF |
---|
494 | ENDDO |
---|
495 | PRINT*,'Paaaaas bien MAXIT atteint' |
---|
496 | PRINT*,'PROBLEM IRFRMWV dans new_cloud_venus' |
---|
497 | PRINT*,'you shall not PAAAAAASS' |
---|
498 | XL=X1 |
---|
499 | XH=X2 |
---|
500 | ! ANS=-9.99e99 |
---|
501 | ANS=-1.D38 |
---|
502 | |
---|
503 | DO i=1, MAXIT |
---|
504 | XM=0.5D0*(XL+XH) |
---|
505 | CALL ITERWV(TAIR,PAIR,XM,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT,RADIUS) |
---|
506 | FM=WVEQ |
---|
507 | S=SQRT(FM*FM-FL*FH) |
---|
508 | IF (FL.GT.FH) THEN |
---|
509 | FSIGN=1.0D0 |
---|
510 | ELSE |
---|
511 | FSIGN=-1.0D0 |
---|
512 | ENDIF |
---|
513 | |
---|
514 | XNEW=XM+(XM-XL)*(FSIGN*FM/S) |
---|
515 | |
---|
516 | ANS=XNEW |
---|
517 | CALL ITERWV(TAIR,PAIR,ANS,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT,RADIUS) |
---|
518 | FNEW=WVEQ |
---|
519 | PRINT*,'WVliq',WVLIQ,'WVtot',WVTOT,'WVeq',WVEQ |
---|
520 | PRINT*,'WSA',WSALOC,'SAtot',SATOT |
---|
521 | PRINT*,'T',TAIR,'P',PAIR |
---|
522 | |
---|
523 | IF (SIGN(FM, FNEW).NE.FM) THEN |
---|
524 | XL=XM |
---|
525 | FL=FM |
---|
526 | XH=ANS |
---|
527 | FH=FNEW |
---|
528 | ELSEIF (SIGN(FL, FNEW).NE.FL) THEN |
---|
529 | XH=ANS |
---|
530 | FH=FNEW |
---|
531 | ELSEIF (SIGN(FH, FNEW).NE.FH) THEN |
---|
532 | XL=ANS |
---|
533 | FL=FNEW |
---|
534 | ELSE |
---|
535 | PRINT*,'PROBLEM IRFRMWV dans new_cloud_venus' |
---|
536 | PRINT*,'you shall not PAAAAAASS TWIIICE???' |
---|
537 | STOP |
---|
538 | ENDIF |
---|
539 | ENDDO |
---|
540 | STOP |
---|
541 | ELSE |
---|
542 | PRINT*,'IRFRMWV must be bracketed' |
---|
543 | PRINT*,'NROOT de BRACWV', NROOT |
---|
544 | IF (ABS(FL).LT.XACC) THEN |
---|
545 | PRINT*,'IRFRMWV FL == 0',FL |
---|
546 | PRINT*,'X1',X1,'X2',X2,'FH',FH |
---|
547 | CALL ITERWV(TAIR,PAIR,X1,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT,RADIUS) |
---|
548 | IRFRMWV=WSALOC |
---|
549 | RETURN |
---|
550 | ENDIF |
---|
551 | IF (ABS(FH).LT.XACC) THEN |
---|
552 | PRINT*,'IRFRMWV FH == 0',FH |
---|
553 | PRINT*,'X1',X1,'X2',X2,'FL',FL |
---|
554 | CALL ITERWV(TAIR,PAIR,X2,WVLIQ,WVEQ,WVTOT,WSALOC,SATOT,RADIUS) |
---|
555 | IRFRMWV=WSALOC |
---|
556 | RETURN |
---|
557 | ENDIF |
---|
558 | IF ((ABS(FL).GT.XACC).AND.(ABS(FH).GT.XACC)) THEN |
---|
559 | PRINT*,'STOP dans IRFRMWV avec rien == 0' |
---|
560 | PRINT*,'X1',X1,'X2',X2 |
---|
561 | PRINT*,'Fcalc',FL,FH |
---|
562 | PRINT*,'T',TAIR,'P',PAIR,'R',RADIUS |
---|
563 | STOP |
---|
564 | ENDIF |
---|
565 | IF ((ABS(FL).LT.XACC).AND.(ABS(FH).LT.XACC)) THEN |
---|
566 | PRINT*,'STOP dans IRFRMWV Trop de solution < WVACC' |
---|
567 | PRINT*,FL,FH |
---|
568 | STOP |
---|
569 | ENDIF |
---|
570 | |
---|
571 | end IF |
---|
572 | END FUNCTION IRFRMWV |
---|
573 | |
---|
574 | !***************************************************************************** |
---|
575 | FUNCTION IRFRMSA(TAIR,PAIR,X1,X2,XACC,MAXIT,RADIUS,LPPWV,NB) |
---|
576 | |
---|
577 | !* Iterative Root Finder Ridder's Method for Sulfuric Acid calculus |
---|
578 | !* From Numerical Recipes |
---|
579 | !* Adapted for VenusGCM A. Stolzenbach 07/2014 |
---|
580 | !* |
---|
581 | !* Les iterations sur [X1,X2] sont [WSA1,WSA2] |
---|
582 | !* la variable X est WSA |
---|
583 | !* IRFRMSA sort en OUTPUT : WSA pour KEEQ=0 |
---|
584 | |
---|
585 | use donnees |
---|
586 | use free_param |
---|
587 | IMPLICIT NONE |
---|
588 | |
---|
589 | REAL, INTENT(IN) :: TAIR, PAIR |
---|
590 | REAL, INTENT(IN) :: X1, X2 |
---|
591 | REAL, INTENT(IN) :: XACC |
---|
592 | INTEGER, INTENT(IN) :: MAXIT, NB |
---|
593 | |
---|
594 | ! LOCAL VARIABLES |
---|
595 | REAL :: IRFRMSA |
---|
596 | REAL :: XL, XH, XM, XNEW |
---|
597 | REAL :: Fl, FH, FM, FNEW |
---|
598 | REAL :: ANS, S, FSIGN |
---|
599 | INTEGER i |
---|
600 | |
---|
601 | ! External variables needed: |
---|
602 | REAL, INTENT(IN) :: LPPWV |
---|
603 | REAL, INTENT(IN) :: RADIUS |
---|
604 | |
---|
605 | ! External functions needed: |
---|
606 | REAL :: KEEQ |
---|
607 | |
---|
608 | ! Initialisation |
---|
609 | FL=KEEQ(TAIR,RADIUS,X1,LPPWV) |
---|
610 | FH=KEEQ(TAIR,RADIUS,X2,LPPWV) |
---|
611 | |
---|
612 | ! Test Bracketed values |
---|
