1 | SUBROUTINE new_cloud_sedim(n_lon,n_lev,ptimestep, |
---|
2 | & pmidlay,pbndlay, |
---|
3 | & pt, |
---|
4 | & pq, pdqsed,pdqs_sed,nq,F_sed) |
---|
5 | |
---|
6 | USE ioipsl |
---|
7 | USE dimphy |
---|
8 | USE chemparam_mod |
---|
9 | IMPLICIT NONE |
---|
10 | |
---|
11 | c======================================================================= |
---|
12 | c |
---|
13 | c======================================================================= |
---|
14 | |
---|
15 | c----------------------------------------------------------------------- |
---|
16 | c declarations: |
---|
17 | c ------------- |
---|
18 | #include "YOMCST.h" |
---|
19 | c#include "dimphys.h" |
---|
20 | c#include "comcstfi.h" |
---|
21 | c#include "tracer.h" |
---|
22 | c#include "callkeys.h" |
---|
23 | |
---|
24 | c |
---|
25 | c arguments: |
---|
26 | c ---------- |
---|
27 | |
---|
28 | INTEGER n_lon ! number of horizontal grid points |
---|
29 | INTEGER n_lev ! number of atmospheric layers |
---|
30 | REAL ptimestep ! physics time step (s) |
---|
31 | REAL pmidlay(n_lon,n_lev) ! pressure at middle layers (Pa) |
---|
32 | REAL pt(n_lon,n_lev) ! temperature at mid-layer (l) |
---|
33 | REAL pbndlay(n_lon,n_lev+1) ! pressure at layer boundaries |
---|
34 | |
---|
35 | c Traceurs : |
---|
36 | integer nq ! number of tracers |
---|
37 | real pq(n_lon,n_lev,nq) ! tracers (kg/kg) |
---|
38 | c real pdqfi(n_lon,n_lev,nq) ! tendency before sedimentation (kg/kg.s-1) |
---|
39 | real pdqsed(n_lon,n_lev,2) ! tendency due to sedimentation (kg/kg) |
---|
40 | real pdqs_sed(n_lon) ! surface density (Flux if /ptimestep) at surface due to sedimentation (kg.m-2) |
---|
41 | |
---|
42 | c local: |
---|
43 | c ------ |
---|
44 | integer imode |
---|
45 | integer ig |
---|
46 | integer iq |
---|
47 | integer l |
---|
48 | |
---|
49 | real zlev(n_lon,n_lev+1) ! altitude at layer boundaries |
---|
50 | real zlay(n_lon,n_lev) ! altitude at the midlle layer |
---|
51 | real zqi_wv(n_lon,n_lev) ! to locally store H2O tracer |
---|
52 | real zqi_sa(n_lon,n_lev) ! to locally store H2SO4 tracer |
---|
53 | real m_lay (n_lon,n_lev) ! Layer Pressure over gravity (Dp/g == kg.m-2) |
---|
54 | real wq(n_lon,n_lev+1) ! displaced tracer mass (kg.m-2) |
---|
55 | |
---|
56 | c Physical constant |
---|
57 | c ~~~~~~~~~~~~~~~~~ |
---|
58 | c Gas molecular viscosity (N.s.m-2) |
---|
59 | c real,parameter :: visc=1.e-5 ! CO2 |
---|
60 | REAL :: VISCOSITY_CO2 |
---|
61 | c Effective gas molecular radius (m) |
---|
62 | real,parameter :: molrad=2.2e-10 ! CO2 |
---|
63 | |
---|
64 | c Ratio radius shell model du mode 3 |
---|
65 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
66 | c Ce ratio correspond aux mesures effectuées par J. Cimino (1982), Icarus |
