1 | subroutine turbdiff(ngrid,nlay,nq, & |
---|
2 | ptimestep,pcapcal,lecrit, & |
---|
3 | pplay,pplev,pzlay,pzlev,pz0, & |
---|
4 | pu,pv,pt,ppopsk,pq,ptsrf,pemis,pqsurf, & |
---|
5 | pdtfi,pdqfi,pfluxsrf, & |
---|
6 | Pdudif,pdvdif,pdtdif,pdtsrf,sensibFlux,pq2, & |
---|
7 | pdqdif,pdqsdif,flux_u,flux_v,lastcall) |
---|
8 | |
---|
9 | use radcommon_h, only : sigma, glat |
---|
10 | use comcstfi_mod, only: rcp, g, r, cpp |
---|
11 | use callkeys_mod, only: tracer,nosurf |
---|
12 | |
---|
13 | implicit none |
---|
14 | |
---|
15 | !================================================================== |
---|
16 | ! |
---|
17 | ! Purpose |
---|
18 | ! ------- |
---|
19 | ! Turbulent diffusion (mixing) for pot. T, U, V and tracers |
---|
20 | ! |
---|
21 | ! Implicit scheme |
---|
22 | ! We start by adding to variables x the physical tendencies |
---|
23 | ! already computed. We resolve the equation: |
---|
24 | ! |
---|
25 | ! x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) |
---|
26 | ! |
---|
27 | ! Authors |
---|
28 | ! ------- |
---|
29 | ! F. Hourdin, F. Forget, R. Fournier (199X) |
---|
30 | ! R. Wordsworth, B. Charnay (2010) |
---|
31 | ! J. Leconte (2012): To f90 |
---|
32 | ! - Rewritten the diffusion scheme to conserve total enthalpy |
---|
33 | ! by accounting for dissipation of turbulent kinetic energy. |
---|
34 | ! - Accounting for lost mean flow kinetic energy should come soon. |
---|
35 | ! |
---|
36 | !================================================================== |
---|
37 | |
---|
38 | !----------------------------------------------------------------------- |
---|
39 | ! declarations |
---|
40 | ! ------------ |
---|
41 | |
---|
42 | ! arguments |
---|
43 | ! --------- |
---|
44 | INTEGER,INTENT(IN) :: ngrid |
---|
45 | INTEGER,INTENT(IN) :: nlay |
---|
46 | REAL,INTENT(IN) :: ptimestep |
---|
47 | REAL,INTENT(IN) :: pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
48 | REAL,INTENT(IN) :: pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) |
---|
49 | REAL,INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) |
---|
50 | REAL,INTENT(IN) :: pt(ngrid,nlay),ppopsk(ngrid,nlay) |
---|
51 | REAL,INTENT(IN) :: ptsrf(ngrid) ! surface temperature (K) |
---|
52 | REAL,INTENT(IN) :: pemis(ngrid) |
---|
53 | REAL,INTENT(IN) :: pdtfi(ngrid,nlay) |
---|
54 | REAL,INTENT(IN) :: pfluxsrf(ngrid) |
---|
55 | REAL,INTENT(OUT) :: pdudif(ngrid,nlay),pdvdif(ngrid,nlay) |
---|
56 | REAL,INTENT(OUT) :: pdtdif(ngrid,nlay) |
---|
57 | REAL,INTENT(OUT) :: pdtsrf(ngrid) ! tendency (K/s) on surface temperature |
---|
58 | REAL,INTENT(OUT) :: sensibFlux(ngrid) |
---|
59 | REAL,INTENT(IN) :: pcapcal(ngrid) |
---|
60 | REAL,INTENT(INOUT) :: pq2(ngrid,nlay+1) |
---|
61 | REAL,INTENT(OUT) :: flux_u(ngrid),flux_v(ngrid) |
---|
62 | LOGICAL,INTENT(IN) :: lastcall ! not used |
---|
63 | |
---|