613 | IF (((FL.LT.0.D0).AND.(FH.GT.0.D0)).OR.((FL.GT.0.D0).AND.(FH.LT.0.D0))) THEN |
---|
614 | |
---|
615 | XL=X1 |
---|
616 | XH=X2 |
---|
617 | |
---|
618 | ANS=-1.D38 |
---|
619 | |
---|
620 | DO i=1, MAXIT |
---|
621 | XM=0.5D0*(XL+XH) |
---|
622 | FM=KEEQ(TAIR,RADIUS,XM,LPPWV) |
---|
623 | |
---|
624 | S=SQRT(FM*FM-FL*FH) |
---|
625 | |
---|
626 | IF (S.EQ.0.D0) THEN |
---|
627 | IRFRMSA=ANS |
---|
628 | RETURN |
---|
629 | ENDIF |
---|
630 | |
---|
631 | IF (FL.GT.FH) THEN |
---|
632 | FSIGN=1.0D0 |
---|
633 | ELSE |
---|
634 | FSIGN=-1.0D0 |
---|
635 | ENDIF |
---|
636 | |
---|
637 | XNEW=XM+(XM-XL)*(FSIGN*FM/S) |
---|
638 | |
---|
639 | IF (ABS(XNEW-ANS).LE.XACC) THEN |
---|
640 | IRFRMSA=ANS |
---|
641 | |
---|
642 | RETURN |
---|
643 | ENDIF |
---|
644 | |
---|
645 | ANS=XNEW |
---|
646 | FNEW=KEEQ(TAIR,RADIUS,ANS,LPPWV) |
---|
647 | |
---|
648 | IF (FNEW.EQ.0.D0) THEN |
---|
649 | IRFRMSA=ANS |
---|
650 | RETURN |
---|
651 | ENDIF |
---|
652 | |
---|
653 | IF (SIGN(FM, FNEW).NE.FM) THEN |
---|
654 | XL=XM |
---|
655 | FL=FM |
---|
656 | XH=ANS |
---|
657 | FH=FNEW |
---|
658 | ELSEIF (SIGN(FL, FNEW).NE.FL) THEN |
---|
659 | XH=ANS |
---|
660 | FH=FNEW |
---|
661 | ELSEIF (SIGN(FH, FNEW).NE.FH) THEN |
---|
662 | XL=ANS |
---|
663 | FL=FNEW |
---|
664 | ELSE |
---|
665 | PRINT*,'PROBLEM IRFRMSA dans new_cloud_venus' |
---|
666 | PRINT*,'you shall not PAAAAAASS' |
---|
667 | STOP |
---|
668 | ENDIF |
---|
669 | |
---|
670 | ENDDO |
---|
671 | PRINT*,'Paaaaas bien MAXIT atteint' |
---|
672 | PRINT*,'PROBLEM IRFRMSA dans new_cloud_venus' |
---|
673 | PRINT*,'you shall not PAAAAAASS' |
---|
674 | XL=X1 |
---|
675 | XH=X2 |
---|
676 | PRINT*,'Borne XL',XL,'XH',XH |
---|
677 | |
---|
678 | ANS=-1.D38 |
---|
679 | |
---|
680 | DO i=1, MAXIT |
---|
681 | XM=0.5D0*(XL+XH) |
---|
682 | FM=KEEQ(TAIR,RADIUS,XM,LPPWV) |
---|
683 | S=SQRT(FM*FM-FL*FH) |
---|
684 | |
---|
685 | IF (FL.GT.FH) THEN |
---|
686 | FSIGN=1.0D0 |
---|
687 | ELSE |
---|
688 | FSIGN=-1.0D0 |
---|
689 | ENDIF |
---|
690 | |
---|
691 | XNEW=XM+(XM-XL)*(FSIGN*FM/S) |
---|
692 | ANS=XNEW |
---|
693 | FNEW=KEEQ(TAIR,RADIUS,ANS,LPPWV) |
---|
694 | PRINT*,'KEEQ result',FNEW,'T',TAIR,'R',RADIUS |
---|
695 | IF (SIGN(FM, FNEW).NE.FM) THEN |
---|
696 | XL=XM |
---|
697 | FL=FM |
---|
698 | XH=ANS |
---|
699 | FH=FNEW |
---|
700 | ELSEIF (SIGN(FL, FNEW).NE.FL) THEN |
---|
701 | XH=ANS |
---|
702 | FH=FNEW |
---|
703 | ELSEIF (SIGN(FH, FNEW).NE.FH) THEN |
---|
704 | XL=ANS |
---|
705 | FL=FNEW |
---|
706 | ELSE |
---|
707 | PRINT*,'PROBLEM IRFRMSA dans new_cloud_venus' |
---|
708 | PRINT*,'you shall not PAAAAAASS' |
---|
709 | STOP |
---|
710 | ENDIF |
---|
711 | ENDDO |
---|
712 | STOP |
---|
713 | |
---|
714 | ELSE |
---|
715 | PRINT*,'IRFRMSA must be bracketed' |
---|
716 | IF (FL.EQ.0.D0) THEN |
---|
717 | PRINT*,'IRFRMSA FL == 0',Fl |
---|
718 | IRFRMSA=X1 |
---|
719 | RETURN |
---|
720 | ENDIF |
---|
721 | IF (FH.EQ.0.D0) THEN |
---|
722 | PRINT*,'IRFRMSA FH == 0',FH |
---|
723 | IRFRMSA=X2 |
---|
724 | RETURN |
---|
725 | ENDIF |
---|
726 | IF ((FL.NE.0.).AND.(FH.NE.0.)) THEN |
---|
727 | PRINT*,'IRFRMSA FH and FL neq 0: ', FL, FH |
---|
728 | PRINT*,'X1',X1,'X2',X2 |
---|
729 | PRINT*,'Kind F', KIND(FL), KIND(FH) |
---|
730 | PRINT*,'Kind X', KIND(X1), KIND(X2) |
---|
731 | PRINT*,'Logical: ',(SIGN(FL,FH).NE.FL) |
---|
732 | PRINT*,'Logical: ',(SIGN(FH,FL).NE.FH) |
---|
733 | PRINT*,'nb root BRACWSA',NB |
---|
734 | STOP |
---|
735 | ENDIF |
---|
736 | |
---|
737 | ENDIF |
---|
738 | |
---|
739 | END function IRFRMSA |
---|
740 | |
---|
741 | !***************************************************************************** |
---|
742 | FUNCTION KEEQ(TAIR,RADIUS,WX,LPPWV) |
---|
743 | |
---|
744 | !* Kelvin Equation EQuality |
---|
745 | !* ln(PPWV_eq) - (2Mh2o sigma)/(R T r rho) - ln(ph2osa) = 0 |
---|
746 | |
---|
747 | use donnees |
---|
748 | use free_param |
---|
749 | IMPLICIT NONE |
---|
750 | |
---|
751 | REAL, INTENT(IN) :: RADIUS,WX,LPPWV,TAIR |
---|
752 | |
---|
753 | ! Physical constants: |
---|
754 | REAL :: KEEQ |
---|
755 | |
---|
756 | ! External functions needed: |
---|
757 | REAL :: PWVSAS_GV, STSAS, ROSAS |