---|
67 | c Fixer ce parametre a 0 revient a une gouttelette pure en liquide acide sulfurique |
---|
68 | c ATTENTION ! DOIT ETRE COHERENT AVEC new_cloud_venus ! |
---|
69 | REAL, PARAMETER :: qrad = 0.97 |
---|
70 | REAL :: qmass |
---|
71 | c masse volumique du coeur (kg.m-3) |
---|
72 | c ATTENTION ! DOIT ETRE COHERENT AVEC new_cloud_venus ! |
---|
73 | REAL, PARAMETER :: rho_core = 2500.0 |
---|
74 | |
---|
75 | REAL, DIMENSION(n_lon,n_lev+1) :: |
---|
76 | + wgt_SA ! Fraction of H2SO4 in droplet local |
---|
77 | |
---|
78 | c Stokes speed and sedimentation flux variable |
---|
79 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
80 | |
---|
81 | REAL :: A1,A2,A3,A4, ! coeff du DL du Flux de sedimentation |
---|
82 | + D_stokes, ! coeff de la vitesse de Stokes |
---|
83 | + Rp_DL, ! "Point" du DL |
---|
84 | + l_mean, ! libre parcours moyen (m) |
---|
85 | + a,b_exp,c ! coeff du calcul du Flux de sedimentation |
---|
86 | REAL, DIMENSION(n_lon,n_lev+1) :: |
---|
87 | + F_sed ! Flux de sedimentation (kg.m-2.s-1 puis en output kg.m-2) |
---|
88 | |
---|
89 | |
---|
90 | REAL :: R_mode0 ! Rayon mode 0 (m), rayon le plus frequent |
---|
91 | |
---|
92 | |
---|
93 | |
---|
94 | ! PRINT*,'RHO_DROPLET new_cloud_sedim.F' |
---|
95 | ! PRINT*,'rho_droplet',rho_droplet(16,21) |
---|
96 | ! PRINT*,'T',pt(16,21),'WSA',WH2SO4(16,21) |
---|
97 | |
---|
98 | c----------------------------------------------------------------------- |
---|
99 | c 1. Initialization |
---|
100 | c ----------------- |
---|
101 | |
---|
102 | c Updating the droplet mass mixing ratio with the partition H2O/H2SO4 |
---|
103 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
104 | |
---|
105 | do l=1,n_lev |
---|
106 | do ig=1,n_lon |
---|
107 | zqi_wv(ig,l) = pq(ig,l,i_h2oliq) |
---|
108 | zqi_sa(ig,l) = pq(ig,l,i_h2so4liq) |
---|
109 | wgt_SA(ig,l) = WH2SO4(ig,l) |
---|
110 | enddo |
---|
111 | enddo |
---|
112 | |
---|
113 | c Init F_sed |
---|
114 | F_sed(:,:) = 0.0E+0 |
---|
115 | |
---|
116 | c Au niveau top+1 , tout égal a 0 |
---|
117 | wgt_SA(:,n_lev+1) = 0.0E+0 |
---|
118 | |
---|
119 | c Computing the different layer properties |
---|
120 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
121 | c m_lay (kg.m-2) |
---|
122 | c Ici g=8.87, conflit pour g entre #include "YOMCST.h" |
---|
123 | c et #include "comcstfi.h" |
---|
124 | |
---|
125 | do l=1,n_lev |
---|
126 | do ig=1, n_lon |
---|
127 | m_lay(ig,l)=(pbndlay(ig,l) - pbndlay(ig,l+1)) /8.87E+0 |
---|
128 | IF (m_lay(ig,l).LE.0.0) THEN |
---|
129 | PRINT*,'!!!! STOP PROBLEME SEDIMENTATION!!!!' |
---|
130 | PRINT*,'!!!! m_lay <= 0 !!!!' |
---|
131 | PRINT*,'!!!! STOP PROBLEME SEDIMENTATION!!!!' |