64 | ! Arguments added for condensation |
---|
65 | logical,intent(in) :: lecrit ! not used. |
---|
66 | REAL,INTENT(IN) :: pz0 |
---|
67 | |
---|
68 | ! Tracers |
---|
69 | ! -------- |
---|
70 | integer,intent(in) :: nq |
---|
71 | real,intent(in) :: pqsurf(ngrid,nq) |
---|
72 | real,intent(in) :: pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) |
---|
73 | real,intent(out) :: pdqdif(ngrid,nlay,nq) |
---|
74 | real,intent(out) :: pdqsdif(ngrid,nq) |
---|
75 | |
---|
76 | ! local |
---|
77 | ! ----- |
---|
78 | integer ilev,ig,ilay,nlev |
---|
79 | |
---|
80 | REAL z4st,zdplanck(ngrid) |
---|
81 | REAL zkv(ngrid,nlay+1),zkh(ngrid,nlay+1) |
---|
82 | REAL zcdv(ngrid),zcdh(ngrid) |
---|
83 | REAL zcdv_true(ngrid),zcdh_true(ngrid) |
---|
84 | REAL zu(ngrid,nlay),zv(ngrid,nlay) |
---|
85 | REAL zh(ngrid,nlay),zt(ngrid,nlay) |
---|
86 | REAL ztsrf(ngrid) |
---|
87 | REAL z1(ngrid),z2(ngrid) |
---|
88 | REAL zmass(ngrid,nlay) |
---|
89 | REAL zfluxv(ngrid,nlay),zfluxt(ngrid,nlay),zfluxq(ngrid,nlay) |
---|
90 | REAL zb0(ngrid,nlay) |
---|
91 | REAL zExner(ngrid,nlay),zovExner(ngrid,nlay) |
---|
92 | REAL zcv(ngrid,nlay),zdv(ngrid,nlay) !inversion coefficient for winds |
---|
93 | REAL zct(ngrid,nlay),zdt(ngrid,nlay) !inversion coefficient for temperature |
---|
94 | REAL zcq(ngrid,nlay),zdq(ngrid,nlay) !inversion coefficient for tracers |
---|
95 | REAL zcst1 |
---|
96 | REAL zu2!, a |
---|
97 | REAL zcq0(ngrid),zdq0(ngrid) |
---|
98 | REAL zx_alf1(ngrid),zx_alf2(ngrid) |
---|
99 | |
---|
100 | LOGICAL,SAVE :: firstcall=.true. |
---|
101 | !$OMP THREADPRIVATE(firstcall) |
---|
102 | |
---|
103 | ! Tracers |
---|
104 | ! ------- |
---|
105 | INTEGER iq |
---|
106 | REAL zq(ngrid,nlay,nq) |
---|
107 | REAL zdmassevap(ngrid) |
---|
108 | REAL rho(ngrid) ! near-surface air density |
---|
109 | REAL kmixmin |
---|
110 | |
---|
111 | |
---|
112 | real, parameter :: karman=0.4 |
---|
113 | real cd0, roughratio |
---|
114 | |
---|
115 | real dqsdif_total(ngrid) |
---|
116 | real zq0(ngrid) |
---|
117 | |
---|
118 | |
---|
119 | ! Coherence test |
---|
120 | ! -------------- |
---|
121 | |
---|
122 | IF (firstcall) THEN |
---|
123 | |
---|
124 | sensibFlux(:)=0. |
---|
125 | |
---|
126 | firstcall=.false. |
---|
127 | ENDIF |
---|
128 | |
---|
129 | !----------------------------------------------------------------------- |
---|
130 | ! 1. Initialisation |
---|
131 | ! ----------------- |
---|
132 | |
---|
133 | nlev=nlay+1 |
---|
134 | |
---|
135 | ! Calculate rho*dz, (P/Ps)**(R/cp) and dt*rho/dz=dt*rho**2 g/dp |
---|
136 | ! with rho=p/RT=p/ (R Theta) (p/ps)**kappa |
---|
137 | ! --------------------------------------------- |
---|
138 | |
---|
139 | DO ilay=1,nlay |
---|
140 | DO ig=1,ngrid |
---|
141 | zmass(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/glat(ig) |
---|
142 | zExner(ig,ilay)=(pplev(ig,ilay)/pplev(ig,1))**rcp |
