| 1 | SUBROUTINE SFLUXI(PLEV,TLEV,DTAUI,TAUCUMI,UBARI,RSFI,WNOI,DWNI, |
|---|
| 2 | * COSBI,WBARI,NFLUXTOPI,NFLUXTOPI_nu, |
|---|
| 3 | * FMNETI,fluxupi,fluxdni,fluxupi_nu, |
|---|
| 4 | * FZEROI,TAUGSURF) |
|---|
| 5 | |
|---|
| 6 | use radinc_h |
|---|
| 7 | use radcommon_h, only: planckir, tlimit,sigma, gweight |
|---|
| 8 | use comcstfi_mod, only: pi |
|---|
| 9 | |
|---|
| 10 | implicit none |
|---|
| 11 | |
|---|
| 12 | integer NLEVRAD, L, NW, NG, NTS, NTT |
|---|
| 13 | |
|---|
| 14 | real*8 TLEV(L_LEVELS), PLEV(L_LEVELS) |
|---|
| 15 | real*8 TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS) |
|---|
| 16 | real*8 FMNETI(L_NLAYRAD) |
|---|
| 17 | real*8 WNOI(L_NSPECTI), DWNI(L_NSPECTI) |
|---|
| 18 | real*8 DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
|---|
| 19 | real*8 FMUPI(L_NLEVRAD), FMDI(L_NLEVRAD) |
|---|
| 20 | real*8 COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
|---|
| 21 | real*8 WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
|---|
| 22 | real*8 NFLUXTOPI |
|---|
| 23 | real*8 NFLUXTOPI_nu(L_NSPECTI) |
|---|
| 24 | real*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) |
|---|
| 25 | real*8 FTOPUP |
|---|
| 26 | |
|---|
| 27 | real*8 UBARI, RSFI, TSURF, BSURF, TTOP, BTOP, TAUTOP |
|---|
| 28 | real*8 PLANCK, PLTOP |
|---|
| 29 | real*8 fluxupi(L_NLAYRAD), fluxdni(L_NLAYRAD) |
|---|
| 30 | real*8 FZEROI(L_NSPECTI) |
|---|
| 31 | real*8 taugsurf(L_NSPECTI,L_NGAUSS-1), fzero |
|---|
| 32 | |
|---|
| 33 | real*8 fup_tmp(L_NSPECTI),fdn_tmp(L_NSPECTI) |
|---|
| 34 | real*8 PLANCKSUM,PLANCKREF |
|---|
| 35 | |
|---|
| 36 | ! AB : variables for interpolation |
|---|
| 37 | REAL*8 C1 |
|---|
| 38 | REAL*8 C2 |
|---|
| 39 | REAL*8 P1 |
|---|
| 40 | |
|---|
| 41 | !======================================================================C |
|---|
| 42 | |
|---|
| 43 | NLEVRAD = L_NLEVRAD |
|---|
| 44 | |
|---|
| 45 | ! ZERO THE NET FLUXES |
|---|
| 46 | NFLUXTOPI = 0.0D0 |
|---|
| 47 | |
|---|
| 48 | DO NW=1,L_NSPECTI |
|---|
| 49 | NFLUXTOPI_nu(NW) = 0.0D0 |
|---|
| 50 | DO L=1,L_NLAYRAD |
|---|
| 51 | FLUXUPI_nu(L,NW) = 0.0D0 |
|---|
| 52 | fup_tmp(nw)=0.0D0 |
|---|
| 53 | fdn_tmp(nw)=0.0D0 |
|---|
| 54 | END DO |
|---|
| 55 | END DO |
|---|
| 56 | |
|---|
| 57 | DO L=1,L_NLAYRAD |
|---|
| 58 | FMNETI(L) = 0.0D0 |
|---|
| 59 | FLUXUPI(L) = 0.0D0 |
|---|
| 60 | FLUXDNI(L) = 0.0D0 |
|---|
| 61 | END DO |
|---|
| 62 | |
|---|
| 63 | ! WE NOW ENTER A MAJOR LOOP OVER SPECTRAL INTERVALS IN THE INFRARED |
|---|
| 64 | ! TO CALCULATE THE NET FLUX IN EACH SPECTRAL INTERVAL |
|---|
| 65 | |
|---|
| 66 | TTOP = TLEV(2) ! JL12 why not (1) ??? |
|---|
| 67 | TSURF = TLEV(L_LEVELS) |
|---|
| 68 | |
|---|
| 69 | NTS = int(TSURF*NTfac)-NTstart+1 |
|---|
| 70 | NTT = int(TTOP *NTfac)-NTstart+1 |
|---|
| 71 | |
|---|
| 72 | !JL12 corrects the surface planck function so that its integral is equal to sigma Tsurf^4 |
