[2279] | 1 | ## $Header$ |
---|
[5] | 2 | # |
---|
[2279] | 3 | ## Include diurnal cycle or not |
---|
[6] | 4 | cycle_diurne=y |
---|
[2279] | 5 | ## Include soil model or not |
---|
[6] | 6 | soil_model=y |
---|
[2279] | 7 | ## Use orodr or not for orography |
---|
[6] | 8 | ok_orodr=n |
---|
[2279] | 9 | ## Use orolf or not for orography |
---|
[6] | 10 | ok_orolf=n |
---|
[2279] | 11 | ## Use non-orographic Gravity Waves of not |
---|
[6] | 12 | ok_gw_nonoro=n |
---|
[2279] | 13 | ## Number of calls to the radiative transfer (per day) |
---|
| 14 | nbapp_rad=24000 |
---|
| 15 | ## Number of calls to the chemistry routines (per day) |
---|
[6] | 16 | nbapp_chim=1 |
---|
[2279] | 17 | ## Flag for convection : 1 pour LMD, 2 pour Tiedtke, 3 KE(new version JYG), 30 KE(version IPCC AR4), 4 KE vect |
---|
[6] | 18 | iflag_con=0 |
---|
[5] | 19 | # |
---|
[2279] | 20 | # orbital parameters |
---|
| 21 | ##~~~~~~~~~~~~~~~~~~ |
---|
[6] | 22 | # |
---|
[5] | 23 | # VENUS ## |
---|
| 24 | # R_ecc = 0.006787 |
---|
| 25 | R_ecc = 0. |
---|
| 26 | R_peri = 0. |
---|
| 27 | # R_incl = 177.4 |
---|
| 28 | R_incl = 0. |
---|
[2279] | 29 | # solar: effective flux, given at 1 UA |
---|
[5] | 30 | solaire = 328. |
---|
| 31 | # |
---|
[1160] | 32 | # parameters for the tracers |
---|
[1310] | 33 | ##~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1160] | 34 | # |
---|
| 35 | # 0: nothing (passive tracers) |
---|
| 36 | # 1: pseudo-chemistry relaxation (phytrac_relax) |
---|
| 37 | # 2: surface emission (phytrac_emiss) |
---|
| 38 | # 3: full chemistry (phytrac_chem) |
---|
[2279] | 39 | tr_scheme = 3 |
---|
[1160] | 40 | # |
---|
[2279] | 41 | # Reinitialization of tracer abundances |
---|
| 42 | reinit_trac=n |
---|
| 43 | # |
---|
[1305] | 44 | # parameters for chemistry and microphysics |
---|
[2279] | 45 | ##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1305] | 46 | # |
---|
[2279] | 47 | # use chemistry ? |
---|
| 48 | ok_chem=y |
---|
| 49 | # use clouds ? (needed for chemistry) |
---|
| 50 | ok_cloud=y |
---|
| 51 | # if yes, which scheme: |
---|
| 52 | # 1 => simple scheme (Aurelien Stolzenbach) |
---|
| 53 | # 2 => full microphysical scheme (Sabrina Guilbon) |
---|
| 54 | cl_scheme=1 |
---|
| 55 | # use sedimentation (goes with clouds) |
---|
| 56 | ok_sedim=y |
---|
| 57 | nb_mode=3 |
---|
[1305] | 58 | # |
---|
[2279] | 59 | # parameters for the boundary layer |
---|
| 60 | ##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[5] | 61 | # |
---|
| 62 | iflag_pbl=8 |
---|
| 63 | z0 = 0.01 |
---|
| 64 | lmixmin = 35. |
---|
| 65 | ksta = 1.e-7 |
---|
| 66 | ok_kzmin=n |
---|
| 67 | # |
---|
[2279] | 68 | # Surface thermal inertia |
---|
[5] | 69 | inertie=2000 |
---|
| 70 | # |
---|
[2279] | 71 | # dry convection parameters |
---|
[1310] | 72 | ##~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[5] | 73 | # |
---|
| 74 | iflag_ajs = 1 |
---|
[2560] | 75 | |
---|
| 76 | # Solar radiation module |
---|
| 77 | ##~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 78 | ## 1 = Rainer Haus Tables |