---|
143 | zovExner(ig,ilay)=1./ppopsk(ig,ilay) |
---|
144 | ENDDO |
---|
145 | ENDDO |
---|
146 | |
---|
147 | zcst1=4.*g*ptimestep/(R*R) |
---|
148 | DO ilev=2,nlev-1 |
---|
149 | DO ig=1,ngrid |
---|
150 | zb0(ig,ilev)=pplev(ig,ilev)/(pt(ig,ilev-1)+pt(ig,ilev)) |
---|
151 | zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/(pplay(ig,ilev-1)-pplay(ig,ilev)) |
---|
152 | ENDDO |
---|
153 | ENDDO |
---|
154 | DO ig=1,ngrid |
---|
155 | zb0(ig,1)=ptimestep*pplev(ig,1)/(R*ptsrf(ig)) |
---|
156 | ENDDO |
---|
157 | dqsdif_total(:)=0.0 |
---|
158 | |
---|
159 | !----------------------------------------------------------------------- |
---|
160 | ! 2. Add the physical tendencies computed so far |
---|
161 | ! ---------------------------------------------- |
---|
162 | |
---|
163 | DO ilev=1,nlay |
---|
164 | DO ig=1,ngrid |
---|
165 | zu(ig,ilev)=pu(ig,ilev) |
---|
166 | zv(ig,ilev)=pv(ig,ilev) |
---|
167 | zt(ig,ilev)=pt(ig,ilev)+pdtfi(ig,ilev)*ptimestep |
---|
168 | zh(ig,ilev)=pt(ig,ilev)*zovExner(ig,ilev) !for call vdif_kc, but could be moved and computed there |
---|
169 | ENDDO |
---|
170 | ENDDO |
---|
171 | if(tracer) then |
---|
172 | DO iq =1, nq |
---|
173 | DO ilev=1,nlay |
---|
174 | DO ig=1,ngrid |
---|
175 | zq(ig,ilev,iq)=pq(ig,ilev,iq) + pdqfi(ig,ilev,iq)*ptimestep |
---|
176 | ENDDO |
---|
177 | ENDDO |
---|
178 | ENDDO |
---|
179 | end if |
---|
180 | |
---|
181 | !----------------------------------------------------------------------- |
---|
182 | ! 3. Turbulence scheme |
---|
183 | ! -------------------- |
---|
184 | ! |
---|
185 | ! Source of turbulent kinetic energy at the surface |
---|
186 | ! ------------------------------------------------- |
---|
187 | ! Formula is Cd_0 = (karman / log[1+z1/z0])^2 |
---|
188 | |
---|
189 | DO ig=1,ngrid |
---|
190 | roughratio = 1. + pzlay(ig,1)/pz0 |
---|
191 | cd0 = karman/log(roughratio) |
---|
192 | cd0 = cd0*cd0 |
---|
193 | zcdv_true(ig) = cd0 |
---|
194 | zcdh_true(ig) = cd0 |
---|
195 | if(nosurf)then |
---|
196 | zcdv_true(ig)=0.D+0 !JL12 disable atm/surface momentum flux |
---|
197 | zcdh_true(ig)=0.D+0 !JL12 disable sensible heat flux |
---|
198 | endif |
---|
199 | ENDDO |
---|
200 | |
---|
201 | DO ig=1,ngrid |
---|
202 | zu2=pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) |
---|
203 | zcdv(ig)=zcdv_true(ig)*sqrt(zu2) |
---|
204 | zcdh(ig)=zcdh_true(ig)*sqrt(zu2) |
---|
205 | ENDDO |
---|
206 | |
---|
207 | ! Turbulent diffusion coefficients in the boundary layer |
---|
208 | ! ------------------------------------------------------ |
---|
209 | |
---|
210 | call vdif_kc(ngrid,nlay,ptimestep,g,pzlev,pzlay,pu,pv,zh,zcdv_true,pq2,zkv,zkh) !JL12 why not call vdif_kc with updated winds and temperature |
---|
211 | |
---|
212 | ! Adding eddy mixing to mimic 3D general circulation in 1D |
---|
213 | ! R. Wordsworth & F. Forget (2010) |
