[2279] | 1 | ## $Header$ |
---|
[5] | 2 | # |
---|
[2279] | 3 | ## Include diurnal cycle or not |
---|
[6] | 4 | cycle_diurne=y |
---|
[2279] | 5 | ## Include soil model or not |
---|
[6] | 6 | soil_model=y |
---|
[2279] | 7 | ## Use orodr or not for orography |
---|
[6] | 8 | ok_orodr=n |
---|
[2279] | 9 | ## Use orolf or not for orography |
---|
[6] | 10 | ok_orolf=n |
---|
[2279] | 11 | ## Use non-orographic Gravity Waves of not |
---|
| 12 | ok_gw_nonoro=y |
---|
| 13 | ## Number of calls to the radiative transfer (per day) |
---|
| 14 | nbapp_rad=24000 |
---|
| 15 | ## Number of calls to the chemistry routines (per day) |
---|
[3191] | 16 | nbapp_chem=24000 |
---|
[2279] | 17 | ## Flag for convection : 1 pour LMD, 2 pour Tiedtke, 3 KE(new version JYG), 30 KE(version IPCC AR4), 4 KE vect |
---|
[6] | 18 | iflag_con=0 |
---|
[5] | 19 | # |
---|
[2279] | 20 | # orbital parameters |
---|
| 21 | ##~~~~~~~~~~~~~~~~~~ |
---|
[6] | 22 | # |
---|
[5] | 23 | # VENUS ## |
---|
| 24 | # R_ecc = 0.006787 |
---|
| 25 | R_ecc = 0. |
---|
| 26 | R_peri = 0. |
---|
| 27 | # R_incl = 177.4 |
---|
| 28 | R_incl = 0. |
---|
[2279] | 29 | # solar: effective flux, given at 1 UA |
---|
[5] | 30 | solaire = 328. |
---|
| 31 | # |
---|
[1160] | 32 | # parameters for the tracers |
---|
[1310] | 33 | ##~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1160] | 34 | # |
---|
| 35 | # 0: nothing (passive tracers) |
---|
| 36 | # 1: pseudo-chemistry relaxation (phytrac_relax) |
---|
| 37 | # 2: surface emission (phytrac_emiss) |
---|
| 38 | # 3: full chemistry (phytrac_chem) |
---|
[2279] | 39 | tr_scheme = 3 |
---|
[1160] | 40 | # |
---|
[2279] | 41 | # Reinitialization of tracer abundances |
---|
| 42 | reinit_trac=n |
---|
| 43 | # |
---|
[1305] | 44 | # parameters for chemistry and microphysics |
---|
[2279] | 45 | ##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1305] | 46 | # |
---|
[2279] | 47 | # use chemistry ? |
---|
| 48 | ok_chem=y |
---|
[3191] | 49 | |
---|
| 50 | ## include photolysis j online calculated or not |
---|
| 51 | ok_jonline = y |
---|
| 52 | |
---|
[2279] | 53 | # use clouds ? (needed for chemistry) |
---|
| 54 | ok_cloud=y |
---|
| 55 | # if yes, which scheme: |
---|
| 56 | # 1 => simple scheme (Aurelien Stolzenbach) |
---|
| 57 | # 2 => full microphysical scheme (Sabrina Guilbon) |
---|
| 58 | cl_scheme=1 |
---|
| 59 | # use sedimentation (goes with clouds) |
---|
| 60 | ok_sedim=y |
---|
| 61 | nb_mode=3 |
---|
[1305] | 62 | # |
---|
[2279] | 63 | # parameters for the boundary layer |
---|
| 64 | ##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[5] | 65 | # |
---|
| 66 | iflag_pbl=8 |
---|
| 67 | z0 = 0.01 |
---|
| 68 | lmixmin = 35. |
---|
| 69 | ksta = 1.e-7 |
---|
| 70 | ok_kzmin=n |
---|
| 71 | # |
---|
[2279] | 72 | # Surface thermal inertia |
---|
[5] | 73 | inertie=2000 |
---|
| 74 | # |
---|
[2279] | 75 | # dry convection parameters |
---|
[1310] | 76 | ##~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[5] | 77 | # |
---|
| 78 | iflag_ajs = 1 |
---|
[2560] | 79 | |
---|
| 80 | # Solar radiation module |