---|
758 | ! PWVSAS_GV: Natural logaritm of water vapor pressure over |
---|
759 | ! sulfuric acid solution |
---|
760 | ! STSAS: Surface tension of sulfuric acid solution |
---|
761 | ! ROSAS: Density of sulfuric acid solution |
---|
762 | ! |
---|
763 | ! Auxiliary local variables: |
---|
764 | REAL :: C1 |
---|
765 | |
---|
766 | C1=2.0D0*MWV/RGAS |
---|
767 | |
---|
768 | KEEQ=LPPWV-C1*STSAS(TAIR,WX)/(TAIR*RADIUS*ROSAS(TAIR,WX))- & |
---|
769 | & PWVSAS_GV(TAIR,WX) |
---|
770 | |
---|
771 | END FUNCTION KEEQ |
---|
772 | |
---|
773 | |
---|
774 | !***************************************************************************** |
---|
775 | FUNCTION WVCOND(WX,T,P,SAt) |
---|
776 | |
---|
777 | !* Condensation de H2O selon WSA, T et P et H2SO4tot |
---|
778 | |
---|
779 | !* Adapted for VenusGCM A. Stolzenbach 07/2014 |
---|
780 | ! INPUT: |
---|
781 | ! SAt : VMR of total H2SO4 |
---|
782 | ! WX: aerosol H2SO4 weight fraction (fraction) |
---|
783 | ! T: temperature (K) |
---|
784 | ! P: pressure (Pa) |
---|
785 | ! OUTPUT: |
---|
786 | ! WVCOND : VMR H2O condense |
---|
787 | |
---|
788 | ! USE chemparam_mod |
---|
789 | |
---|
790 | use donnees |
---|
791 | use free_param |
---|
792 | |
---|
793 | IMPLICIT NONE |
---|
794 | |
---|
795 | REAL, INTENT(IN) :: SAt, WX |
---|
796 | REAL, INTENT(IN) :: T, P |
---|
797 | |
---|
798 | ! working variables |
---|
799 | REAL :: WVCOND |
---|
800 | REAL :: SA, WV, KBOLTZ |
---|
801 | REAL :: DND2,pstand,lpar,acidps |
---|
802 | REAL :: x1, satpacid |
---|
803 | REAL, DIMENSION(2):: act |
---|
804 | REAL :: CONCM |
---|
805 | REAL :: NH2SO4 |
---|
806 | REAL :: H2OCOND, H2SO4COND |
---|
807 | |
---|
808 | KBOLTZ=KBZ |
---|
809 | CONCM= (P)/(KBOLTZ*T) !air number density, molec/m3? CHECK UNITS! |
---|
810 | |
---|
811 | NH2SO4=SAt*CONCM |
---|
812 | pstand=1.01325D+5 !Pa 1 atm pressure |
---|
813 | |
---|
814 | x1=(WX/MSA)/(WX/MSA + ((1.-WX)/MWV)) |
---|
815 | |
---|
816 | CALL zeleznik(x1,T,act) |
---|
817 | |
---|
818 | !pure acid satur vapor pressure |
---|
819 | lpar= -11.695D0 + DLOG(pstand) ! Zeleznik |
---|
820 | acidps = 1/360.15D0 - 1.0/T + 0.38D0/545.D0*(1.0+DLOG(360.15D0/T)-360.15D0/T) |
---|
821 | acidps = 10156.D0*acidps + lpar |
---|
822 | acidps = DEXP(acidps) !Pa |
---|
823 | |
---|
824 | !acid sat.vap.PP over mixture (flat surface): |
---|
825 | satpacid=act(2)*acidps ! Pa |
---|
826 | |
---|
827 | ! Conversion from Pa to N.D #/m3 |
---|
828 | DND2=satpacid/(KBOLTZ*T) |
---|
829 | ! H2SO4COND N.D #/m3 condensee ssi H2SO4>H2SO4sat |
---|
830 | IF (NH2SO4.GT.DND2) THEN |
---|
831 | H2SO4COND=NH2SO4-DND2 |
---|
832 | ! calcul de H2O cond correspondant a H2SO4 cond |
---|
833 | H2OCOND=H2SO4COND*MSA*(1.0D0-WX)/(MWV*WX) |
---|
834 | ! Si on a H2SO4<H2SO4sat on ne condense rien, VMR = 1.0E-30 |
---|
835 | ELSE |
---|
836 | H2OCOND=1.0D-30*CONCM |
---|
837 | END IF |
---|
838 | |
---|
839 | !***************************************************** |
---|
840 | ! ATTENTION: Ici on ne prends pas en compte |
---|
841 | ! si H2O en defaut! |
---|
842 | ! On veut la situation thorique |
---|
843 | ! l'equilibre |
---|
844 | !***************************************************** |
---|
845 | ! Test si H2O en defaut H2Ocond>H2O dispo |
---|
846 | ! IF ((H2OCOND.GT.NH2O).AND.(NH2SO4.GE.DND2)) THEN |
---|
847 | ! On peut alors condenser tout le H2O dispo |
---|
848 | ! H2OCOND=NH2O |
---|
849 | ! On met alors egalement a jour le H2SO4 cond correspondant au H2O cond |
---|
850 | ! H2SO4COND=H2OCOND*18.0153*WSA/(98.078*(1.0-WSA)) |
---|
851 | ! END IF |
---|
852 | |
---|
853 | ! Calcul de H2O condense VMR |
---|
854 | WVCOND=H2OCOND/CONCM |
---|
855 | |
---|
856 | END FUNCTION WVCOND |
---|
857 | |
---|
858 | |
---|
859 | !***************************************************************************** |
---|
860 | FUNCTION PWVSAS_GV(T,W) |
---|
861 | |
---|
862 | !* Natural logaritm of saturated water vapor pressure over plane |
---|
863 | !* sulfuric acid solution. |
---|
864 | !* |
---|
865 | !* Source: J.I.Gmitro & T.Vermeulen: A.I.Ch.E.J. 10,740,1964. |
---|
866 | !* W.F.Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