---|
132 | ENDIF |
---|
133 | end do |
---|
134 | end do |
---|
135 | |
---|
136 | c Computing sedimentation for droplet "tracer" |
---|
137 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
138 | c pbndlay(:,51)=0 (en parallèle c'est sûr), ne pas l'utiliser pour Fse |
---|
139 | |
---|
140 | c Sedimentation pour une gouttelette mode 3 de type J. Cimino, 1982, Icarus |
---|
141 | c c.a.d 97% radius due a solide 3% radius acide sulfurique |
---|
142 | DO imode=1, nbr_mode - 1 |
---|
143 | DO l = cloudmin, cloudmax |
---|
144 | DO ig=1,n_lon |
---|
145 | |
---|
146 | c RD=1000.*RNAVO*RKBOL/RMD avec RMD=43.44 Masse molaire atm venus en g.mol-1 |
---|
147 | D_stokes=((rho_droplet(ig,l)-pmidlay(ig,l)/(RD*pt(ig,l)))) |
---|
148 | & *(2./9.)*(RG/VISCOSITY_CO2(pt(ig,l))) |
---|
149 | |
---|
150 | l_mean=(pt(ig,l)/pmidlay(ig,l))* |
---|
151 | & (0.707*R/(4.*RPI* molrad*molrad * RNAVO)) |
---|
152 | |
---|
153 | R_mode0=R_MEDIAN(ig,l,imode)* |
---|
154 | & EXP(-LOG(STDDEV(ig,l,imode))**2.) |
---|
155 | IF ((l_mean/(R_mode0)).GT.10.) THEN |
---|
156 | Rp_DL=R_MEDIAN(ig,l,imode)* |
---|
157 | & EXP(3.*LOG(STDDEV(ig,l,imode))**2.) |
---|
158 | ELSE |
---|
159 | Rp_DL=R_MEDIAN(ig,l,imode)* |
---|
160 | & EXP(4.*LOG(STDDEV(ig,l,imode))**2.) |
---|
161 | ENDIF |
---|
162 | |
---|
163 | a=1.246*l_mean |
---|
164 | |
---|
165 | c=0.87/l_mean |
---|
166 | |
---|
167 | b_exp=0.42*l_mean*EXP(-c*Rp_DL) |
---|
168 | |
---|
169 | A1=a+b_exp*(1.+c*Rp_DL |
---|
170 | & +0.5*(Rp_DL*c)**2 |
---|
171 | & +1./6.*(Rp_DL*c)**3) |
---|
172 | |
---|
173 | A2=1.-b_exp*(c |
---|
174 | & +Rp_DL*c**2 |
---|
175 | & +0.5*(Rp_DL**2)*(c**3)) |
---|
176 | |
---|
177 | A3=0.5*b_exp*(c**2+Rp_DL*c**3) |
---|
178 | |
---|
179 | A4=-b_exp*1./6.*c**3 |
---|
180 | |
---|
181 | c Addition des Flux de tous les modes presents |
---|
182 | F_sed(ig,l)=F_sed(ig,l)+(rho_droplet(ig,l)*4./3.*RPI* |
---|
183 | & NBRTOT(ig,l,imode)*1.0E6*D_stokes*( |
---|
184 | & A1*R_MEDIAN(ig,l,imode)**4 |
---|
185 | & *EXP(8.0*LOG(STDDEV(ig,l,imode))**2.) |
---|
186 | & +A2*R_MEDIAN(ig,l,imode)**5 |
---|
187 | & *EXP(12.5*LOG(STDDEV(ig,l,imode))**2.) |
---|
188 | & +A3*R_MEDIAN(ig,l,imode)**6 |
---|
189 | & *EXP(18.0*LOG(STDDEV(ig,l,imode))**2.) |
---|
190 | & +A4*R_MEDIAN(ig,l,imode)**7 |
---|
191 | & *EXP(24.5*LOG(STDDEV(ig,l,imode))**2.))) |
---|
192 | |
---|
193 | c PRINT*,' APRES dTime: F_sed=',F_sed(ig,l), ig, l |
---|
194 | |
---|
195 | IF (F_sed(ig,l).GT.m_lay(ig,l)) THEN |
---|
196 | PRINT*,'===============================================' |
---|
197 | PRINT*,'WARNING On a epuise la couche', ig, l |
---|
198 | PRINT*,'On epuise pas une couche avec une espèce |
---|
199 | & minoritaire, c est pas bien maaaaaal' |
