[3] | 1 | subroutine aaam_bud (iam,nlon,nlev,rjour,rsec, |
---|
| 2 | i rea,rg,ome, |
---|
| 3 | i plat,plon,phis, |
---|
| 4 | i dragu,liftu,clu, |
---|
| 5 | i dragv,liftv,clv, |
---|
| 6 | i p, u, v) |
---|
| 7 | c |
---|
[101] | 8 | use dimphy |
---|
[1530] | 9 | use mod_grid_phy_lmdz, only: nbp_lon, nbp_lat, klon_glo |
---|
[3] | 10 | implicit none |
---|
| 11 | c====================================================================== |
---|
| 12 | c Auteur(s): F.Lott (LMD/CNRS) date: 20031020 |
---|
| 13 | c Object: Compute different terms of the axial AAAM Budget. |
---|
| 14 | C No outputs, every AAM quantities are written on the IAM |
---|
| 15 | C File. |
---|
| 16 | C WARNING: Only valid for regular rectangular grids. |
---|
| 17 | C REMARK: CALL DANS PHYSIQ AFTER lift_noro: |
---|
| 18 | C CALL aaam_bud (27,klon,klev,rjourvrai,gmtime, |
---|
| 19 | C C ra,rg,romega, |
---|
| 20 | C C rlat,rlon,pphis, |
---|
| 21 | C C zustrdr,zustrli,zustrcl, |
---|
| 22 | C C zvstrdr,zvstrli,zvstrcl, |
---|
| 23 | C C paprs,u,v) |
---|
| 24 | C |
---|
| 25 | C====================================================================== |
---|
| 26 | c Explicit Arguments: |
---|
| 27 | c ================== |
---|
| 28 | c iam-----input-I-File number where AAMs and torques are written |
---|
| 29 | c It is a formatted file that has been opened |
---|
| 30 | c in physiq.F |
---|
| 31 | c nlon----input-I-Total number of horizontal points that get into physics |
---|
| 32 | c nlev----input-I-Number of vertical levels |
---|
| 33 | c rjour---input-R-Jour compte depuis le debut de la simu (run.def) |
---|
| 34 | c rsec----input-R-Seconde de la journee |
---|
| 35 | c rea-----input-R-Earth radius |
---|
| 36 | c rg------input-R-gravity constant |
---|
| 37 | c ome-----input-R-Earth rotation rate |
---|
| 38 | c plat ---input-R-Latitude en degres |
---|
| 39 | c plon ---input-R-Longitude en degres |
---|
| 40 | c phis ---input-R-Geopotential at the ground |
---|
| 41 | c dragu---input-R-orodrag stress (zonal) |
---|
| 42 | c liftu---input-R-orolift stress (zonal) |
---|
| 43 | c clu-----input-R-Boundary layer stress (zonal) |
---|
| 44 | c dragv---input-R-orodrag stress (Meridional) |
---|
| 45 | c liftv---input-R-orolift stress (Meridional) |
---|
| 46 | c clv-----input-R-Boundary layer stress (Meridional) |
---|
| 47 | c p-------input-R-Pressure (Pa) at model half levels |
---|
