1 | |
---|
2 | ! FUNCTION FPLAIR Mean free path of air molecules (m) |
---|
3 | ! FUNCTION VISAIR Dynamic viscosity of air |
---|
4 | ! FUNCTION DFWVA Diffusivity of water vapor in air |
---|
5 | ! FUNCTION STSAS Surface tension of H2SO4 solution/vapor |
---|
6 | ! FUNCTION ROSAS Density of liquid sulfuric acid solution |
---|
7 | ! FUNCTION waterps Saturation vapour pressure of pure water |
---|
8 | ! FUNCTION CDTAIR Thermal conduvtivity of air |
---|
9 | |
---|
10 | |
---|
11 | !***************************************************************************** |
---|
12 | FUNCTION FPLAIR(T,P) |
---|
13 | |
---|
14 | ! Molecular mean free path of air molecules |
---|
15 | ! Source: Seinfield's book (2006,p.399) |
---|
16 | |
---|
17 | use free_param |
---|
18 | use donnees |
---|
19 | |
---|
20 | IMPLICIT NONE |
---|
21 | |
---|
22 | REAL :: FPLAIR, T, P, VISAIR |
---|
23 | |
---|
24 | FPLAIR=sqrt((PI*RGAS*T)/(2.0D0*MAIR))*(VISAIR(T)/P) |
---|
25 | |
---|
26 | RETURN |
---|
27 | |
---|
28 | END FUNCTION FPLAIR |
---|
29 | |
---|
30 | |
---|
31 | !***************************************************************************** |
---|
32 | FUNCTION VISAIR(T) |
---|
33 | |
---|
34 | ! Dynamic viscosity of air. |
---|
35 | ! Source: Jones 1942 |
---|
36 | |
---|
37 | ! Input: TAIR: Temperature (K) |
---|
38 | ! Output: VISAIR: Dynamic viscosity of air (kg/(m s))=(Pa s) |
---|
39 | |
---|
40 | use free_param |
---|
41 | use donnees |
---|
42 | |
---|
43 | IMPLICIT NONE |
---|
44 | |
---|
45 | REAL :: T, VISAIR |
---|
46 | REAL :: AA, SS, T0 |
---|
47 | |
---|
48 | AA = (5.27D0-3.0D0)/(5.27D0 -1.0D0) |
---|
49 | SS = -0.435D0 |
---|
50 | T0 = 200.0D0 |
---|
51 | |
---|
52 | VISAIR=1015.0D0*((T/T0)**(0.5D0))*(T0**(AA)+SS)/(T**(AA)+SS) |
---|
53 | VISAIR=VISAIR*1.D-8 |
---|
54 | |
---|
55 | RETURN |
---|
56 | |
---|
57 | END FUNCTION VISAIR |
---|
58 | |
---|
59 | |
---|
60 | !***************************************************************************** |
---|
61 | FUNCTION DFWVA(T,P) |
---|
62 | |
---|
63 | ! Diffusivity of water vapor in air. |
---|
64 | ! Source: Prupacher & Klett:Microphysics of clouds and precipitation, |
---|
65 | ! (1980), 13-3, p. 413 |
---|
66 | ! The relation D = E0 (T/T0)**n (P0/P); n=1.94 has been used. |
---|
67 | |
---|
68 | ! Input: TAIR: Temperature (K); Range: [180,273] |
---|
69 | ! PAIR: Pressure (Pa) |
---|
70 | ! Output: Diffusivity of water vapor in air (m**2/sec) |
---|
71 | |
---|
72 | use free_param |
---|
73 | use donnees |
---|
74 | |
---|
75 | IMPLICIT NONE |
---|
76 | |
---|
77 | REAL :: E0, D1, P0, T0, T, P, DFWVA |
---|
78 | |
---|
79 | PARAMETER(E0=0.211D-4,P0=1.01325D+5,T0=273.15D0,D1=E0*P0) |
---|
80 | |
---|
81 | DFWVA=D1*((T/T0)**1.94D0)/P |
---|
82 | |
---|
83 | RETURN |
---|
84 | |
---|
85 | END FUNCTION DFWVA |
---|
86 | |
---|
87 | |
---|
88 | !***************************************************************************** |
---|
89 | FUNCTION STSAS(T,xmass) |
---|
90 | ! Input: T: Temperature (K) |
---|
91 | ! xmass: Mass fraction of H2SO4 [0;1] |
---|
92 | ! Output: Surface tension of sulfuric acid solution (N/m) |