---|
| 79 | ## 2 = Generic solar module |
---|
[1310] | 80 | # |
---|
[2560] | 81 | solarchoice=1 |
---|
| 82 | |
---|
[2279] | 83 | # Thermosphere and nlte parameters |
---|
| 84 | ##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1310] | 85 | # |
---|
[2279] | 86 | ## Compute non-LTE or not |
---|
[1310] | 87 | callnlte=n |
---|
[2279] | 88 | ## choice of species profile to use |
---|
[1310] | 89 | nltemodel=2 |
---|
[2279] | 90 | ## Compute CO2 IR absorption or not |
---|
[1310] | 91 | callnirco2=n |
---|
[2279] | 92 | ##CO2 IR Absorption model |
---|
[1310] | 93 | nircorr=0 |
---|
[2279] | 94 | ##include thermosphere or not |
---|
[1310] | 95 | callthermos=n |
---|
[5] | 96 | |
---|
[1310] | 97 | ## Thermospheric options |
---|
[2279] | 98 | ##~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2580] | 99 | ## Tuning of photochemistry for oxygen production ? |
---|
| 100 | tuneupperatm = n |
---|
| 101 | |
---|
[1310] | 102 | #Method to include solar variability? |
---|
| 103 | #0-> Old method 1-> Variability with E10.7 as observed |
---|
| 104 | solvarmod=0 |
---|
| 105 | |
---|
[2580] | 106 | ## (Solar min=70 ave=140 max=300) |
---|
| 107 | fixed_euv_value = 140. |
---|
[1310] | 108 | |
---|
| 109 | # value for the UV heating efficiency |
---|
| 110 | ##(experimental values between 0.19 and 0.23, lower values may |
---|
| 111 | ## be used to compensate for low 15 um cooling) |
---|
[2580] | 112 | euveff = 0.20 |
---|
[2279] | 113 | # |
---|
| 114 | # |
---|
| 115 | # |
---|
| 116 | # |
---|
| 117 | # Parameters for IOIPSL output files |
---|
| 118 | ##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 119 | ## OLD. Now we use XIOS => see context_lmdz_physics.xml to taylor the output files |
---|
| 120 | # |
---|
| 121 | ### OK_journe= y for daily output file histday.nc, =n no histday.nc output |
---|
| 122 | ### Meaningless for Venus |
---|
| 123 | OK_journe=n |
---|
| 124 | ### OK_mensuel= y for monthly output file histmth.nc, =n no histmth.nc |
---|
| 125 | ### For Venus, only these averaged outputs |
---|
| 126 | OK_mensuel=n |
---|
| 127 | ## rate (in days) at which the Venus histmth file is to be written |
---|
| 128 | # sets the output rate in histmth and/or histins |
---|
| 129 | ecritphy=0.1 |
---|
| 130 | ### OK_instan=y, make some "instantaneous" outputs (same rate as histmth) |
---|
| 131 | OK_instan=n |
---|
| 132 | # |
---|
| 133 | # Output levels for the various output files |
---|
| 134 | # |
---|
| 135 | # output level for "day" lev_histday |
---|
| 136 | # - lev_hist*=1 => baseline 2D fields |
---|
| 137 | # - lev_hist*=2 => baseline 3D fields (default) |
---|
| 138 | # - lev_hist*=3 => radiative transfert |
---|
| 139 | # - lev_hist*=4 => 3D tendencies |
---|
| 140 | # - lev_hist*=5 => tracers and others |
---|
| 141 | lev_histday=2 |
---|
| 142 | #output level for "mth" lev_histmth |
---|
| 143 | lev_histmth=2 |
---|
| 144 | #output level for "ins" lev_histins |
---|
| 145 | lev_histins=2 |
---|
[1310] | 146 | |
---|