| 48 | c u-------input-R-Horizontal wind (m/s) |
---|
| 49 | c v-------input-R-Meridional wind (m/s) |
---|
| 50 | c |
---|
| 51 | c |
---|
| 52 | c Implicit Arguments: |
---|
| 53 | c =================== |
---|
| 54 | c |
---|
[1530] | 55 | c nbp_lon--common-I: Number of longitude intervals |
---|
| 56 | c nbp_lat-1--common-I: Number of latitude intervals |
---|
[3] | 57 | c klon-common-I: Number of points seen by the physics |
---|
[1530] | 58 | c nbp_lon*(nbp_lat-1-1)+2 for instance |
---|
[3] | 59 | c klev-common-I: Number of vertical layers |
---|
| 60 | c====================================================================== |
---|
| 61 | c Local Variables: |
---|
| 62 | c ================ |
---|
| 63 | c dlat-----R: Latitude increment (Radians) |
---|
| 64 | c dlon-----R: Longitude increment (Radians) |
---|
| 65 | c raam ---R: Wind AAM (3 Components, 1 & 2 Equatoriales; 3 Axiale) |
---|
| 66 | c oaam ---R: Mass AAM (3 Components, 1 & 2 Equatoriales; 3 Axiale) |
---|
| 67 | c tmou-----R: Resolved Mountain torque (3 components) |
---|
| 68 | c tsso-----R: Parameterised Moutain drag torque (3 components) |
---|
| 69 | c tbls-----R: Parameterised Boundary layer torque (3 components) |
---|
| 70 | c |
---|
| 71 | c LOCAL ARRAY: |
---|
| 72 | c =========== |
---|
| 73 | c zs ---R: Topographic height |
---|
| 74 | c ps ---R: Surface Pressure |
---|
| 75 | c ub ---R: Barotropic wind zonal |
---|
| 76 | c vb ---R: Barotropic wind meridional |
---|
| 77 | c zlat ---R: Latitude in radians |
---|
| 78 | c zlon ---R: Longitude in radians |
---|
| 79 | c====================================================================== |
---|
| 80 | |
---|
| 81 | c |
---|
| 82 | c ARGUMENTS |
---|
| 83 | c |
---|
| 84 | INTEGER iam,nlon,nlev |
---|
| 85 | REAL rjour,rsec,rea,rg,ome |
---|
| 86 | REAL plat(nlon),plon(nlon),phis(nlon) |
---|
| 87 | REAL dragu(nlon),liftu(nlon),clu(nlon) |
---|
| 88 | REAL dragv(nlon),liftv(nlon),clv(nlon) |
---|
| 89 | REAL p(nlon,nlev+1), u(nlon,nlev), v(nlon,nlev) |
---|
| 90 | c |
---|
| 91 | c Variables locales: |
---|
| 92 | c |
---|
| 93 | INTEGER i,j,k,l |
---|
| 94 | REAL xpi,hadley,hadday |
---|
| 95 | REAL dlat,dlon |
---|
| 96 | REAL raam(3),oaam(3),tmou(3),tsso(3),tbls(3) |
---|
| 97 | integer iax |
---|
| 98 | |
---|
| 99 | |
---|
| 100 | REAL ZS(801,401),PS(801,401) |
---|
| 101 | REAL UB(801,401),VB(801,401) |
---|
| 102 | REAL SSOU(801,401),SSOV(801,401) |
---|
