| 1 | ## $Header$ |
|---|
| 2 | # |
|---|
| 3 | ## Planet: |
|---|
| 4 | planet_type=venus |
|---|
| 5 | # |
|---|
| 6 | ## Number of dynamical steps per day (must be a multiple of iperiod) |
|---|
| 7 | day_step=480000 |
|---|
| 8 | ## Apply a Matsuno step every iperiod dynamical step |
|---|
| 9 | iperiod=5 |
|---|
| 10 | ## dissipation is applied every dissip_period dynamical steps |
|---|
| 11 | ## DEFAULT: dissip_period=0 , meaning dissip_period is automatically computed |
|---|
| 12 | ## (in practice it is =>25 in recent runs) |
|---|
| 13 | dissip_period=5 |
|---|
| 14 | ## dissipation operator to use (star or non-star) |
|---|
| 15 | lstardis=y |
|---|
| 16 | ## iterate lateral dissipation operator gradiv nitergdiv times |
|---|
| 17 | nitergdiv=1 |
|---|
| 18 | ## iterate lateral dissipation operator nxgradrot nitergrot times |
|---|
| 19 | nitergrot=2 |
|---|
| 20 | ## iterate lateral dissipation operator divgrad niterh times |
|---|
| 21 | niterh=2 |
|---|
| 22 | ## dissipation time scale (s) for shortest wavelengths for u,v (gradiv) |
|---|
| 23 | tetagdiv=3000 |
|---|
| 24 | ## dissipation time scale (s) for shortest wavelengths for u,v (nxgradrot) |
|---|
| 25 | tetagrot=4000 |
|---|
| 26 | ## dissipation time scale (s) for shortest wavelengths for u,v (divgrad) |
|---|
| 27 | tetatemp=4000 |
|---|
| 28 | ## coefficient for gamdissip |
|---|
| 29 | coefdis=0. |
|---|
| 30 | ## time marching scheme (Matsuno if purmats is y, else Matsuno-Leapfrog) |
|---|
| 31 | purmats=n |
|---|
| 32 | # run with (true) or without (false) physics |
|---|
| 33 | physic=y |
|---|
| 34 | ## Physics package type |
|---|
| 35 | ## 0: no physics (e.g. Shallow Water mode) |
|---|
| 36 | ## 1: with physics (e.g. phyvenus physics package) |
|---|
| 37 | ## 2: with a netwonian relaxation scheme in the dynamics |
|---|
| 38 | iflag_phys=1 |
|---|
| 39 | ## run with or without initial condition files (start.nc, startphy.nc) ? |
|---|
| 40 | ## (in the without case, initialization of fields is done via the iniacademic |
|---|
| 41 | ## routine in the dynamics => not available for Venus |
|---|
| 42 | read_start=y |
|---|
| 43 | ## call physics every iphysiq dynamical steps |
|---|
| 44 | iphysiq=10 |
|---|
| 45 | ## runwith or without tracers |
|---|
| 46 | iflag_trac=0 |
|---|
| 47 | ## run with or without stratosphere // i.e. a sponge layer and secondary |
|---|
| 48 | ## higher altitude level of horizontal dissipation |
|---|
| 49 | ok_strato=y |
|---|
| 50 | ## Horizontal dissipation multipliers along the vertical |
|---|
| 51 | dissip_fac_mid=2. |
|---|
| 52 | dissip_fac_up=30. |
|---|
| 53 | # deltaz et hdelta in km |
|---|
| 54 | dissip_deltaz=20. |
|---|
| 55 | dissip_hdelta=10. |
|---|
| 56 | # pupstart in Pa |
|---|
| 57 | dissip_pupstart=1. |
|---|
| 58 | |
|---|
| 59 | ## Sponge layer |
|---|
| 60 | # 0: LMDZ.GENERIC style |
|---|
| 61 | # 1 and 2: LMDZ.EARTH style |
|---|
| 62 | # 1: in last 4 levels |
|---|
| 63 | # 2: in levels with pressure less than 100 times the last layer pressure |
|---|
| 64 | iflag_top_bound=0 |
|---|
| 65 | |
|---|
| 66 | ## sponge layer parameters LMDZ.EARTH style |
|---|
| 67 | ## Mode |
|---|
| 68 | # mode = 0 : no sponge |
|---|
| 69 | # mode = 1 : u et v -> 0 |
|---|
| 70 | # mode = 2 : u et v -> zonal average |
|---|
| 71 | # mode = 3 : u, v et h -> zonale average |
|---|
| 72 | mode_top_bound=3 |
|---|
| 73 | # Coefficient for the sponge layer (value in topmost layer) |
|---|
| 74 | tau_top_bound=1.e-4 |
|---|
| 75 | |
|---|
| 76 | # sponge layer parameters LMDZ.GENERIC style |
|---|
| 77 | callsponge=y |
|---|
| 78 | # mode_sponge ( 0: h -> h_mean , ucov -> 0 , vcov -> 0 |
|---|
| 79 | # 1: h -> h_mean , ucov -> ucov_mean , vcov -> 0 |
|---|
| 80 | # 2: h -> h_mean , ucov -> ucov_mean , vcov -> vcov_mean ) |
|---|
| 81 | mode_sponge=2 |
|---|
| 82 | # nsponge: number of topmost atmospheric layers over which extends the sponge |
|---|
| 83 | nsponge=10 |
|---|
| 84 | # tetasponge characteristic time scale (seconds) at topmost layer |
|---|
| 85 | # (time scale then doubles with decreasing layer index) |
|---|
| 86 | tetasponge=1.e4 |
|---|
| 87 | |
|---|
| 88 | ############################################### |
|---|
| 89 | ### Zoom parameters |
|---|
| 90 | ############################################### |
|---|
| 91 | ## longitude (degrees) of zoom center |
|---|
| 92 | clon=0. |
|---|
| 93 | ## latitude (degrees) of zoom center |
|---|
| 94 | clat=0. |
|---|
| 95 | ## enhancement factor of zoom, along longitudes |
|---|
| 96 | grossismx=1.0 |
|---|
| 97 | ## enhancement factor of zoom, along latitudes |
|---|
| 98 | grossismy=1.0 |
|---|
| 99 | ## Use an hyperbolic function f(y) if .true., else use a sine |
|---|
| 100 | fxyhypb=y |
|---|
| 101 | ## extention along longitudes of zoom region (fraction of global domain) |
|---|
| 102 | dzoomx=0.0 |
|---|
| 103 | ## extention along latitudes of zoom region (fraction of global domain) |
|---|
| 104 | dzoomy=0.0 |
|---|
| 105 | ## zoom stiffness along longitudes |
|---|
| 106 | taux=3. |
|---|
| 107 | ## zoom stiffness along latitudes |
|---|
| 108 | tauy=3. |
|---|
| 109 | ## Fonction f(y) as y = Sin(latitude) if = .true. , else y = latitude |
|---|
| 110 | ysinus=y |
|---|