---|
| 81 | ##~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 82 | ## 1 = Rainer Haus Tables |
---|
| 83 | ## 2 = Generic solar module |
---|
[1310] | 84 | # |
---|
[2560] | 85 | solarchoice=1 |
---|
| 86 | |
---|
[2279] | 87 | # Thermosphere and nlte parameters |
---|
| 88 | ##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1310] | 89 | # |
---|
[2279] | 90 | ## Compute non-LTE or not |
---|
| 91 | callnlte=y |
---|
| 92 | ## choice of species profile to use |
---|
[1310] | 93 | nltemodel=2 |
---|
[2279] | 94 | ## Compute CO2 IR absorption or not |
---|
| 95 | callnirco2=y |
---|
| 96 | ##CO2 IR Absorption model |
---|
[2580] | 97 | nircorr=0 |
---|
[2279] | 98 | ##include thermosphere or not |
---|
| 99 | callthermos=y |
---|
[5] | 100 | |
---|
[1310] | 101 | ## Thermospheric options |
---|
[2279] | 102 | ##~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2580] | 103 | ## Tuning of photochemistry for oxygen production ? |
---|
[3191] | 104 | tuneupperatm = n |
---|
[2580] | 105 | |
---|
[1310] | 106 | #Method to include solar variability? |
---|
| 107 | #0-> Old method 1-> Variability with E10.7 as observed |
---|
| 108 | solvarmod=0 |
---|
| 109 | |
---|
[2580] | 110 | ## (Solar min=70 ave=140 max=300) |
---|
[2465] | 111 | fixed_euv_value = 140. |
---|
[1310] | 112 | |
---|
| 113 | # value for the UV heating efficiency |
---|
| 114 | ##(experimental values between 0.19 and 0.23, lower values may |
---|
| 115 | ## be used to compensate for low 15 um cooling) |
---|
[3191] | 116 | euveff = 0.195 |
---|
[2279] | 117 | # |
---|
| 118 | # |
---|
| 119 | # |
---|
| 120 | # |
---|
| 121 | # Parameters for IOIPSL output files |
---|
| 122 | ##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 123 | ## OLD. Now we use XIOS => see context_lmdz_physics.xml to taylor the output files |
---|
| 124 | # |
---|
| 125 | ### OK_journe= y for daily output file histday.nc, =n no histday.nc output |
---|
| 126 | ### Meaningless for Venus |
---|
| 127 | OK_journe=n |
---|
| 128 | ### OK_mensuel= y for monthly output file histmth.nc, =n no histmth.nc |
---|
| 129 | ### For Venus, only these averaged outputs |
---|
| 130 | OK_mensuel=n |
---|
| 131 | ## rate (in days) at which the Venus histmth file is to be written |
---|
| 132 | # sets the output rate in histmth and/or histins |
---|
| 133 | ecritphy=0.1 |
---|
| 134 | ### OK_instan=y, make some "instantaneous" outputs (same rate as histmth) |
---|
| 135 | OK_instan=n |
---|
| 136 | # |
---|
| 137 | # Output levels for the various output files |
---|
| 138 | # |
---|
| 139 | # output level for "day" lev_histday |
---|
| 140 | # - lev_hist*=1 => baseline 2D fields |
---|
| 141 | # - lev_hist*=2 => baseline 3D fields (default) |
---|
| 142 | # - lev_hist*=3 => radiative transfert |
---|
| 143 | # - lev_hist*=4 => 3D tendencies |
---|
| 144 | # - lev_hist*=5 => tracers and others |
---|
| 145 | lev_histday=2 |
---|
| 146 | #output level for "mth" lev_histmth |
---|
| 147 | lev_histmth=2 |
---|
| 148 | #output level for "ins" lev_histins |
---|
| 149 | lev_histins=2 |
---|
[1310] | 150 | |
---|