---|
200 | PRINT*,'Water',zqi_wv(ig,l),'Sulfuric Acid',zqi_sa(ig,l) |
---|
201 | PRINT*,'F_sed:',F_sed(ig,l),'m_lay:',m_lay(ig,l) |
---|
202 | PRINT*,'F_sed/dtphy',F_sed(ig,l)/ptimestep |
---|
203 | PRINT*,'Pbnd top',pbndlay(ig,l+1),'Temp',pt(ig,l),'Rho', |
---|
204 | & rho_droplet(ig,l) |
---|
205 | PRINT*,'Ntot',NBRTOT(ig,l,:) |
---|
206 | PRINT*,'StdDev',STDDEV(ig,l,:),'Rmed',R_MEDIAN(ig,l,:) |
---|
207 | PRINT*,'K_MASS',K_MASS(ig,l,:) |
---|
208 | PRINT*,'WSA',WH2SO4(ig,l),'RHO',rho_droplet(ig,l) |
---|
209 | |
---|
210 | c ELSE |
---|
211 | c |
---|
212 | c PRINT*,'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
213 | c PRINT*,'WARNING On a PAS epuise la couche', ig, l |
---|
214 | c PRINT*,'F_sed:',F_sed(ig,l),'m_lay:',m_lay(ig,l) |
---|
215 | c PRINT*,'F_sed/dtphy',F_sed(ig,l)/ptimestep |
---|
216 | c PRINT*,'Pbnd top',pbndlay(ig,l+1),'Temp',pt(ig,l),'Rho', |
---|
217 | c & rho_droplet(ig,l)(ig,l) |
---|
218 | c PRINT*,'Ntot',NBRTOT(ig,l),'Ntot m3',NBRTOT(ig,l)*1.0e6 |
---|
219 | c PRINT*,'StdDev',STDDEV(ig,l),'Rmed',R_MEDIAN(ig,l) |
---|
220 | STOP |
---|
221 | ENDIF |
---|
222 | |
---|
223 | IF (F_sed(ig,l).LT.0.0d0) THEN |
---|
224 | PRINT*,"F_sed est négatif !!!" |
---|
225 | PRINT*,'F_sed:',F_sed(ig,l),'m_lay:',m_lay(ig,l) |
---|
226 | PRINT*,'F_sed/dtphy',F_sed(ig,l)/ptimestep |
---|
227 | PRINT*,'Pbnd top',pbndlay(ig,l+1),'Pmid',pmidlay(ig,l) |
---|
228 | PRINT*,'Temp',pt(ig,l),'Rho', |
---|
229 | & rho_droplet(ig,l) |
---|
230 | PRINT*,'Ntot',NBRTOT(ig,l,imode),'Ntot m3', |
---|
231 | & NBRTOT(ig,l,imode)*1.0e6 |
---|
232 | PRINT*,'StdDev',STDDEV(ig,l,imode),'Rmed', |
---|
233 | & R_MEDIAN(ig,l,imode) |
---|
234 | PRINT*,'A1',A1,'A2',A2 |
---|
235 | PRINT*,'A3',A1,'A4',A2 |
---|
236 | PRINT*,'D_stokes',D_stokes |
---|
237 | STOP |
---|
238 | ENDIF |
---|
239 | |
---|
240 | ENDDO |
---|
241 | |
---|
242 | c ELSE |
---|
243 | c F_sed(:,l)=0.0d0 |
---|
244 | c ENDIF |
---|
245 | |
---|
246 | ENDDO |
---|
247 | ENDDO |
---|
248 | |
---|
249 | c**************************************************************** |
---|
250 | c On calcule le F_sed du mode 3 + coeff*(Fsed1 + Fsed2) |
---|
251 | c**************************************************************** |
---|
252 | DO l = cloudmin, cloudmax |
---|
253 | DO ig=1,n_lon |
---|
254 | |
---|
255 | c calcul de qmass |
---|
256 | qmass=(rho_core*qrad**3)/ |
---|
257 | & (rho_core*qrad**3+rho_droplet(ig,l)*(1.-qrad**3)) |
---|
258 | |
---|
259 | c RD=1000.*RNAVO*RKBOL/RMD avec RMD=43.44 Masse molaire atm venus en g.mol-1 |
---|
260 | D_stokes=(((qmass*rho_core+(1.-qmass)*rho_droplet(ig,l)) |
---|
261 | & -pmidlay(ig,l)/(RD*pt(ig,l)))) |
---|
262 | & *(2./9.)*(RG/VISCOSITY_CO2(pt(ig,l))) |
---|