---|
214 | if ((ngrid.eq.1)) then |
---|
215 | kmixmin = 1.0e-2 ! minimum eddy mix coeff in 1D |
---|
216 | do ilev=1,nlay |
---|
217 | do ig=1,ngrid |
---|
218 | zkh(ig,ilev) = max(kmixmin,zkh(ig,ilev)) |
---|
219 | zkv(ig,ilev) = max(kmixmin,zkv(ig,ilev)) |
---|
220 | end do |
---|
221 | end do |
---|
222 | end if |
---|
223 | |
---|
224 | !JL12 change zkv at the surface by zcdv to calculate the surface momentum flux properly |
---|
225 | DO ig=1,ngrid |
---|
226 | zkv(ig,1)=zcdv(ig) |
---|
227 | ENDDO |
---|
228 | !we treat only winds, energy and tracers coefficients will be computed with upadted winds |
---|
229 | |
---|
230 | !JL12 calculate the flux coefficients (tables multiplied elements by elements) |
---|
231 | zfluxv(1:ngrid,1:nlay)=zkv(1:ngrid,1:nlay)*zb0(1:ngrid,1:nlay) |
---|
232 | |
---|
233 | !----------------------------------------------------------------------- |
---|
234 | ! 4. Implicit inversion of u |
---|
235 | ! -------------------------- |
---|
236 | |
---|
237 | ! u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) |
---|
238 | ! avec |
---|
239 | ! /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) |
---|
240 | ! et |
---|
241 | ! dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) |
---|
242 | ! donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
243 | ! et /zkv/ = Ku |
---|
244 | |
---|
245 | DO ig=1,ngrid |
---|
246 | z1(ig)=1./(zmass(ig,nlay)+zfluxv(ig,nlay)) |
---|
247 | zcv(ig,nlay)=zmass(ig,nlay)*zu(ig,nlay)*z1(ig) |
---|
248 | zdv(ig,nlay)=zfluxv(ig,nlay)*z1(ig) |
---|
249 | ENDDO |
---|
250 | |
---|
251 | DO ilay=nlay-1,1,-1 |
---|
252 | DO ig=1,ngrid |
---|
253 | z1(ig)=1./(zmass(ig,ilay)+zfluxv(ig,ilay) + zfluxv(ig,ilay+1)*(1.-zdv(ig,ilay+1))) |
---|
254 | zcv(ig,ilay)=(zmass(ig,ilay)*zu(ig,ilay)+zfluxv(ig,ilay+1)*zcv(ig,ilay+1))*z1(ig) |
---|
255 | zdv(ig,ilay)=zfluxv(ig,ilay)*z1(ig) |
---|
256 | ENDDO |
---|
257 | ENDDO |
---|
258 | |
---|
259 | DO ig=1,ngrid |
---|
260 | zu(ig,1)=zcv(ig,1) |
---|
261 | ENDDO |
---|
262 | DO ilay=2,nlay |
---|
263 | DO ig=1,ngrid |
---|
264 | zu(ig,ilay)=zcv(ig,ilay)+zdv(ig,ilay)*zu(ig,ilay-1) |
---|
265 | ENDDO |
---|
266 | ENDDO |
---|
267 | |
---|
268 | !----------------------------------------------------------------------- |
---|
269 | ! 5. Implicit inversion of v |
---|
270 | ! -------------------------- |
---|
271 | |
---|
272 | ! v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) |
---|
273 | ! avec |
---|
274 | ! /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) |
---|
275 | ! et |
---|
276 | ! dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) |
---|
277 | ! donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
278 | ! et /zkv/ = Kv |
---|
279 | |
---|
280 | DO ig=1,ngrid |
---|
281 | z1(ig)=1./(zmass(ig,nlay)+zfluxv(ig,nlay)) |
---|
282 | zcv(ig,nlay)=zmass(ig,nlay)*zv(ig,nlay)*z1(ig) |