| 103 | REAL BLSU(801,401),BLSV(801,401) |
---|
| 104 | REAL ZLON(801),ZLAT(401) |
---|
| 105 | C |
---|
| 106 | C PUT AAM QUANTITIES AT ZERO: |
---|
| 107 | C |
---|
[1530] | 108 | if(nbp_lon+1.gt.801.or.nbp_lat.gt.401)then |
---|
[3] | 109 | print *,' Pb de dimension dans aaam_bud' |
---|
| 110 | stop |
---|
| 111 | endif |
---|
| 112 | |
---|
| 113 | xpi=acos(-1.) |
---|
| 114 | hadley=1.e18 |
---|
| 115 | hadday=1.e18*1.e7 |
---|
[1530] | 116 | IF (klon_glo.EQ.1) THEN |
---|
| 117 | dlat=xpi |
---|
| 118 | ELSE |
---|
| 119 | dlat=xpi/float(nbp_lat-1) |
---|
| 120 | ENDIF |
---|
| 121 | dlon=2.*xpi/float(nbp_lon) |
---|
[3] | 122 | |
---|
| 123 | do iax=1,3 |
---|
| 124 | oaam(iax)=0. |
---|
| 125 | raam(iax)=0. |
---|
| 126 | tmou(iax)=0. |
---|
| 127 | tsso(iax)=0. |
---|
| 128 | tbls(iax)=0. |
---|
| 129 | enddo |
---|
| 130 | |
---|
| 131 | C MOUNTAIN HEIGHT, PRESSURE AND BAROTROPIC WIND: |
---|
| 132 | |
---|
| 133 | C North pole values (j=1): |
---|
| 134 | |
---|
| 135 | l=1 |
---|
| 136 | |
---|
| 137 | ub(1,1)=0. |
---|
| 138 | vb(1,1)=0. |
---|
| 139 | do k=1,nlev |
---|
| 140 | ub(1,1)=ub(1,1)+u(l,k)*(p(l,k)-p(l,k+1))/rg |
---|
| 141 | vb(1,1)=vb(1,1)+v(l,k)*(p(l,k)-p(l,k+1))/rg |
---|
| 142 | enddo |
---|
| 143 | |
---|
| 144 | zlat(1)=plat(l)*xpi/180. |
---|
| 145 | |
---|
[1530] | 146 | do i=1,nbp_lon+1 |
---|
[3] | 147 | |
---|
| 148 | zs(i,1)=phis(l)/rg |
---|
| 149 | ps(i,1)=p(l,1) |
---|
| 150 | ub(i,1)=ub(1,1) |
---|
| 151 | vb(i,1)=vb(1,1) |
---|
| 152 | ssou(i,1)=dragu(l)+liftu(l) |
---|
| 153 | ssov(i,1)=dragv(l)+liftv(l) |
---|
| 154 | blsu(i,1)=clu(l) |
---|
| 155 | blsv(i,1)=clv(l) |
---|
| 156 | |
---|
| 157 | enddo |
---|
| 158 | |
---|
| 159 | |
---|
[1530] | 160 | do j = 2,nbp_lat-1 |
---|
[3] | 161 | |
---|
| 162 | C Values at Greenwich (Periodicity) |
---|
| 163 | |
---|
[1530] | 164 | zs(nbp_lon+1,j)=phis(l+1)/rg |
---|
| 165 | ps(nbp_lon+1,j)=p(l+1,1) |
---|
| 166 | ssou(nbp_lon+1,j)=dragu(l+1)+liftu(l+1) |
---|
| 167 | ssov(nbp_lon+1,j)=dragv(l+1)+liftv(l+1) |
---|
| 168 | blsu(nbp_lon+1,j)=clu(l+1) |
---|
| 169 | blsv(nbp_lon+1,j)=clv(l+1) |
---|
| 170 | zlon(nbp_lon+1)=-plon(l+1)*xpi/180. |
---|
[3] | 171 | zlat(j)=plat(l+1)*xpi/180. |
---|
| 172 | |
---|
[1530] | 173 | ub(nbp_lon+1,j)=0. |
---|
| 174 | vb(nbp_lon+1,j)=0. |
---|
[3] | 175 | do k=1,nlev |
---|
[1530] | 176 | ub(nbp_lon+1,j)=ub(nbp_lon+1,j)+u(l+1,k)* |
---|