|---|
| 73 | !JL12 this ensure that no flux is lost due to: |
|---|
| 74 | !JL12 -truncation of the planck function at high/low wavenumber |
|---|
| 75 | !JL12 -numerical error during first spectral integration |
|---|
| 76 | !JL12 -discrepancy between Tsurf and NTS/NTfac |
|---|
| 77 | PLANCKSUM = 0.d0 |
|---|
| 78 | PLANCKREF = TSURF * TSURF |
|---|
| 79 | PLANCKREF = sigma * PLANCKREF * PLANCKREF |
|---|
| 80 | |
|---|
| 81 | DO NW=1,L_NSPECTI |
|---|
| 82 | ! AB : PLANCKIR(NW,NTS) is replaced by P1, the linear interpolation result for a temperature TSURF |
|---|
| 83 | C1 = TSURF * NTfac - int(TSURF * NTfac) |
|---|
| 84 | P1 = (1.0D0 - C1) * PLANCKIR(NW,NTS) + C1 * PLANCKIR(NW,NTS+1) |
|---|
| 85 | PLANCKSUM = PLANCKSUM + P1 * DWNI(NW) |
|---|
| 86 | ENDDO |
|---|
| 87 | |
|---|
| 88 | PLANCKSUM = PLANCKREF / (PLANCKSUM * Pi) |
|---|
| 89 | !JL12 |
|---|
| 90 | |
|---|
| 91 | DO 501 NW=1,L_NSPECTI |
|---|
| 92 | ! SURFACE EMISSIONS - INDEPENDENT OF GAUSS POINTS |
|---|
| 93 | ! AB : PLANCKIR(NW,NTS) is replaced by P1, the linear interpolation result for a temperature TSURF |
|---|
| 94 | ! AB : idem for PLANCKIR(NW,NTT) and PLTOP |
|---|
| 95 | C1 = TSURF * NTfac - int(TSURF * NTfac) |
|---|
| 96 | C2 = TTOP * NTfac - int(TTOP * NTfac) |
|---|
| 97 | P1 = (1.0D0 - C1) * PLANCKIR(NW,NTS) + C1 * PLANCKIR(NW,NTS+1) |
|---|
| 98 | BSURF = (1. - RSFI) * P1 * PLANCKSUM |
|---|
| 99 | PLTOP = (1.0D0 - C2) * PLANCKIR(NW,NTT) + C2*PLANCKIR(NW,NTT+1) |
|---|
| 100 | |
|---|
| 101 | ! If FZEROI(NW) = 1, then the k-coefficients are zero - skip to the |
|---|
| 102 | ! special Gauss point at the end. |
|---|
| 103 | FZERO = FZEROI(NW) |
|---|
| 104 | |
|---|
| 105 | IF(FZERO.ge.0.99) goto 40 |
|---|
| 106 | |
|---|
| 107 | DO NG=1,L_NGAUSS-1 |
|---|
| 108 | |
|---|
| 109 | if(TAUGSURF(NW,NG).lt. TLIMIT) then |
|---|
| 110 | fzero = fzero + (1.0D0-FZEROI(NW))*GWEIGHT(NG) |
|---|
| 111 | goto 30 |
|---|
| 112 | end if |
|---|
| 113 | |
|---|
| 114 | ! SET UP THE UPPER AND LOWER BOUNDARY CONDITIONS ON THE IR |
|---|
| 115 | ! CALCULATE THE DOWNWELLING RADIATION AT THE TOP OF THE MODEL |
|---|
| 116 | ! OR THE TOP LAYER WILL COOL TO SPACE UNPHYSICALLY |
|---|
| 117 | |
|---|
| 118 | ! TAUTOP = DTAUI(1,NW,NG)*PLEV(2)/(PLEV(4)-PLEV(2)) |
|---|
| 119 | TAUTOP = TAUCUMI(2,NW,NG) |
|---|
| 120 | BTOP = (1.0D0-EXP(-TAUTOP/UBARI))*PLTOP |
|---|
| 121 | |
|---|
| 122 | ! WE CAN NOW SOLVE FOR THE COEFFICIENTS OF THE TWO STREAM |
|---|
| 123 | ! CALL A SUBROUTINE THAT SOLVES FOR THE FLUX TERMS |
|---|
| 124 | ! WITHIN EACH INTERVAL AT THE MIDPOINT WAVENUMBER |
|---|
| 125 | |
|---|
| 126 | CALL GFLUXI(NLEVRAD,TLEV,NW,DWNI(NW),DTAUI(1,NW,NG), |
|---|
| 127 | * TAUCUMI(1,NW,NG), |
|---|
| 128 | * WBARI(1,NW,NG),COSBI(1,NW,NG),UBARI,RSFI,BTOP, |
|---|
| 129 | * BSURF,FTOPUP,FMUPI,FMDI) |
|---|
| 130 | |
|---|