---|
283 | zdv(ig,nlay)=zfluxv(ig,nlay)*z1(ig) |
---|
284 | ENDDO |
---|
285 | |
---|
286 | DO ilay=nlay-1,1,-1 |
---|
287 | DO ig=1,ngrid |
---|
288 | z1(ig)=1./(zmass(ig,ilay)+zfluxv(ig,ilay)+zfluxv(ig,ilay+1)*(1.-zdv(ig,ilay+1))) |
---|
289 | zcv(ig,ilay)=(zmass(ig,ilay)*zv(ig,ilay)+zfluxv(ig,ilay+1)*zcv(ig,ilay+1))*z1(ig) |
---|
290 | zdv(ig,ilay)=zfluxv(ig,ilay)*z1(ig) |
---|
291 | ENDDO |
---|
292 | ENDDO |
---|
293 | |
---|
294 | DO ig=1,ngrid |
---|
295 | zv(ig,1)=zcv(ig,1) |
---|
296 | ENDDO |
---|
297 | DO ilay=2,nlay |
---|
298 | DO ig=1,ngrid |
---|
299 | zv(ig,ilay)=zcv(ig,ilay)+zdv(ig,ilay)*zv(ig,ilay-1) |
---|
300 | ENDDO |
---|
301 | ENDDO |
---|
302 | |
---|
303 | ! Calcul of wind stress |
---|
304 | |
---|
305 | DO ig=1,ngrid |
---|
306 | flux_u(ig) = zfluxv(ig,1)/ptimestep*zu(ig,1) |
---|
307 | flux_v(ig) = zfluxv(ig,1)/ptimestep*zv(ig,1) |
---|
308 | ENDDO |
---|
309 | |
---|
310 | |
---|
311 | !---------------------------------------------------------------------------- |
---|
312 | ! 6. Implicit inversion of h, not forgetting the coupling with the ground |
---|
313 | |
---|
314 | ! h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) |
---|
315 | ! avec |
---|
316 | ! /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) |
---|
317 | ! et |
---|
318 | ! dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) |
---|
319 | ! donc les entrees sont /zcdh/ pour la condition de raccord au sol |
---|
320 | ! et /zkh/ = Kh |
---|
321 | |
---|
322 | ! Using the wind modified by friction for lifting and sublimation |
---|
323 | ! --------------------------------------------------------------- |
---|
324 | DO ig=1,ngrid |
---|
325 | zu2 = zu(ig,1)*zu(ig,1)+zv(ig,1)*zv(ig,1) |
---|
326 | zcdv(ig) = zcdv_true(ig)*sqrt(zu2) |
---|
327 | zcdh(ig) = zcdh_true(ig)*sqrt(zu2) |
---|
328 | zkh(ig,1)= zcdh(ig) |
---|
329 | ENDDO |
---|
330 | |
---|
331 | ! JL12 calculate the flux coefficients (tables multiplied elements by elements) |
---|
332 | ! --------------------------------------------------------------- |
---|
333 | zfluxq(1:ngrid,1:nlay)=zkh(1:ngrid,1:nlay)*zb0(1:ngrid,1:nlay) !JL12 we save zfluxq which doesn't need the Exner factor |
---|
334 | zfluxt(1:ngrid,1:nlay)=zfluxq(1:ngrid,1:nlay)*zExner(1:ngrid,1:nlay) |
---|
335 | |
---|
336 | DO ig=1,ngrid |
---|
337 | z1(ig)=1./(zmass(ig,nlay)+zfluxt(ig,nlay)*zovExner(ig,nlay)) |
---|
338 | zct(ig,nlay)=zmass(ig,nlay)*zt(ig,nlay)*z1(ig) |
---|
339 | zdt(ig,nlay)=zfluxt(ig,nlay)*zovExner(ig,nlay-1)*z1(ig) |
---|
340 | ENDDO |
---|
341 | |
---|
342 | DO ilay=nlay-1,2,-1 |
---|
343 | DO ig=1,ngrid |
---|
344 | z1(ig)=1./(zmass(ig,ilay)+zfluxt(ig,ilay)*zovExner(ig,ilay)+ & |
---|
345 | zfluxt(ig,ilay+1)*(zovExner(ig,ilay)-zdt(ig,ilay+1)*zovExner(ig,ilay+1))) |
---|
346 | zct(ig,ilay)=(zmass(ig,ilay)*zt(ig,ilay)+zfluxt(ig,ilay+1)*zct(ig,ilay+1)*zovExner(ig,ilay+1))*z1(ig) |