263 | |
---|
264 | l_mean=(pt(ig,l)/pmidlay(ig,l))* |
---|
265 | & (0.707*R/(4.*RPI* molrad*molrad * RNAVO)) |
---|
266 | |
---|
267 | R_mode0=R_MEDIAN(ig,l,3)* |
---|
268 | & EXP(-LOG(STDDEV(ig,l,3))**2.) |
---|
269 | IF ((l_mean/(R_mode0)).GT.10.) THEN |
---|
270 | Rp_DL=R_MEDIAN(ig,l,3)* |
---|
271 | & EXP(3.*LOG(STDDEV(ig,l,3))**2.) |
---|
272 | ELSE |
---|
273 | Rp_DL=R_MEDIAN(ig,l,3)* |
---|
274 | & EXP(4.*LOG(STDDEV(ig,l,3))**2.) |
---|
275 | ENDIF |
---|
276 | |
---|
277 | a=1.246*l_mean |
---|
278 | |
---|
279 | c=0.87/l_mean |
---|
280 | |
---|
281 | b_exp=0.42*l_mean*EXP(-c*Rp_DL) |
---|
282 | |
---|
283 | A1=a+b_exp*(1.+c*Rp_DL |
---|
284 | & +0.5*(Rp_DL*c)**2 |
---|
285 | & +1./6.*(Rp_DL*c)**3) |
---|
286 | |
---|
287 | A2=1.-b_exp*(c |
---|
288 | & +Rp_DL*c**2 |
---|
289 | & +0.5*(Rp_DL**2)*(c**3)) |
---|
290 | |
---|
291 | A3=0.5*b_exp*(c**2+Rp_DL*c**3) |
---|
292 | |
---|
293 | A4=-b_exp*1./6.*c**3 |
---|
294 | |
---|
295 | c Addition des Flux de tous les modes presents |
---|
296 | F_sed(ig,l)=F_sed(ig,l) |
---|
297 | & +((1.-qmass)/(1.-qmass*K_MASS(ig,l,3)))*( |
---|
298 | & (qmass*rho_core+(1.-qmass)*rho_droplet(ig,l))*4./3.*RPI* |
---|
299 | & NBRTOT(ig,l,3)*1.0E6*D_stokes*( |
---|
300 | & A1*R_MEDIAN(ig,l,3)**4 |
---|
301 | & *EXP(8.0*LOG(STDDEV(ig,l,3))**2.) |
---|
302 | & +A2*R_MEDIAN(ig,l,3)**5 |
---|
303 | & *EXP(12.5*LOG(STDDEV(ig,l,3))**2.) |
---|
304 | & +A3*R_MEDIAN(ig,l,3)**6 |
---|
305 | & *EXP(18.0*LOG(STDDEV(ig,l,3))**2.) |
---|
306 | & +A4*R_MEDIAN(ig,l,3)**7 |
---|
307 | & *EXP(24.5*LOG(STDDEV(ig,l,3))**2.))) |
---|
308 | |
---|
309 | c PRINT*,' APRES dTime: F_sed=',F_sed(ig,l), ig, l |
---|
310 | |
---|
311 | IF (F_sed(ig,l).GT.m_lay(ig,l)) THEN |
---|
312 | PRINT*,'===============================================' |
---|
313 | PRINT*,'WARNING On a epuise la couche', ig, l |
---|
314 | PRINT*,'On epuise pas une couche avec une espèce |
---|
315 | & minoritaire, c est pas bien maaaaaal' |
---|
316 | PRINT*,'Water',zqi_wv(ig,l),'Sulfuric Acid',zqi_sa(ig,l) |
---|
317 | PRINT*,'F_sed:',F_sed(ig,l),'m_lay:',m_lay(ig,l) |
---|
318 | PRINT*,'F_sed/dtphy',F_sed(ig,l)/ptimestep |
---|
319 | PRINT*,'Pbnd top',pbndlay(ig,l+1),'Temp',pt(ig,l),'Rho', |
---|
320 | & rho_droplet(ig,l) |
---|
321 | PRINT*,'Ntot',NBRTOT(ig,l,:) |
---|
322 | PRINT*,'StdDev',STDDEV(ig,l,:),'Rmed',R_MEDIAN(ig,l,:) |
---|
323 | PRINT*,'K_MASS',K_MASS(ig,l,:) |
---|
324 | PRINT*,'WSA',WH2SO4(ig,l),'RHO',rho_droplet(ig,l) |
---|
325 | |
---|
326 | c ELSE |
---|
327 | c |
---|
328 | c PRINT*,'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
329 | c PRINT*,'WARNING On a PAS epuise la couche', ig, l |
---|
330 | c PRINT*,'F_sed:',F_sed(ig,l),'m_lay:',m_lay(ig,l) |