867 | !* |
---|
868 | !* The formula of Gmitro & Vermeulen for saturation pressure |
---|
869 | !* is used: |
---|
870 | !* ln(p) = A ln(298/T) + B/T + C + DT |
---|
871 | !* with values of A,B,C and D given by Gmitro & Vermeulen, |
---|
872 | !* and calculated from partial molal properties given by Giauque et al. |
---|
873 | !* |
---|
874 | !* Input: T: Temperature (K) |
---|
875 | !* W: Weight fraction of H2SO4 [0;1] |
---|
876 | !* Output: Natural logaritm of water vapor pressure |
---|
877 | !* over sulfuric acid solution ( ln(Pa) ) |
---|
878 | !* |
---|
879 | !* External functions needed for calculation of partial molal |
---|
880 | !* properties of pure components at 25 C as function of W. |
---|
881 | |
---|
882 | use donnees |
---|
883 | IMPLICIT NONE |
---|
884 | |
---|
885 | REAL :: CPH2O,ALH2O,FFH2O,LH2O |
---|
886 | ! CPH2O: Partial molal heat capacity of sulfuric acid solution. |
---|
887 | ! ALH2O: Temparature derivative of CPH2O |
---|
888 | ! FFH2O: Partial molal free energy of sulfuric acid solution. |
---|
889 | ! LH2O: Partial molal enthalpy of sulfuric acid |
---|
890 | ! |
---|
891 | ! |
---|
892 | ! |
---|
893 | REAL, INTENT(IN) :: T,W |
---|
894 | REAL :: PWVSAS_GV |
---|
895 | REAL :: ADOT,BDOT,CDOT,DDOT |
---|
896 | REAL :: RGAScal,MMHGPA |
---|
897 | REAL :: K1,K2 |
---|
898 | REAL :: A,B,C,Dd,CP,L,F,ALFA |
---|
899 | ! Physical constants given by Gmitro & Vermeulen: |
---|
900 | PARAMETER( & |
---|
901 | ADOT=-3.67340, & |
---|
902 | BDOT=-4143.5, & |
---|
903 | CDOT=10.24353, & |
---|
904 | DDOT=0.618943d-3) |
---|
905 | PARAMETER( & |
---|
906 | ! Gas constant (cal/(deg mole)): |
---|
907 | RGAScal=1.98726, & |
---|
908 | ! Natural logarith of conversion factor between atm. and Pa: |
---|
909 | MMHGPA=11.52608845, & |
---|
910 | K1=298.15, & |
---|
911 | K2=K1*K1/2.0) |
---|
912 | ! |
---|
913 | INTEGER :: KLO,KHI,K,I,NPOINT |
---|
914 | PARAMETER(NPOINT=110) |
---|
915 | REAL, DIMENSION(NPOINT) :: WTAB(NPOINT) |
---|
916 | DATA (WTAB(I),I=1,NPOINT)/ & |
---|
917 | 0.00000,0.08932,0.09819,0.10792,0.11980,0.13461,0.15360,0.16525, & |
---|
918 | 0.17882,0.19482,0.21397,0.23728,0.26629,0.27999,0.29517,0.31209, & |
---|
919 | 0.33107,0.35251,0.36430,0.37691,0.39043,0.40495,0.42059,0.43749, & |
---|
920 | 0.44646,0.45580,0.46555,0.47572,0.48634,0.49745,0.50908,0.52126, & |
---|
921 | 0.53405,0.54747,0.56159,0.57646,0.58263,0.58893,0.59537,0.60195, & |
---|
922 | 0.60868,0.61557,0.62261,0.62981,0.63718,0.64472,0.65245,0.66037, & |
---|
923 | 0.66847,0.67678,0.68530,0.69404,0.70300,0.71220,0.72164,0.73133, & |
---|
924 | 0.73628,0.74129,0.74637,0.75152,0.75675,0.76204,0.76741,0.77286, & |
---|
925 | 0.77839,0.78399,0.78968,0.79545,0.80130,0.80724,0.81327,0.81939, & |
---|
926 | 0.82560,0.83191,0.83832,0.84482,0.85143,0.85814,0.86495,0.87188, & |
---|
927 | 0.87892,0.88607,0.89334,0.90073,0.90824,0.91588,0.92365,0.93156, & |
---|
928 | 0.93959,0.94777,0.95610,0.96457,0.97319,0.98196,0.99090,0.99270, & |
---|
929 | 0.99452,0.99634,0.99725,0.99817,0.99835,0.99853,0.99872,0.99890, & |
---|
930 | 0.99908,0.99927,0.99945,0.99963,0.99982,1.0000/ |
---|
931 | ! |
---|
932 | KLO=1 |
---|
933 | KHI=NPOINT |
---|
934 | 1 IF(KHI-KLO.GT.1) THEN |
---|
935 | K=(KHI+KLO)/2 |
---|
936 | IF(WTAB(K).GT.MAX(WTAB(1),W)) THEN |
---|
937 | KHI=K |
---|
938 | ELSE |
---|
939 | KLO=K |
---|
940 | ENDIF |
---|
941 | GOTO 1 |
---|
942 | ENDIF |
---|
943 | ! |
---|
944 | CP=CPH2O(W,KHI,KLO) |
---|
945 | F=-FFH2O(W,KHI,KLO) |
---|
946 | L=-LH2O(W,KHI,KLO) |
---|
947 | ALFA=ALH2O(W,KHI,KLO) |
---|
948 | ! |
---|
949 | A=ADOT+(CP-K1*ALFA)/RGAScal |
---|
950 | B=BDOT+(L-K1*CP+K2*ALFA)/RGAScal |
---|
951 | C=CDOT+(CP+(F-L)/K1)/RGAScal |
---|
952 | Dd=DDOT-ALFA/(2.0d0*RGAScal) |
---|
953 | ! |
---|
954 | ! WRITE(*,*) 'TAIR= ',T,' WSA= ',W |
---|
955 | ! WRITE(*,*) 'CPH2O(W)= ',CP |
---|
956 | ! WRITE(*,*) 'ALFAH2O(W)= ',ALFA |
---|
957 | ! WRITE(*,*) 'FFH2O(W)= ',F |
---|
958 | ! WRITE(*,*) 'LH2O(W)= ',L |
---|
959 | ! |
---|
960 | PWVSAS_GV=A*DLOG(K1/T)+B/T+C+Dd*T+MMHGPA |
---|
961 | |
---|
962 | END FUNCTION PWVSAS_GV |
---|
963 | |
---|