| 177 | & (p(l+1,k)-p(l+1,k+1))/rg |
---|
| 178 | vb(nbp_lon+1,j)=vb(nbp_lon+1,j)+v(l+1,k)* |
---|
| 179 | & (p(l+1,k)-p(l+1,k+1))/rg |
---|
[3] | 180 | enddo |
---|
| 181 | |
---|
| 182 | |
---|
[1530] | 183 | do i=1,nbp_lon |
---|
[3] | 184 | |
---|
| 185 | l=l+1 |
---|
| 186 | zs(i,j)=phis(l)/rg |
---|
| 187 | ps(i,j)=p(l,1) |
---|
| 188 | ssou(i,j)=dragu(l)+liftu(l) |
---|
| 189 | ssov(i,j)=dragv(l)+liftv(l) |
---|
| 190 | blsu(i,j)=clu(l) |
---|
| 191 | blsv(i,j)=clv(l) |
---|
| 192 | zlon(i)=plon(l)*xpi/180. |
---|
| 193 | |
---|
| 194 | ub(i,j)=0. |
---|
| 195 | vb(i,j)=0. |
---|
| 196 | do k=1,nlev |
---|
| 197 | ub(i,j)=ub(i,j)+u(l,k)*(p(l,k)-p(l,k+1))/rg |
---|
| 198 | vb(i,j)=vb(i,j)+v(l,k)*(p(l,k)-p(l,k+1))/rg |
---|
| 199 | enddo |
---|
| 200 | |
---|
| 201 | enddo |
---|
| 202 | |
---|
| 203 | enddo |
---|
| 204 | |
---|
| 205 | |
---|
| 206 | C South Pole |
---|
| 207 | |
---|
| 208 | l=l+1 |
---|
[1530] | 209 | ub(1,nbp_lat)=0. |
---|
| 210 | vb(1,nbp_lat)=0. |
---|
[3] | 211 | do k=1,nlev |
---|
[1530] | 212 | ub(1,nbp_lat)=ub(1,nbp_lat)+u(l,k)*(p(l,k)-p(l,k+1))/rg |
---|
| 213 | vb(1,nbp_lat)=vb(1,nbp_lat)+v(l,k)*(p(l,k)-p(l,k+1))/rg |
---|
[3] | 214 | enddo |
---|
[1530] | 215 | zlat(nbp_lat)=plat(l)*xpi/180. |
---|
[3] | 216 | |
---|
[1530] | 217 | do i=1,nbp_lon+1 |
---|
| 218 | zs(i,nbp_lat)=phis(l)/rg |
---|
| 219 | ps(i,nbp_lat)=p(l,1) |
---|
| 220 | ssou(i,nbp_lat)=dragu(l)+liftu(l) |
---|
| 221 | ssov(i,nbp_lat)=dragv(l)+liftv(l) |
---|
| 222 | blsu(i,nbp_lat)=clu(l) |
---|
| 223 | blsv(i,nbp_lat)=clv(l) |
---|
| 224 | ub(i,nbp_lat)=ub(1,nbp_lat) |
---|
| 225 | vb(i,nbp_lat)=vb(1,nbp_lat) |
---|
[3] | 226 | enddo |
---|
| 227 | |
---|
| 228 | C |
---|
| 229 | C MOMENT ANGULAIRE |
---|
| 230 | C |
---|
[1530] | 231 | DO j=1,nbp_lat-1 |
---|
| 232 | DO i=1,nbp_lon |
---|
[3] | 233 | |
---|
| 234 | raam(1)=raam(1)-rea**3*dlon*dlat*0.5* |
---|
| 235 | c (cos(zlon(i ))*sin(zlat(j ))*cos(zlat(j ))*ub(i ,j ) |
---|
| 236 | c +cos(zlon(i ))*sin(zlat(j+1))*cos(zlat(j+1))*ub(i ,j+1)) |
---|
| 237 | c +rea**3*dlon*dlat*0.5* |
---|
| 238 | c (sin(zlon(i ))*cos(zlat(j ))*vb(i ,j ) |
---|
| 239 | c +sin(zlon(i ))*cos(zlat(j+1))*vb(i ,j+1)) |
---|
| 240 | |
---|
| 241 | oaam(1)=oaam(1)-ome*rea**4*dlon*dlat/rg*0.5* |
---|
| 242 | c (cos(zlon(i ))*cos(zlat(j ))**2*sin(zlat(j ))*ps(i ,j ) |
---|
| 243 | c +cos(zlon(i ))*cos(zlat(j+1))**2*sin(zlat(j+1))*ps(i ,j+1)) |
---|