---|
331 | c PRINT*,'F_sed/dtphy',F_sed(ig,l)/ptimestep |
---|
332 | c PRINT*,'Pbnd top',pbndlay(ig,l+1),'Temp',pt(ig,l),'Rho', |
---|
333 | c & rho_droplet(ig,l)(ig,l) |
---|
334 | c PRINT*,'Ntot',NBRTOT(ig,l),'Ntot m3',NBRTOT(ig,l)*1.0e6 |
---|
335 | c PRINT*,'StdDev',STDDEV(ig,l),'Rmed',R_MEDIAN(ig,l) |
---|
336 | STOP |
---|
337 | ENDIF |
---|
338 | |
---|
339 | IF (F_sed(ig,l).LT.0.0d0) THEN |
---|
340 | PRINT*,"F_sed est négatif !!!" |
---|
341 | PRINT*,'F_sed:',F_sed(ig,l),'m_lay:',m_lay(ig,l) |
---|
342 | PRINT*,'F_sed/dtphy',F_sed(ig,l)/ptimestep |
---|
343 | PRINT*,'Pbnd top',pbndlay(ig,l+1),'Pmid',pmidlay(ig,l) |
---|
344 | PRINT*,'Temp',pt(ig,l),'Rho', |
---|
345 | & rho_droplet(ig,l) |
---|
346 | PRINT*,'Ntot',NBRTOT(ig,l,imode),'Ntot m3', |
---|
347 | & NBRTOT(ig,l,imode)*1.0e6 |
---|
348 | PRINT*,'StdDev',STDDEV(ig,l,imode),'Rmed', |
---|
349 | & R_MEDIAN(ig,l,imode) |
---|
350 | PRINT*,'A1',A1,'A2',A2 |
---|
351 | PRINT*,'A3',A1,'A4',A2 |
---|
352 | PRINT*,'D_stokes',D_stokes |
---|
353 | STOP |
---|
354 | ENDIF |
---|
355 | |
---|
356 | ENDDO |
---|
357 | |
---|
358 | c ELSE |
---|
359 | c F_sed(:,l)=0.0d0 |
---|
360 | c ENDIF |
---|
361 | |
---|
362 | ENDDO |
---|
363 | c**************************************************************** |
---|
364 | |
---|
365 | c Passage du Flux au Flux pour un pas de temps (== kg.m-2) |
---|
366 | F_sed(:,:)=F_sed(:,:)*ptimestep |
---|
367 | |
---|
368 | |
---|
369 | c VENUS: le flux à la surface est fixé à 0 |
---|
370 | c les conditions P/T en surface ne permettent pas la condensation |
---|
371 | DO ig=1,n_lon |
---|
372 | pdqs_sed(ig) = 0.0d0 |
---|
373 | ENDDO |
---|
374 | |
---|
375 | c Compute the final tendency: |
---|
376 | c --------------------------- |
---|
377 | |
---|
378 | c Partie H2SO4l |
---|
379 | c ~~~~~~~~~~~~ |
---|
380 | |
---|
381 | DO l = 1, n_lev |
---|
382 | DO ig=1,n_lon |
---|
383 | zqi_sa(ig,l) = zqi_sa(ig,l) + ( |
---|
384 | & F_sed(ig,l+1)*wgt_SA(ig,l+1) |
---|
385 | & - F_sed(ig,l)*wgt_SA(ig,l)) |
---|
386 | & / m_lay(ig,l) |
---|
387 | c On peut avoir theoriquement le cas ou on epuise tout le VMR present |
---|
388 | IF (zqi_sa(ig,l).LT.0.0D0) THEN |
---|
389 | c PRINT*,'STOP sedimentation on epuise tout le VMR present' |
---|
390 | c PRINT*,'couche',ig,'level',l |
---|
391 | c STOP |
---|
392 | c Ce n est pas juste mais il faudrait alors adapter les pas |
---|
393 | c de tps de la phys, microphys et chimie |
---|
394 | c car dans ce cas, c est comme si on epuisait la couche pour un pdtphys |
---|
395 | c mais en fait on l epuise pour un pdt<pdtphys |
---|
396 | zqi_sa(ig,l) = 0.0D0 |
---|
397 | ENDIF |
---|
398 | pdqsed(ig,l,1) = zqi_sa(ig,l) - pq(ig,l,i_h2so4liq) |
---|