964 | |
---|
965 | !***************************************************************************** |
---|
966 | REAL FUNCTION CPH2O(W,khi_in,klo_in) |
---|
967 | |
---|
968 | ! Relative partial molal heat capacity of water (cal/(deg mole) in |
---|
969 | ! sulfuric acid solution, as a function of H2SO4 weight fraction [0;1], |
---|
970 | ! calculated by cubic spline fitting. |
---|
971 | ! |
---|
972 | ! Source: Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
973 | |
---|
974 | IMPLICIT NONE |
---|
975 | |
---|
976 | INTEGER :: NPOINT,I |
---|
977 | PARAMETER(NPOINT=109) |
---|
978 | REAL, DIMENSION(NPOINT) :: WTAB(NPOINT),CPHTAB(NPOINT), & |
---|
979 | Y2(NPOINT),YWORK(NPOINT) |
---|
980 | REAL, INTENT(IN):: W |
---|
981 | INTEGER, INTENT(IN):: khi_in,klo_in |
---|
982 | INTEGER :: khi,klo |
---|
983 | REAL :: CPH |
---|
984 | LOGICAL :: FIRST |
---|
985 | DATA (WTAB(I),I=1,NPOINT)/ & |
---|
986 | 0.00000,0.08932,0.09819,0.10792,0.11980,0.13461,0.15360,0.16525, & |
---|
987 | 0.17882,0.19482,0.21397,0.23728,0.26629,0.27999,0.29517,0.31209, & |
---|
988 | 0.33107,0.35251,0.36430,0.37691,0.39043,0.40495,0.42059,0.43749, & |
---|
989 | 0.44646,0.45580,0.46555,0.47572,0.48634,0.49745,0.50908,0.52126, & |
---|
990 | 0.53405,0.54747,0.56159,0.57646,0.58263,0.58893,0.59537,0.60195, & |
---|
991 | 0.60868,0.61557,0.62261,0.62981,0.63718,0.64472,0.65245,0.66037, & |
---|
992 | 0.66847,0.67678,0.68530,0.69404,0.70300,0.71220,0.72164,0.73133, & |
---|
993 | 0.73628,0.74129,0.74637,0.75152,0.75675,0.76204,0.76741,0.77286, & |
---|
994 | 0.77839,0.78399,0.78968,0.79545,0.80130,0.80724,0.81327,0.81939, & |
---|
995 | 0.82560,0.83191,0.83832,0.84482,0.85143,0.85814,0.86495,0.87188, & |
---|
996 | 0.87892,0.88607,0.89334,0.90073,0.90824,0.91588,0.92365,0.93156, & |
---|
997 | 0.93959,0.94777,0.95610,0.96457,0.97319,0.98196,0.99090,0.99270, & |
---|
998 | 0.99452,0.99634,0.99725,0.99817,0.99835,0.99853,0.99872,0.99890, & |
---|
999 | 0.99908,0.99927,0.99945,0.99963,0.99982/ |
---|
1000 | DATA (CPHTAB(I),I=1,NPOINT)/ & |
---|
1001 | 17.996, 17.896, 17.875, 17.858, 17.840, 17.820, 17.800, 17.791, & |
---|
1002 | 17.783, 17.777, 17.771, 17.769, 17.806, 17.891, 18.057, 18.248, & |
---|
1003 | 18.429, 18.567, 18.613, 18.640, 18.660, 18.660, 18.642, 18.592, & |
---|
1004 | 18.544, 18.468, 18.348, 18.187, 17.995, 17.782, 17.562, 17.352, & |
---|
1005 | 17.162, 16.993, 16.829, 16.657, 16.581, 16.497, 16.405, 16.302, & |
---|
1006 | 16.186, 16.053, 15.901, 15.730, 15.540, 15.329, 15.101, 14.853, & |
---|
1007 | 14.586, 14.296, 13.980, 13.638, 13.274, 12.896, 12.507, 12.111, & |
---|
1008 | 11.911, 11.711, 11.514, 11.320, 11.130, 10.940, 10.760, 10.570, & |
---|
1009 | 10.390, 10.200, 10.000, 9.8400, 9.7600, 9.7900, 9.9500, 10.310, & |
---|
1010 | 10.950, 11.960, 13.370, 15.060, 16.860, 18.550, 20.000, 21.170, & |
---|
1011 | 22.030, 22.570, 22.800, 22.750, 22.420, 21.850, 21.120, 20.280, & |
---|
1012 | 19.360, 18.350, 17.220, 15.940, 14.490, 12.840, 10.800, 9.8000, & |
---|
1013 | 7.8000, 3.8000,0.20000,-5.4000,-7.0000,-8.8000,-10.900,-13.500, & |
---|
1014 | -17.000,-22.000,-29.000,-40.000,-59.000/ |
---|
1015 | DATA FIRST/.TRUE./ |
---|
1016 | SAVE FIRST,WTAB,CPHTAB,Y2 |
---|
1017 | ! |
---|
1018 | IF(FIRST) THEN |
---|
1019 | FIRST=.FALSE. |
---|
1020 | CALL SPLINE(WTAB,CPHTAB,NPOINT,YWORK,Y2) |
---|
1021 | ENDIF |
---|
1022 | |
---|
1023 | if(khi_in.GT.NPOINT) then |
---|
1024 | khi=NPOINT |
---|
1025 | klo=NPOINT-1 |
---|
1026 | else |
---|
1027 | khi=khi_in |
---|
1028 | klo=klo_in |
---|
1029 | endif |
---|
1030 | |
---|
1031 | CALL SPLINT(WTAB(khi),WTAB(klo),CPHTAB(khi),CPHTAB(klo),Y2(khi),Y2(klo),W,CPH) |
---|
1032 | CPH2O=CPH |
---|
1033 | |
---|
1034 | END FUNCTION CPH2O |
---|
1035 | |
---|
1036 | |
---|
1037 | !******************************************************************************* |
---|
1038 | REAL FUNCTION FFH2O(W,khi,klo) |
---|
1039 | |
---|
1040 | ! Relative partial molal free energy water (cal/mole) in |
---|
1041 | ! sulfuric acid solution, as a function of H2SO4 weight fraction [0;1], |
---|
1042 | ! calculated by cubic spline fitting. |
---|