| 244 | |
---|
| 245 | raam(2)=raam(2)-rea**3*dlon*dlat*0.5* |
---|
| 246 | c (sin(zlon(i ))*sin(zlat(j ))*cos(zlat(j ))*ub(i ,j ) |
---|
| 247 | c +sin(zlon(i ))*sin(zlat(j+1))*cos(zlat(j+1))*ub(i ,j+1)) |
---|
| 248 | c -rea**3*dlon*dlat*0.5* |
---|
| 249 | c (cos(zlon(i ))*cos(zlat(j ))*vb(i ,j ) |
---|
| 250 | c +cos(zlon(i ))*cos(zlat(j+1))*vb(i ,j+1)) |
---|
| 251 | |
---|
| 252 | oaam(2)=oaam(2)-ome*rea**4*dlon*dlat/rg*0.5* |
---|
| 253 | c (sin(zlon(i ))*cos(zlat(j ))**2*sin(zlat(j ))*ps(i ,j ) |
---|
| 254 | c +sin(zlon(i ))*cos(zlat(j+1))**2*sin(zlat(j+1))*ps(i ,j+1)) |
---|
| 255 | |
---|
| 256 | raam(3)=raam(3)+rea**3*dlon*dlat*0.5* |
---|
| 257 | c (cos(zlat(j))**2*ub(i,j)+cos(zlat(j+1))**2*ub(i,j+1)) |
---|
| 258 | |
---|
| 259 | oaam(3)=oaam(3)+ome*rea**4*dlon*dlat/rg*0.5* |
---|
| 260 | c (cos(zlat(j))**3*ps(i,j)+cos(zlat(j+1))**3*ps(i,j+1)) |
---|
| 261 | |
---|
| 262 | ENDDO |
---|
| 263 | ENDDO |
---|
| 264 | |
---|
| 265 | C |
---|
| 266 | C COUPLE DES MONTAGNES: |
---|
| 267 | C |
---|
| 268 | |
---|
[1530] | 269 | DO j=1,nbp_lat-1 |
---|
| 270 | DO i=1,nbp_lon |
---|
[3] | 271 | tmou(1)=tmou(1)-rea**2*dlon*0.5*sin(zlon(i)) |
---|
| 272 | c *(zs(i,j)-zs(i,j+1)) |
---|
| 273 | c *(cos(zlat(j+1))*ps(i,j+1)+cos(zlat(j))*ps(i,j)) |
---|
| 274 | tmou(2)=tmou(2)+rea**2*dlon*0.5*cos(zlon(i)) |
---|
| 275 | c *(zs(i,j)-zs(i,j+1)) |
---|
| 276 | c *(cos(zlat(j+1))*ps(i,j+1)+cos(zlat(j))*ps(i,j)) |
---|
| 277 | ENDDO |
---|
| 278 | ENDDO |
---|
| 279 | |
---|
[1530] | 280 | DO j=2,nbp_lat-1 |
---|
| 281 | DO i=1,nbp_lon |
---|
[3] | 282 | tmou(1)=tmou(1)+rea**2*dlat*0.5*sin(zlat(j)) |
---|
| 283 | c *(zs(i+1,j)-zs(i,j)) |
---|
| 284 | c *(cos(zlon(i+1))*ps(i+1,j)+cos(zlon(i))*ps(i,j)) |
---|
| 285 | tmou(2)=tmou(2)+rea**2*dlat*0.5*sin(zlat(j)) |
---|
| 286 | c *(zs(i+1,j)-zs(i,j)) |
---|
| 287 | c *(sin(zlon(i+1))*ps(i+1,j)+sin(zlon(i))*ps(i,j)) |
---|
| 288 | tmou(3)=tmou(3)-rea**2*dlat*0.5* |
---|
| 289 | c cos(zlat(j))*(zs(i+1,j)-zs(i,j))*(ps(i+1,j)+ps(i,j)) |
---|
| 290 | ENDDO |
---|
| 291 | ENDDO |
---|
| 292 | C |
---|
| 293 | C COUPLES DES DIFFERENTES FRICTION AU SOL: |
---|
| 294 | C |
---|
| 295 | l=1 |
---|
[1530] | 296 | DO j=2,nbp_lat-1 |
---|
| 297 | DO i=1,nbp_lon |
---|
[3] | 298 | l=l+1 |
---|
| 299 | tsso(1)=tsso(1)-rea**3*cos(zlat(j))*dlon*dlat* |
---|
| 300 | c ssou(i,j) *sin(zlat(j))*cos(zlon(i)) |
---|
| 301 | c +rea**3*cos(zlat(j))*dlon*dlat* |