---|
93 | |
---|
94 | ! about 230-323 K , x=0,...,1 |
---|
95 | !(valid down to the solid phase limit temp, which depends on molefraction) |
---|
96 | |
---|
97 | use donnees |
---|
98 | IMPLICIT NONE |
---|
99 | REAL :: STSAS |
---|
100 | REAL, INTENT(IN):: xmass, T |
---|
101 | REAL :: a, b, T1, Tc, xmole |
---|
102 | |
---|
103 | IF (T .LT. 305.15) THEN |
---|
104 | |
---|
105 | !low temperature surface tension |
---|
106 | ! Hanna Vehkam‰ki and Markku Kulmala and Ismo Napari |
---|
107 | ! and Kari E. J. Lehtinen and Claudia Timmreck and Madis Noppel and Ari Laaksonen, 2002, |
---|
108 | ! An improved parameterization for sulfuric acid/water nucleation rates for tropospheric |
---|
109 | !and stratospheric conditions, () J. Geophys. Res., 107, pp. 4622-4631 |
---|
110 | |
---|
111 | a= 0.11864 + xmass* (-0.11651 & |
---|
112 | + xmass* ( 0.76852 & |
---|
113 | + xmass* (-2.40909 & |
---|
114 | + xmass* (2.95434 & |
---|
115 | + xmass* (-1.25852))))) |
---|
116 | |
---|
117 | b= -0.00015709 + xmass* (0.00040102 & |
---|
118 | + xmass*(-0.00239950 & |
---|
119 | + xmass* (0.007611235 & |
---|
120 | + xmass*(-0.00937386 & |
---|
121 | + xmass*0.00389722)))) |
---|
122 | STSAS=a+T*b |
---|
123 | |
---|
124 | ELSE |
---|
125 | |
---|
126 | xmole = (xmass/MSA)*(1./((xmass/MSA)+(1.-xmass)/MWV)) |
---|
127 | |
---|
128 | ! high temperature surface tension |
---|
129 | !H. Vehkam‰ki and M. Kulmala and K.E. J. lehtinen, 2003, |
---|
130 | !Modelling binary homogeneous nucleation of water-sulfuric acid vapours: |
---|
131 | ! parameterisation for high temperature emissions, () Environ. Sci. Technol., 37, 3392-3398 |
---|
132 | |
---|
133 | Tc= 647.15*(1.0-xmole)*(1.0-xmole) & |
---|
134 | + 900.0 * xmole * xmole & |
---|
135 | + 3156.186* xmole *(1-xmole) !critical temperature |
---|
136 | T1=1.0-T/Tc |
---|
137 | |
---|
138 | a= 0.2358 + xmole*(-0.529 & |
---|
139 | + xmole* (4.073 & |
---|
140 | + xmole*(-12.6707 & |
---|
141 | + xmole* (15.3552 & |
---|
142 | + xmole*(-6.3138))))) |
---|
143 | |
---|
144 | b= -0.14738 + xmole* (0.6253 & |
---|
145 | + xmole*(-5.4808 & |
---|
146 | + xmole*(17.2366 & |
---|
147 | + xmole*(-21.0487 & |
---|
148 | + xmole*(8.719))))) |
---|
149 | STSAS=(a+b*T1)*T1**(1.256) |
---|
150 | |
---|
151 | END IF |
---|
152 | RETURN |
---|
153 | |
---|
154 | END FUNCTION STSAS |
---|
155 | |
---|
156 | |
---|
157 | !***************************************************************************** |
---|
158 | FUNCTION ROSAS(T,xmass) |
---|
159 | |
---|
160 | ! |
---|
161 | ! calculates the density of the liquid in kg/m^3 |
---|
162 | ! xmass=mass fraction of h2so4, T in kelvins |
---|
163 | ! Hanna Vehkam‰ki and Markku Kulmala and Ismo Napari |
---|
164 | ! and Kari E. J. Lehtinen and Claudia Timmreck and Madis Noppel and Ari Laaksonen, 2002, |
---|
165 | ! An improved parameterization for sulfuric acid/water nucleation rates for tropospheric |
---|
166 | !and stratospheric conditions, () J. Geophys. Res., 107, pp. 4622-4631 |
---|
167 | |
---|
168 | ! about 220-373 K , x=0,...,1 |
---|