1043 | |
---|
1044 | ! Source: Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
1045 | |
---|
1046 | IMPLICIT NONE |
---|
1047 | |
---|
1048 | INTEGER :: NPOINT,I |
---|
1049 | PARAMETER(NPOINT=110) |
---|
1050 | REAL, DIMENSION(NPOINT) :: WTAB,FFTAB,Y2,YWORK |
---|
1051 | REAL, INTENT(IN) :: W |
---|
1052 | INTEGER, INTENT(IN):: khi,klo |
---|
1053 | REAL :: FF |
---|
1054 | LOGICAL :: FIRST |
---|
1055 | DATA (WTAB(I),I=1,NPOINT)/ & |
---|
1056 | 0.00000,0.08932,0.09819,0.10792,0.11980,0.13461,0.15360,0.16525, & |
---|
1057 | 0.17882,0.19482,0.21397,0.23728,0.26629,0.27999,0.29517,0.31209, & |
---|
1058 | 0.33107,0.35251,0.36430,0.37691,0.39043,0.40495,0.42059,0.43749, & |
---|
1059 | 0.44646,0.45580,0.46555,0.47572,0.48634,0.49745,0.50908,0.52126, & |
---|
1060 | 0.53405,0.54747,0.56159,0.57646,0.58263,0.58893,0.59537,0.60195, & |
---|
1061 | 0.60868,0.61557,0.62261,0.62981,0.63718,0.64472,0.65245,0.66037, & |
---|
1062 | 0.66847,0.67678,0.68530,0.69404,0.70300,0.71220,0.72164,0.73133, & |
---|
1063 | 0.73628,0.74129,0.74637,0.75152,0.75675,0.76204,0.76741,0.77286, & |
---|
1064 | 0.77839,0.78399,0.78968,0.79545,0.80130,0.80724,0.81327,0.81939, & |
---|
1065 | 0.82560,0.83191,0.83832,0.84482,0.85143,0.85814,0.86495,0.87188, & |
---|
1066 | 0.87892,0.88607,0.89334,0.90073,0.90824,0.91588,0.92365,0.93156, & |
---|
1067 | 0.93959,0.94777,0.95610,0.96457,0.97319,0.98196,0.99090,0.99270, & |
---|
1068 | 0.99452,0.99634,0.99725,0.99817,0.99835,0.99853,0.99872,0.99890, & |
---|
1069 | 0.99908,0.99927,0.99945,0.99963,0.99982, 1.0000/ |
---|
1070 | DATA (FFTAB(I),I=1,NPOINT)/ & |
---|
1071 | 0.00000, 22.840, 25.810, 29.250, 33.790, 39.970, 48.690, 54.560, & |
---|
1072 | 61.990, 71.790, 85.040, 103.70, 130.70, 145.20, 163.00, 184.50, & |
---|
1073 | 211.50, 245.60, 266.40, 290.10, 317.40, 349.00, 385.60, 428.40, & |
---|
1074 | 452.50, 478.80, 507.50, 538.80, 573.30, 611.60, 653.70, 700.50, & |
---|
1075 | 752.60, 810.60, 875.60, 948.60, 980.60, 1014.3, 1049.7, 1087.1, & |
---|
1076 | 1126.7, 1168.7, 1213.5, 1261.2, 1312.0, 1366.2, 1424.3, 1486.0, & |
---|
1077 | 1551.8, 1622.3, 1697.8, 1778.5, 1864.9, 1956.8, 2055.8, 2162.0, & |
---|
1078 | 2218.0, 2276.0, 2337.0, 2400.0, 2466.0, 2535.0, 2607.0, 2682.0, & |
---|
1079 | 2760.0, 2842.0, 2928.0, 3018.0, 3111.0, 3209.0, 3311.0, 3417.0, & |
---|
1080 | 3527.0, 3640.0, 3757.0, 3878.0, 4002.0, 4130.0, 4262.0, 4397.0, & |
---|
1081 | 4535.0, 4678.0, 4824.0, 4973.0, 5128.0, 5287.0, 5454.0, 5630.0, & |
---|
1082 | 5820.0, 6031.0, 6268.0, 6541.0, 6873.0, 7318.0, 8054.0, 8284.0, & |
---|
1083 | 8579.0, 8997.0, 9295.0, 9720.0, 9831.0, 9954.0, 10092., 10248., & |
---|
1084 | 10423., 10618., 10838., 11099., 11460., 12014./ |
---|
1085 | DATA FIRST/.TRUE./ |
---|
1086 | SAVE FIRST,WTAB,FFTAB,Y2 |
---|
1087 | ! |
---|
1088 | IF(FIRST) THEN |
---|
1089 | FIRST=.FALSE. |
---|
1090 | CALL SPLINE(WTAB,FFTAB,NPOINT,YWORK,Y2) |
---|
1091 | ENDIF |
---|
1092 | |
---|
1093 | CALL SPLINT(WTAB(khi),WTAB(klo),FFTAB(khi),FFTAB(klo),Y2(khi),Y2(klo),W,FF) |
---|
1094 | FFH2O=FF |
---|
1095 | |
---|
1096 | END FUNCTION FFH2O |
---|
1097 | |
---|
1098 | |
---|
1099 | !******************************************************************************* |
---|
1100 | REAL FUNCTION LH2O(W,khi,klo) |
---|
1101 | |
---|
1102 | ! Relative partial molal heat content of water (cal/mole) in |
---|
1103 | ! sulfuric acid solution, as a function of H2SO4 weight fraction [0;1], |
---|
1104 | ! calculated by cubic spline fitting. |
---|
1105 | |
---|
1106 | ! Source: Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
1107 | |
---|
1108 | IMPLICIT NONE |
---|
1109 | |
---|
1110 | INTEGER :: NPOINT,I |
---|
1111 | PARAMETER(NPOINT=110) |
---|
1112 | REAL, DIMENSION(NPOINT) :: WTAB,LTAB,Y2,YWORK |
---|
1113 | REAL, INTENT(IN) :: W |
---|
1114 | INTEGER, INTENT(IN):: khi,klo |
---|
1115 | REAL :: L |
---|
1116 | LOGICAL :: FIRST |
---|
1117 | DATA (WTAB(I),I=1,NPOINT)/ & |
---|
1118 | 0.00000,0.08932,0.09819,0.10792,0.11980,0.13461,0.15360,0.16525, & |
---|
1119 | 0.17882,0.19482,0.21397,0.23728,0.26629,0.27999,0.29517,0.31209, & |
---|