---|
| 302 | c ssov(i,j) *sin(zlon(i)) |
---|
| 303 | |
---|
| 304 | tsso(2)=tsso(2)-rea**3*cos(zlat(j))*dlon*dlat* |
---|
| 305 | c ssou(i,j) *sin(zlat(j))*sin(zlon(i)) |
---|
| 306 | c -rea**3*cos(zlat(j))*dlon*dlat* |
---|
| 307 | c ssov(i,j) *cos(zlon(i)) |
---|
| 308 | |
---|
| 309 | tsso(3)=tsso(3)+rea**3*cos(zlat(j))*dlon*dlat* |
---|
| 310 | c ssou(i,j) *cos(zlat(j)) |
---|
| 311 | |
---|
| 312 | tbls(1)=tbls(1)-rea**3*cos(zlat(j))*dlon*dlat* |
---|
| 313 | c blsu(i,j) *sin(zlat(j))*cos(zlon(i)) |
---|
| 314 | c +rea**3*cos(zlat(j))*dlon*dlat* |
---|
| 315 | c blsv(i,j) *sin(zlon(i)) |
---|
| 316 | |
---|
| 317 | tbls(2)=tbls(2)-rea**3*cos(zlat(j))*dlon*dlat* |
---|
| 318 | c blsu(i,j) *sin(zlat(j))*sin(zlon(i)) |
---|
| 319 | c -rea**3*cos(zlat(j))*dlon*dlat* |
---|
| 320 | c blsv(i,j) *cos(zlon(i)) |
---|
| 321 | |
---|
| 322 | tbls(3)=tbls(3)+rea**3*cos(zlat(j))*dlon*dlat* |
---|
| 323 | c blsu(i,j) *cos(zlat(j)) |
---|
| 324 | |
---|
| 325 | ENDDO |
---|
| 326 | ENDDO |
---|
| 327 | |
---|
| 328 | |
---|
| 329 | c write(*,*) 'AAM',rsec, |
---|
| 330 | c c raam(3)/hadday,oaam(3)/hadday, |
---|
| 331 | c c tmou(3)/hadley,tsso(3)/hadley,tbls(3)/hadley |
---|
| 332 | |
---|
| 333 | write(iam,100)rjour+rsec/1.e7, |
---|
| 334 | c c raam(1)/hadday,oaam(1)/hadday, |
---|
| 335 | c c tmou(1)/hadley,tsso(1)/hadley,tbls(1)/hadley, |
---|
| 336 | c c raam(2)/hadday,oaam(2)/hadday, |
---|
| 337 | c c tmou(2)/hadley,tsso(2)/hadley,tbls(2)/hadley, |
---|
| 338 | c raam(3)/hadday,oaam(3)/hadday, |
---|
| 339 | c tmou(3)/hadley,tsso(3)/hadley,tbls(3)/hadley |
---|
| 340 | c100 format(F12.5,15(1x,F12.5)) |
---|
| 341 | 100 format(F12.5,5(1x,F12.5)) |
---|
| 342 | |
---|
[1530] | 343 | write(iam+1,*)((zs(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
| 344 | write(iam+1,*)((ps(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
| 345 | write(iam+1,*)((ub(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
| 346 | write(iam+1,*)((vb(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
| 347 | write(iam+1,*)((ssou(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
| 348 | write(iam+1,*)((ssov(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
| 349 | write(iam+1,*)((blsu(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
| 350 | write(iam+1,*)((blsv(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
[3] | 351 | |
---|
| 352 | RETURN |
---|
| 353 | END |
---|