---|
347 | zdt(ig,ilay)=zfluxt(ig,ilay)*z1(ig)*zovExner(ig,ilay-1) |
---|
348 | ENDDO |
---|
349 | ENDDO |
---|
350 | |
---|
351 | !JL12 we treat last point afterward because zovExner(ig,ilay-1) does not exist there |
---|
352 | DO ig=1,ngrid |
---|
353 | z1(ig)=1./(zmass(ig,1)+zfluxt(ig,1)*zovExner(ig,1)+ & |
---|
354 | zfluxt(ig,2)*(zovExner(ig,1)-zdt(ig,2)*zovExner(ig,2))) |
---|
355 | zct(ig,1)=(zmass(ig,1)*zt(ig,1)+zfluxt(ig,2)*zct(ig,2)*zovExner(ig,2))*z1(ig) |
---|
356 | zdt(ig,1)=zfluxt(ig,1)*z1(ig) |
---|
357 | ENDDO |
---|
358 | |
---|
359 | |
---|
360 | ! Calculate (d Planck / dT) at the interface temperature |
---|
361 | ! ------------------------------------------------------ |
---|
362 | |
---|
363 | z4st=4.0*sigma*ptimestep |
---|
364 | DO ig=1,ngrid |
---|
365 | zdplanck(ig)=z4st*pemis(ig)*ptsrf(ig)*ptsrf(ig)*ptsrf(ig) |
---|
366 | ENDDO |
---|
367 | |
---|
368 | ! Calculate temperature tendency at the interface (dry case) |
---|
369 | ! ---------------------------------------------------------- |
---|
370 | ! Sum of fluxes at interface at time t + \delta t gives change in T: |
---|
371 | ! radiative fluxes |
---|
372 | ! turbulent convective (sensible) heat flux |
---|
373 | ! flux (if any) from subsurface |
---|
374 | |
---|
375 | |
---|
376 | DO ig=1,ngrid |
---|
377 | z1(ig)=pcapcal(ig)*ptsrf(ig)+cpp*zfluxt(ig,1)*zct(ig,1)*zovExner(ig,1) & |
---|
378 | + pfluxsrf(ig)*ptimestep + zdplanck(ig)*ptsrf(ig) |
---|
379 | z2(ig) = pcapcal(ig)+zdplanck(ig)+cpp*zfluxt(ig,1)*(1.-zovExner(ig,1)*zdt(ig,1)) |
---|
380 | ztsrf(ig) = z1(ig) / z2(ig) |
---|
381 | pdtsrf(ig) = (ztsrf(ig) - ptsrf(ig))/ptimestep |
---|
382 | zt(ig,1) = zct(ig,1) + zdt(ig,1)*ztsrf(ig) |
---|
383 | ENDDO |
---|
384 | ! JL12 note that the black body radiative flux emitted by the surface has been updated by the implicit scheme |
---|
385 | |
---|
386 | |
---|
387 | ! Recalculate temperature to top of atmosphere, starting from ground |
---|
388 | ! ------------------------------------------------------------------ |
---|
389 | |
---|
390 | DO ilay=2,nlay |
---|
391 | DO ig=1,ngrid |
---|
392 | zt(ig,ilay)=zct(ig,ilay)+zdt(ig,ilay)*zt(ig,ilay-1) |
---|
393 | ENDDO |
---|
394 | ENDDO |
---|
395 | |
---|
396 | |
---|
397 | !----------------------------------------------------------------------- |
---|
398 | ! TRACERS (no vapour) |
---|
399 | ! ------- |
---|
400 | |
---|
401 | if(tracer) then |
---|
402 | |
---|
403 | ! Calculate vertical flux from the bottom to the first layer (dust) |
---|
404 | ! ----------------------------------------------------------------- |
---|
405 | do ig=1,ngrid |
---|
406 | rho(ig) = zb0(ig,1) /ptimestep |
---|
407 | end do |
---|
408 | |
---|
409 | pdqsdif(:,:)=0. |
---|
410 | |
---|
411 | ! Implicit inversion of q |
---|
412 | ! ----------------------- |
---|
413 | do iq=1,nq |
---|