1120 | 0.33107,0.35251,0.36430,0.37691,0.39043,0.40495,0.42059,0.43749, & |
---|
1121 | 0.44646,0.45580,0.46555,0.47572,0.48634,0.49745,0.50908,0.52126, & |
---|
1122 | 0.53405,0.54747,0.56159,0.57646,0.58263,0.58893,0.59537,0.60195, & |
---|
1123 | 0.60868,0.61557,0.62261,0.62981,0.63718,0.64472,0.65245,0.66037, & |
---|
1124 | 0.66847,0.67678,0.68530,0.69404,0.70300,0.71220,0.72164,0.73133, & |
---|
1125 | 0.73628,0.74129,0.74637,0.75152,0.75675,0.76204,0.76741,0.77286, & |
---|
1126 | 0.77839,0.78399,0.78968,0.79545,0.80130,0.80724,0.81327,0.81939, & |
---|
1127 | 0.82560,0.83191,0.83832,0.84482,0.85143,0.85814,0.86495,0.87188, & |
---|
1128 | 0.87892,0.88607,0.89334,0.90073,0.90824,0.91588,0.92365,0.93156, & |
---|
1129 | 0.93959,0.94777,0.95610,0.96457,0.97319,0.98196,0.99090,0.99270, & |
---|
1130 | 0.99452,0.99634,0.99725,0.99817,0.99835,0.99853,0.99872,0.99890, & |
---|
1131 | 0.99908,0.99927,0.99945,0.99963,0.99982, 1.0000/ |
---|
1132 | DATA (LTAB(I),I=1,NPOINT)/ & |
---|
1133 | 0.00000, 5.2900, 6.1000, 7.1800, 8.7800, 11.210, 15.290, 18.680, & |
---|
1134 | 23.700, 31.180, 42.500, 59.900, 89.200, 106.70, 128.60, 156.00, & |
---|
1135 | 190.40, 233.80, 260.10, 290.00, 324.00, 362.50, 406.50, 456.10, & |
---|
1136 | 483.20, 512.40, 543.60, 577.40, 613.80, 653.50, 696.70, 744.50, & |
---|
1137 | 797.20, 855.80, 921.70, 995.70, 1028.1, 1062.3, 1098.3, 1136.4, & |
---|
1138 | 1176.7, 1219.3, 1264.7, 1313.0, 1364.3, 1418.9, 1477.3, 1539.9, & |
---|
1139 | 1607.2, 1679.7, 1757.9, 1842.7, 1934.8, 2035.4, 2145.5, 2267.0, & |
---|
1140 | 2332.0, 2401.0, 2473.0, 2550.0, 2631.0, 2716.0, 2807.0, 2904.0, & |
---|
1141 | 3007.0, 3118.0, 3238.0, 3367.0, 3507.0, 3657.0, 3821.0, 3997.0, & |
---|
1142 | 4186.0, 4387.0, 4599.0, 4819.0, 5039.0, 5258.0, 5476.0, 5694.0, & |
---|
1143 | 5906.0, 6103.0, 6275.0, 6434.0, 6592.0, 6743.0, 6880.0, 7008.0, & |
---|
1144 | 7133.0, 7255.0, 7376.0, 7497.0, 7618.0, 7739.0, 7855.0, 7876.0, & |
---|
1145 | 7905.0, 7985.0, 8110.0, 8415.0, 8515.0, 8655.0, 8835.0, 9125.0, & |
---|
1146 | 9575.0, 10325., 11575., 13500., 15200., 16125./ |
---|
1147 | DATA FIRST/.TRUE./ |
---|
1148 | SAVE FIRST,WTAB,LTAB,Y2 |
---|
1149 | ! |
---|
1150 | IF(FIRST) THEN |
---|
1151 | FIRST=.FALSE. |
---|
1152 | CALL SPLINE(WTAB,LTAB,NPOINT,YWORK,Y2) |
---|
1153 | ENDIF |
---|
1154 | |
---|
1155 | CALL SPLINT(WTAB(khi),WTAB(klo),LTAB(khi),LTAB(klo),Y2(khi),Y2(klo),W,L) |
---|
1156 | LH2O=L |
---|
1157 | |
---|
1158 | END FUNCTION LH2O |
---|
1159 | |
---|
1160 | |
---|
1161 | !******************************************************************************* |
---|
1162 | REAL FUNCTION ALH2O(W,khi_in,klo_in) |
---|
1163 | |
---|
1164 | ! Relative partial molal temperature derivative of heat capacity (water) |
---|
1165 | ! in sulfuric acid solution, (cal/deg**2), calculated by |
---|
1166 | ! cubic spline fitting. |
---|
1167 | |
---|
1168 | ! Source: Giauque et al.: J. Amer. Chem. Soc. 82,62,1960. |
---|
1169 | |
---|
1170 | IMPLICIT NONE |
---|
1171 | |
---|
1172 | INTEGER :: NPOINT,I |
---|
1173 | PARAMETER(NPOINT=96) |
---|
1174 | REAL, DIMENSION(NPOINT) :: WTAB,ATAB,Y2,YWORK |
---|
1175 | REAL, INTENT(IN) :: W |
---|
1176 | INTEGER, INTENT(IN):: khi_in,klo_in |
---|
1177 | INTEGER :: khi,klo |
---|
1178 | REAL :: A |
---|
1179 | LOGICAL :: FIRST |
---|
1180 | DATA (WTAB(I),I=1,NPOINT)/ & |
---|
1181 | 0.29517,0.31209, & |
---|
1182 | 0.33107,0.35251,0.36430,0.37691,0.39043,0.40495,0.42059,0.43749, & |
---|
1183 | 0.44646,0.45580,0.46555,0.47572,0.48634,0.49745,0.50908,0.52126, & |
---|
1184 | 0.53405,0.54747,0.56159,0.57646,0.58263,0.58893,0.59537,0.60195, & |
---|
1185 | 0.60868,0.61557,0.62261,0.62981,0.63718,0.64472,0.65245,0.66037, & |
---|
1186 | 0.66847,0.67678,0.68530,0.69404,0.70300,0.71220,0.72164,0.73133, & |
---|
1187 | 0.73628,0.74129,0.74637,0.75152,0.75675,0.76204,0.76741,0.77286, & |
---|
1188 | 0.77839,0.78399,0.78968,0.79545,0.80130,0.80724,0.81327,0.81939, & |
---|
1189 | 0.82560,0.83191,0.83832,0.84482,0.85143,0.85814,0.86495,0.87188, & |
---|
1190 | 0.87892,0.88607,0.89334,0.90073,0.90824,0.91588,0.92365,0.93156, & |
---|
1191 | 0.93959,0.94777,0.95610,0.96457,0.97319,0.98196,0.99090,0.99270, & |