| 131 | ! NOW CALCULATE THE CUMULATIVE IR NET FLUX |
|---|
| 132 | NFLUXTOPI = NFLUXTOPI+FTOPUP*DWNI(NW)*GWEIGHT(NG) |
|---|
| 133 | * * (1.0D0-FZEROI(NW)) |
|---|
| 134 | |
|---|
| 135 | ! and same thing by spectral band... (RDW) |
|---|
| 136 | NFLUXTOPI_nu(NW) = NFLUXTOPI_nu(NW) + FTOPUP * DWNI(NW) |
|---|
| 137 | * * GWEIGHT(NG) * (1.0D0-FZEROI(NW)) |
|---|
| 138 | |
|---|
| 139 | DO L=1,L_NLEVRAD-1 |
|---|
| 140 | ! CORRECT FOR THE WAVENUMBER INTERVALS |
|---|
| 141 | FMNETI(L) = FMNETI(L) + (FMUPI(L)-FMDI(L)) * DWNI(NW) |
|---|
| 142 | * * GWEIGHT(NG)*(1.0D0-FZEROI(NW)) |
|---|
| 143 | FLUXUPI(L) = FLUXUPI(L) + FMUPI(L)*DWNI(NW)*GWEIGHT(NG) |
|---|
| 144 | * * (1.0D0-FZEROI(NW)) |
|---|
| 145 | FLUXDNI(L) = FLUXDNI(L) + FMDI(L)*DWNI(NW)*GWEIGHT(NG) |
|---|
| 146 | * * (1.0D0-FZEROI(NW)) |
|---|
| 147 | ! and same thing by spectral band... (RW) |
|---|
| 148 | FLUXUPI_nu(L,NW) = FLUXUPI_nu(L,NW) + FMUPI(L)*DWNI(NW) |
|---|
| 149 | * * GWEIGHT(NG) * (1.0D0 - FZEROI(NW)) |
|---|
| 150 | END DO |
|---|
| 151 | |
|---|
| 152 | 30 CONTINUE |
|---|
| 153 | |
|---|
| 154 | END DO !End NGAUSS LOOP |
|---|
| 155 | |
|---|
| 156 | 40 CONTINUE |
|---|
| 157 | |
|---|
| 158 | ! SPECIAL 17th Gauss point |
|---|
| 159 | NG = L_NGAUSS |
|---|
| 160 | |
|---|
| 161 | ! TAUTOP = DTAUI(1,NW,NG)*PLEV(2)/(PLEV(4)-PLEV(2)) |
|---|
| 162 | TAUTOP = TAUCUMI(2,NW,NG) |
|---|
| 163 | BTOP = (1.0D0-EXP(-TAUTOP/UBARI))*PLTOP |
|---|
| 164 | |
|---|
| 165 | ! WE CAN NOW SOLVE FOR THE COEFFICIENTS OF THE TWO STREAM |
|---|
| 166 | ! CALL A SUBROUTINE THAT SOLVES FOR THE FLUX TERMS |
|---|
| 167 | ! WITHIN EACH INTERVAL AT THE MIDPOINT WAVENUMBER |
|---|
| 168 | |
|---|
| 169 | CALL GFLUXI(NLEVRAD,TLEV,NW,DWNI(NW),DTAUI(1,NW,NG), |
|---|
| 170 | * TAUCUMI(1,NW,NG), |
|---|
| 171 | * WBARI(1,NW,NG),COSBI(1,NW,NG),UBARI,RSFI,BTOP, |
|---|
| 172 | * BSURF,FTOPUP,FMUPI,FMDI) |
|---|
| 173 | |
|---|
| 174 | ! NOW CALCULATE THE CUMULATIVE IR NET FLUX |
|---|
| 175 | NFLUXTOPI = NFLUXTOPI+FTOPUP*DWNI(NW)*FZERO |
|---|
| 176 | |
|---|
| 177 | ! and same thing by spectral band... (RW) |
|---|
| 178 | NFLUXTOPI_nu(NW) = NFLUXTOPI_nu(NW) |
|---|
| 179 | * +FTOPUP*DWNI(NW)*FZERO |
|---|
| 180 | |
|---|
| 181 | DO L=1,L_NLEVRAD-1 |
|---|
| 182 | ! CORRECT FOR THE WAVENUMBER INTERVALS |
|---|
| 183 | FMNETI(L) = FMNETI(L)+(FMUPI(L)-FMDI(L))*DWNI(NW)*FZERO |
|---|
| 184 | FLUXUPI(L) = FLUXUPI(L) + FMUPI(L)*DWNI(NW)*FZERO |
|---|
| 185 | FLUXDNI(L) = FLUXDNI(L) + FMDI(L)*DWNI(NW)*FZERO |
|---|
| 186 | ! and same thing by spectral band... (RW) |
|---|
| 187 | FLUXUPI_nu(L,NW) = FLUXUPI_nu(L,NW) |
|---|
| 188 | * + FMUPI(L) * DWNI(NW) * FZERO |
|---|
| 189 | END DO |
|---|
| 190 | |
|---|
| 191 | 501 CONTINUE !End Spectral Interval LOOP |
|---|
| 192 | ! *** END OF MAJOR SPECTRAL INTERVAL LOOP IN THE INFRARED**** |
|---|
| 193 | |
|---|
| 194 | RETURN |
|---|
| 195 | END |
|---|