414 | |
---|
415 | DO ig=1,ngrid |
---|
416 | z1(ig)=1./(zmass(ig,nlay)+zfluxq(ig,nlay)) |
---|
417 | zcq(ig,nlay)=zmass(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
418 | zdq(ig,nlay)=zfluxq(ig,nlay)*z1(ig) |
---|
419 | ENDDO |
---|
420 | |
---|
421 | DO ilay=nlay-1,2,-1 |
---|
422 | DO ig=1,ngrid |
---|
423 | z1(ig)=1./(zmass(ig,ilay)+zfluxq(ig,ilay)+zfluxq(ig,ilay+1)*(1.-zdq(ig,ilay+1))) |
---|
424 | zcq(ig,ilay)=(zmass(ig,ilay)*zq(ig,ilay,iq)+zfluxq(ig,ilay+1)*zcq(ig,ilay+1))*z1(ig) |
---|
425 | zdq(ig,ilay)=zfluxq(ig,ilay)*z1(ig) |
---|
426 | ENDDO |
---|
427 | ENDDO |
---|
428 | |
---|
429 | do ig=1,ngrid |
---|
430 | z1(ig)=1./(zmass(ig,1)+zfluxq(ig,2)*(1.-zdq(ig,2))) |
---|
431 | zcq(ig,1)=(zmass(ig,1)*zq(ig,1,iq)+zfluxq(ig,2)*zcq(ig,2)+(-pdqsdif(ig,iq))*ptimestep)*z1(ig) |
---|
432 | ! tracer flux from surface |
---|
433 | ! currently pdqsdif always zero here, |
---|
434 | ! so last line is superfluous |
---|
435 | enddo |
---|
436 | |
---|
437 | ! Starting upward calculations for simple tracer mixing (e.g., dust) |
---|
438 | do ig=1,ngrid |
---|
439 | zq(ig,1,iq)=zcq(ig,1) |
---|
440 | end do |
---|
441 | |
---|
442 | do ilay=2,nlay |
---|
443 | do ig=1,ngrid |
---|
444 | zq(ig,ilay,iq)=zcq(ig,ilay)+zdq(ig,ilay)*zq(ig,ilay-1,iq) |
---|
445 | end do |
---|
446 | end do |
---|
447 | end do ! of do iq=1,nq |
---|
448 | |
---|
449 | endif ! tracer |
---|
450 | |
---|
451 | |
---|
452 | !----------------------------------------------------------------------- |
---|
453 | ! 8. Final calculation of the vertical diffusion tendencies |
---|
454 | ! ----------------------------------------------------------------- |
---|
455 | |
---|
456 | do ilev = 1, nlay |
---|
457 | do ig=1,ngrid |
---|
458 | pdudif(ig,ilev)=(zu(ig,ilev)-(pu(ig,ilev)))/ptimestep |
---|
459 | pdvdif(ig,ilev)=(zv(ig,ilev)-(pv(ig,ilev)))/ptimestep |
---|
460 | pdtdif(ig,ilev)=( zt(ig,ilev)- pt(ig,ilev))/ptimestep-pdtfi(ig,ilev) |
---|
461 | enddo |
---|
462 | enddo |
---|
463 | |
---|
464 | DO ig=1,ngrid ! computing sensible heat flux (atm => surface) |
---|
465 | sensibFlux(ig)=cpp*zfluxt(ig,1)/ptimestep*(zt(ig,1)*zovExner(ig,1)-ztsrf(ig)) |
---|
466 | ENDDO |
---|
467 | |
---|
468 | if (tracer) then |
---|
469 | do iq = 1, nq |
---|
470 | do ilev = 1, nlay |
---|
471 | do ig=1,ngrid |
---|
472 | pdqdif(ig,ilev,iq)=(zq(ig,ilev,iq)-(pq(ig,ilev,iq)+pdqfi(ig,ilev,iq)*ptimestep))/ptimestep |
---|
473 | enddo |
---|
474 | enddo |
---|
475 | enddo |
---|
476 | endif |
---|
477 | |
---|
478 | ! if(lastcall)then |
---|
479 | ! if(ngrid.eq.1)then |
---|
480 | ! print*,'Saving k.out...' |
---|
481 | ! OPEN(12,file='k.out',form='formatted') |
---|
482 | ! DO ilay=1,nlay |
---|
483 | ! write(12,*) zkh(1,ilay), pplay(1,ilay) |
---|
484 | ! ENDDO |
---|
485 | ! CLOSE(12) |
---|
486 | ! endif |
---|
487 | ! endif |
---|
488 | |
---|
489 | end |
---|