169 | !(valid down to the solid phase limit temp, which depends on molefraction) |
---|
170 | |
---|
171 | IMPLICIT NONE |
---|
172 | REAL :: ROSAS |
---|
173 | REAL, INTENT(IN) :: T, xmass |
---|
174 | REAL :: a,b,c |
---|
175 | |
---|
176 | |
---|
177 | a= 0.7681724 + xmass* (2.1847140 & |
---|
178 | + xmass* (7.1630022 & |
---|
179 | + xmass* (-44.31447 & |
---|
180 | + xmass* (88.75606 & |
---|
181 | + xmass*(-75.73729 & |
---|
182 | + xmass* 23.43228 ))))) |
---|
183 | |
---|
184 | b= 1.808225e-3 + xmass* (-9.294656e-3 & |
---|
185 | + xmass* (-0.03742148 & |
---|
186 | + xmass* (0.2565321 & |
---|
187 | + xmass* (-0.5362872 & |
---|
188 | + xmass* (0.4857736 & |
---|
189 | + xmass* (-0.1629592)))))) |
---|
190 | |
---|
191 | c= -3.478524e-6 + xmass* (1.335867e-5 & |
---|
192 | + xmass* (5.195706e-5 & |
---|
193 | + xmass*(-3.717636e-4 & |
---|
194 | + xmass* (7.990811e-4 & |
---|
195 | + xmass*(-7.458060e-4 & |
---|
196 | + xmass* 2.58139e-4))))) |
---|
197 | |
---|
198 | ROSAS= a+T*(b+c*T) ! g/cm^3 |
---|
199 | ROSAS= ROSAS*1.0e3 !kg/m^3 |
---|
200 | |
---|
201 | RETURN |
---|
202 | END FUNCTION ROSAS |
---|
203 | |
---|
204 | |
---|
205 | !**************************************************************** |
---|
206 | FUNCTION waterps(t) |
---|
207 | |
---|
208 | ! Saturation vapour pressure of pure water in Pa |
---|
209 | ! temperature t in K |
---|
210 | |
---|
211 | ! for 0 to 100C: Wexler 1976 |
---|
212 | ! for <0C (validity range 123-332K): Murphy and Koop 2005 |
---|
213 | |
---|
214 | use free_param |
---|
215 | use donnees |
---|
216 | |
---|
217 | IMPLICIT NONE |
---|
218 | |
---|
219 | REAL:: waterps, t,w |
---|
220 | |
---|
221 | if(t .ge. 273.15D0) then |
---|
222 | waterps=exp(-2991.2729D0*(t**(-2.))-6017.0128D0/t+18.87643854D0 & |
---|
223 | & -0.028354721D0*t+0.17838301D-4*t**2.-0.84150417D-9*t**3. & |
---|
224 | & +0.44412543D-12*t**4.+2.858487D0*LOG(t)) |
---|
225 | else if(t .lt. 273.15D0) then |
---|
226 | waterps=exp(54.842763D0-6763.22D0/t-4.210D0*LOG(t)+0.000367D0*t & |
---|
227 | & + tanh(0.0415D0*(t- 218.8D0))*(53.878D0- 1331.22D0/t & |
---|
228 | & - 9.44523D0*LOG(t) + 0.014025D0*t)) |
---|
229 | else |
---|
230 | stop 'no good temperatures in waterps!' |
---|
231 | endif |
---|
232 | |
---|
233 | END FUNCTION waterps |
---|
234 | |
---|
235 | |
---|
236 | !**************************************************************** |
---|
237 | FUNCTION CDTAIR(T) |
---|
238 | |
---|
239 | ! Thermal conduvtivity of air |
---|
240 | ! Source: Prupacher & Klett:Microphysics of clouds and precipitation, |
---|
241 | ! (1980), p 418, 13-16 |
---|
242 | ! Formula used: CDTAIR=4.381276E-3+7.117560E-5*TAIR |
---|
243 | |
---|
244 | ! Input: TAIR: Air temperature (K) |
---|
245 | ! Output: Thermal conductivity of air (J/(m sec K)) |
---|
246 | |
---|
247 | use free_param |
---|
248 | use donnees |
---|
249 | |
---|
250 | IMPLICIT NONE |
---|
251 | |
---|
252 | REAL :: CDTAIR, T |
---|
253 | |
---|
254 | CDTAIR=4.381276D-3+7.117560D-5*T |
---|
255 | |
---|
256 | RETURN |
---|
257 | |
---|
258 | END FUNCTION CDTAIR |
---|
259 | |
---|