---|
1192 | 0.99452,0.99634,0.99725,0.99817,0.99835,0.99853,0.99872,0.99890, & |
---|
1193 | 0.99908,0.99927,0.99945,0.99963,0.99982, 1.0000/ |
---|
1194 | DATA (ATAB(I),I=1,NPOINT)/ & |
---|
1195 | 0.0190, 0.0182, 0.0180, 0.0177, 0.0174, 0.0169, 0.0167, 0.0164, & |
---|
1196 | 0.0172, 0.0212, 0.0239, 0.0264, 0.0276, 0.0273, 0.0259, 0.0238, & |
---|
1197 | 0.0213, 0.0190, 0.0170, 0.0155, 0.0143, 0.0133, 0.0129, 0.0124, & |
---|
1198 | 0.0120, 0.0114, 0.0106, 0.0097, 0.0084, 0.0067, 0.0047, 0.0024, & |
---|
1199 | -0.0002,-0.0031,-0.0063,-0.0097,-0.0136,-0.0178,-0.0221,-0.0263, & |
---|
1200 | -0.0303,-0.0340,-0.0352,-0.0360,-0.0362,-0.0356,-0.0343,-0.0321, & |
---|
1201 | -0.0290,-0.0251,-0.0201,-0.0137,-0.0058, 0.0033, 0.0136, 0.0254, & |
---|
1202 | 0.0388, 0.0550, 0.0738, 0.0962, 0.1198, 0.1300, 0.1208, 0.0790, & |
---|
1203 | 0.0348, 0.0058,-0.0102,-0.0211,-0.0292,-0.0350,-0.0390,-0.0418, & |
---|
1204 | -0.0432,-0.0436,-0.0429,-0.0411,-0.0384,-0.0346,-0.0292,-0.0220, & |
---|
1205 | -0.0130,-0.0110,-0.0080,-0.0060,-0.0040,-0.0030,-0.0030,-0.0020, & |
---|
1206 | -0.0020,-0.0020,-0.0020,-0.0010,-0.0010, 0.0000, 0.0000, 0.0000/ |
---|
1207 | DATA FIRST/.TRUE./ |
---|
1208 | SAVE FIRST,WTAB,ATAB,Y2 |
---|
1209 | ! |
---|
1210 | IF(FIRST) THEN |
---|
1211 | FIRST=.FALSE. |
---|
1212 | CALL SPLINE(WTAB,ATAB,NPOINT,YWORK,Y2) |
---|
1213 | ENDIF |
---|
1214 | |
---|
1215 | if(klo_in.LT.15) then |
---|
1216 | khi=2 |
---|
1217 | klo=1 |
---|
1218 | else |
---|
1219 | khi=khi_in-14 |
---|
1220 | klo=klo_in-14 |
---|
1221 | endif |
---|
1222 | |
---|
1223 | CALL SPLINT(WTAB(khi),WTAB(klo),ATAB(khi),ATAB(klo),Y2(khi),Y2(klo),W,A) |
---|
1224 | ALH2O=A |
---|
1225 | |
---|
1226 | END FUNCTION ALH2O |
---|
1227 | |
---|
1228 | !****************************************************************************** |
---|
1229 | SUBROUTINE SPLINE(X,Y,N,WORK,Y2) |
---|
1230 | |
---|
1231 | ! Routine to calculate 2.nd derivatives of tabulated function |
---|
1232 | ! Y(i)=Y(Xi), to be used for cubic spline calculation. |
---|
1233 | |
---|
1234 | IMPLICIT NONE |
---|
1235 | |
---|
1236 | INTEGER N,I |
---|
1237 | REAL,intent(in) :: X(N),Y(N) |
---|
1238 | REAL,intent(out) :: WORK(N),Y2(N) |
---|
1239 | REAL :: SIG,P,QN,UN,YP1,YPN |
---|
1240 | |
---|
1241 | YP1=(Y(2)-Y(1))/(X(2)-X(1)) |
---|
1242 | YPN=(Y(N)-Y(N-1))/(X(N)-X(N-1)) |
---|
1243 | |
---|
1244 | IF(YP1.GT.99.0D+30) THEN |
---|
1245 | Y2(1)=0.0 |
---|
1246 | WORK(1)=0.0 |
---|
1247 | ELSE |
---|
1248 | Y2(1)=-0.5D0 |
---|
1249 | WORK(1)=(3.0D0/(X(2)-X(1)))*((Y(2)-Y(1))/(X(2)-X(1))-YP1) |
---|
1250 | ENDIF |
---|
1251 | |
---|
1252 | DO I=2,N-1 |
---|
1253 | SIG=(X(I)-X(I-1))/(X(I+1)-X(I-1)) |
---|
1254 | P=SIG*Y2(I-1)+2.0D0 |
---|
1255 | Y2(I)=(SIG-1.0D0)/P |
---|
1256 | WORK(I)=(6.0D0*((Y(I+1)-Y(I))/(X(I+1)-X(I))-(Y(I)-Y(I-1)) & |
---|
1257 | & /(X(I)-X(I-1)))/(X(I+1)-X(I-1))-SIG*WORK(I-1))/P |
---|
1258 | ENDDO |
---|
1259 | |
---|
1260 | IF(YPN.GT.99.0D+30) THEN |
---|
1261 | QN=0.0 |
---|
1262 | UN=0.0 |
---|
1263 | ELSE |
---|
1264 | QN=0.5D0 |
---|
1265 | UN=(3.0D0/(X(N)-X(N-1)))*(YPN-(Y(N)-Y(N-1))/(X(N)-X(N-1))) |
---|
1266 | ENDIF |
---|
1267 | |
---|
1268 | Y2(N)=(UN-QN*WORK(N-1))/(QN*Y2(N-1)+1.0D0) |
---|
1269 | |
---|
1270 | DO I=N-1,1,-1 |
---|
1271 | Y2(I)=Y2(I)*Y2(I+1)+WORK(I) |
---|
1272 | ENDDO |
---|
1273 | |
---|
1274 | RETURN |
---|
1275 | END SUBROUTINE SPLINE |
---|
1276 | |
---|
1277 | |
---|
1278 | !****************************************************************************** |
---|
1279 | SUBROUTINE SPLINT(XAhi,XAlo,YAhi,YAlo,Y2Ahi,Y2Alo,X,Y) |
---|
1280 | |
---|
1281 | ! Cubic spline calculation |
---|
1282 | |
---|
1283 | IMPLICIT NONE |
---|
1284 | |
---|
1285 | REAL, INTENT(IN) :: XAhi,XAlo,YAhi,YAlo,Y2Ahi,Y2Alo |
---|
1286 | REAL, INTENT(IN) :: X |
---|
1287 | REAL, INTENT(OUT) :: Y |
---|
1288 | REAL :: H,A,B |
---|
1289 | ! |
---|
1290 | H=XAhi-XAlo |
---|
1291 | A=(XAhi-X)/H |
---|
1292 | B=(X-XAlo)/H |
---|
1293 | Y=A*YAlo+B*YAhi+((A**3-A)*Y2Alo+(B**3-B)*Y2Ahi)*(H**2)/6.0d0 |
---|
1294 | ! |
---|
1295 | |
---|
1296 | END SUBROUTINE SPLINT |
---|