[5] | 1 | ## $Header$ |
---|
[6] | 2 | # |
---|
[2279] | 3 | ## Planet: |
---|
[6] | 4 | planet_type=venus |
---|
| 5 | # |
---|
[2279] | 6 | ## Number of dynamical steps per day (must be a multiple of iperiod) |
---|
| 7 | day_step=240000 |
---|
| 8 | ## Apply a Matsuno step every iperiod dynamical step |
---|
[5] | 9 | iperiod=5 |
---|
[2279] | 10 | ## dissipation is applied every dissip_period dynamical steps |
---|
| 11 | ## DEFAULT: dissip_period=0 , meaning dissip_period is automatically computed |
---|
| 12 | ## (in practice it is =>25 in recent runs) |
---|
| 13 | dissip_period=5 |
---|
| 14 | ## dissipation operator to use (star or non-star) |
---|
[5] | 15 | lstardis=y |
---|
[2279] | 16 | ## iterate lateral dissipation operator gradiv nitergdiv times |
---|
[5] | 17 | nitergdiv=1 |
---|
[2279] | 18 | ## iterate lateral dissipation operator nxgradrot nitergrot times |
---|
[5] | 19 | nitergrot=2 |
---|
[2279] | 20 | ## iterate lateral dissipation operator divgrad niterh times |
---|
[5] | 21 | niterh=2 |
---|
[2279] | 22 | ## dissipation time scale (s) for shortest wavelengths for u,v (gradiv) |
---|
| 23 | tetagdiv=1.e4 |
---|
| 24 | ## dissipation time scale (s) for shortest wavelengths for u,v (nxgradrot) |
---|
| 25 | tetagrot=1.e4 |
---|
| 26 | ## dissipation time scale (s) for shortest wavelengths for u,v (divgrad) |
---|
| 27 | tetatemp=1.e4 |
---|
| 28 | ## coefficient for gamdissip |
---|
[5] | 29 | coefdis=0. |
---|
[2279] | 30 | ## time marching scheme (Matsuno if purmats is y, else Matsuno-Leapfrog) |
---|
[5] | 31 | purmats=n |
---|
[2279] | 32 | # run with (true) or without (false) physics |
---|
| 33 | physic=y |
---|
| 34 | ## Physics package type |
---|
| 35 | ## 0: no physics (e.g. Shallow Water mode) |
---|
| 36 | ## 1: with physics (e.g. phyvenus physics package) |
---|
| 37 | ## 2: with a netwonian relaxation scheme in the dynamics |
---|
[5] | 38 | iflag_phys=1 |
---|
[2279] | 39 | ## run with or without initial condition files (start.nc, startphy.nc) ? |
---|
| 40 | ## (in the without case, initialization of fields is done via the iniacademic |
---|
| 41 | ## routine in the dynamics => not available for Venus |
---|
[6] | 42 | read_start=y |
---|
[2279] | 43 | ## call physics every iphysiq dynamical steps |
---|
| 44 | iphysiq=5 |
---|
| 45 | ## runwith or without tracers |
---|
[5] | 46 | iflag_trac=0 |
---|
[2279] | 47 | ## run with or without stratosphere // i.e. a sponge layer and secondary |
---|
| 48 | ## higher altitude level of horizontal dissipation |
---|
[108] | 49 | ok_strato=y |
---|
[2279] | 50 | ## Horizontal dissipation multipliers along the vertical |
---|
[108] | 51 | dissip_fac_mid=2. |
---|
[2279] | 52 | dissip_fac_up=50. |
---|
| 53 | # deltaz et hdelta in km |
---|
| 54 | dissip_deltaz=30. |
---|
[108] | 55 | dissip_hdelta=5. |
---|
[2279] | 56 | # pupstart in Pa |
---|
| 57 | dissip_pupstart=1.e4 |
---|
[2581] | 58 | |
---|
| 59 | ## Sponge layer |
---|
| 60 | # 0: LMDZ.GENERIC style |
---|
| 61 | # 1 and 2: LMDZ.EARTH style |
---|
| 62 | # 1: in last 4 levels |
---|
| 63 | # 2: in levels with pressure less than 100 times the last layer pressure |
---|
| 64 | iflag_top_bound=0 |
---|
| 65 | |
---|
| 66 | ## sponge layer parameters LMDZ.EARTH style |
---|
| 67 | ## Mode |
---|
[2279] | 68 | # mode = 0 : no sponge |
---|
[108] | 69 | # mode = 1 : u et v -> 0 |
---|
[2279] | 70 | # mode = 2 : u et v -> zonal average |
---|
| 71 | # mode = 3 : u, v et h -> zonale average |
---|
[2581] | 72 | mode_top_bound=3 |
---|
[2279] | 73 | # Coefficient for the sponge layer (value in topmost layer) |
---|
[2581] | 74 | tau_top_bound=1.e-4 |
---|
| 75 | |
---|
| 76 | # sponge layer parameters LMDZ.GENERIC style |
---|
| 77 | callsponge=y |
---|
| 78 | # mode_sponge ( 0: h -> h_mean , ucov -> 0 , vcov -> 0 |
---|
| 79 | # 1: h -> h_mean , ucov -> ucov_mean , vcov -> 0 |
---|
| 80 | # 2: h -> h_mean , ucov -> ucov_mean , vcov -> vcov_mean ) |
---|
| 81 | mode_sponge=2 |
---|
| 82 | # nsponge: number of topmost atmospheric layers over which extends the sponge |
---|
| 83 | nsponge=10 |
---|
| 84 | # tetasponge characteristic time scale (seconds) at topmost layer |
---|
| 85 | # (time scale then doubles with decreasing layer index) |
---|
| 86 | tetasponge=1.e4 |
---|
| 87 | |
---|
[2279] | 88 | ############################################### |
---|
| 89 | ### Zoom parameters |
---|
| 90 | ############################################### |
---|
| 91 | ## longitude (degrees) of zoom center |
---|
[5] | 92 | clon=0. |
---|
[2279] | 93 | ## latitude (degrees) of zoom center |
---|
[5] | 94 | clat=0. |
---|
[2279] | 95 | ## enhancement factor of zoom, along longitudes |
---|
[5] | 96 | grossismx=1.0 |
---|
[2279] | 97 | ## enhancement factor of zoom, along latitudes |
---|
[5] | 98 | grossismy=1.0 |
---|
[2279] | 99 | ## Use an hyperbolic function f(y) if .true., else use a sine |
---|
[5] | 100 | fxyhypb=y |
---|
[2279] | 101 | ## extention along longitudes of zoom region (fraction of global domain) |
---|
[5] | 102 | dzoomx=0.0 |
---|
[2279] | 103 | ## extention along latitudes of zoom region (fraction of global domain) |
---|
[5] | 104 | dzoomy=0.0 |
---|
[2279] | 105 | ## zoom stiffness along longitudes |
---|
[5] | 106 | taux=3. |
---|
[2279] | 107 | ## zoom stiffness along latitudes |
---|
[5] | 108 | tauy=3. |
---|
[2279] | 109 | ## Fonction f(y) as y = Sin(latitude) if = .true. , else y = latitude |
---|
[5] | 110 | ysinus=y |
---|