399 | ENDDO |
---|
400 | ENDDO |
---|
401 | |
---|
402 | c Partie H2Ol |
---|
403 | c ~~~~~~~~~~~ |
---|
404 | |
---|
405 | DO l = 1, n_lev |
---|
406 | DO ig=1,n_lon |
---|
407 | zqi_wv(ig,l) = zqi_wv(ig,l) + ( |
---|
408 | & F_sed(ig,l+1)*(1. - wgt_SA(ig,l+1)) |
---|
409 | & - F_sed(ig,l)*(1. - wgt_SA(ig,l))) |
---|
410 | & / m_lay(ig,l) |
---|
411 | c On peut avoir theoriquement le cas ou on epuise tout le VMR present |
---|
412 | IF (zqi_wv(ig,l).LT.0.0D0) THEN |
---|
413 | c PRINT*,'STOP sedimentation on epuise tout le VMR present' |
---|
414 | c PRINT*,'couche',ig,'level',l |
---|
415 | c STOP |
---|
416 | c Ce n est pas juste mais il faudrait alors adapter les pas |
---|
417 | c de tps de la phys, microphys et chimie |
---|
418 | c car dans ce cas, c est comme si on epuisait la couche pour un pdtphys |
---|
419 | c mais en fait on l epuise pour un pdt<pdtphys |
---|
420 | zqi_wv(ig,l) = 0.0D0 |
---|
421 | ENDIF |
---|
422 | pdqsed(ig,l,2) = zqi_wv(ig,l) - pq(ig,l,i_h2oliq) |
---|
423 | ENDDO |
---|
424 | ENDDO |
---|
425 | |
---|
426 | c Save output file in 1D model |
---|
427 | c ============================ |
---|
428 | |
---|
429 | c IF (n_lon .EQ. 1) THEN |
---|
430 | c PRINT*,'Save output sedim' |
---|
431 | c DO l = 1, n_lev |
---|
432 | c DO ig=1,n_lon |
---|
433 | c WRITE(77,"(i4,','11(e15.8,','))") l,pdqsed(ig,l),zqi(ig,l), |
---|
434 | c & (WH2SO4(ig,l)*pq(ig,l,i_h2so4liq)+ |
---|
435 | c & (1.-WH2SO4(ig,l))*pq(ig,l,i_h2oliq)), |
---|
436 | c & pq(ig,l,i_h2so4liq),pq(ig,l,i_h2oliq) |
---|
437 | c ENDDO |
---|
438 | c ENDDO |
---|
439 | c ENDIF |
---|
440 | |
---|
441 | RETURN |
---|
442 | END |
---|
443 | |
---|
444 | ******************************************************************************* |
---|
445 | REAL FUNCTION VISCOSITY_CO2(temp) |
---|
446 | c Aurélien Stolzenbach 2015 |
---|
447 | c Calcul de la viscosité dynamique du CO2 80°K -> 300°K |
---|
448 | c Viscosité dynamique en Pa.s |
---|
449 | c Source: Johnston & Grilly (1942) |
---|
450 | |
---|
451 | c température en °K |
---|
452 | REAL, INTENT(IN) :: temp |
---|
453 | |
---|
454 | REAL :: denom, numer |
---|
455 | |
---|
456 | c Calcul de la viscosité dynamique grâce à la formule de Jones (Lennard-Jones (1924)) |
---|
457 | |
---|
458 | numer = 200.**(2.27/4.27)-0.435 |
---|
459 | denom = temp**(2.27/4.27)-0.435 |
---|
460 | |
---|
461 | VISCOSITY_CO2 = (numer/denom)*1015.*(temp/200.)**(3./2.) |
---|
462 | |
---|
463 | c convertion de Poises*1e7 -> Pa.s |
---|
464 | VISCOSITY_CO2 = VISCOSITY_CO2*1.e-8 |
---|
465 | |
---|
466 | END FUNCTION VISCOSITY_CO2 |
---|
467 | ******************************************************************************* |
---|
468 | |
---|
469 | |
---|