1 | module physiq_mod |
---|
2 | |
---|
3 | implicit none |
---|
4 | |
---|
5 | contains |
---|
6 | |
---|
7 | subroutine physiq(ngrid,nlayer,nq, & |
---|
8 | nametrac, & |
---|
9 | firstcall,lastcall, & |
---|
10 | pday,ptime,ptimestep, & |
---|
11 | pplev,pplay,pphi, & |
---|
12 | pu,pv,pt,pq, & |
---|
13 | flxw, & |
---|
14 | pdu,pdv,pdt,pdq,pdpsrf) |
---|
15 | |
---|
16 | use radinc_h, only : L_NSPECTI,L_NSPECTV,naerkind |
---|
17 | use radcommon_h, only: sigma, glat, grav, BWNV |
---|
18 | use surfdat_h, only: phisfi, zmea, zstd, zsig, zgam, zthe |
---|
19 | use comdiurn_h, only: coslat, sinlat, coslon, sinlon |
---|
20 | use comsaison_h, only: mu0, fract, dist_star, declin, right_ascen |
---|
21 | use comsoil_h, only: nsoilmx, layer, mlayer, inertiedat |
---|
22 | use geometry_mod, only: latitude, longitude, cell_area |
---|
23 | USE comgeomfi_h, only: totarea, totarea_planet |
---|
24 | USE tracer_h, only: noms, mmol, radius, qext, & |
---|
25 | alpha_lift, alpha_devil, qextrhor |
---|
26 | use time_phylmdz_mod, only: ecritphy, iphysiq, nday |
---|
27 | use phyetat0_mod, only: phyetat0 |
---|
28 | use phyredem, only: physdem0, physdem1 |
---|
29 | use planetwide_mod, only: planetwide_minval,planetwide_maxval,planetwide_sumval |
---|
30 | use mod_phys_lmdz_para, only : is_master |
---|
31 | use planete_mod, only: apoastr, periastr, year_day, peri_day, & |
---|
32 | obliquit, nres, z0 |
---|
33 | use comcstfi_mod, only: pi, g, rcp, r, rad, mugaz, cpp |
---|
34 | use time_phylmdz_mod, only: daysec |
---|
35 | use logic_mod, only: moyzon_ch |
---|
36 | use moyzon_mod, only: tmoy, playmoy, zphibar, zphisbar, zplevbar, & |
---|
37 | zplaybar, zzlevbar, zzlaybar, ztfibar |
---|
38 | use callkeys_mod |
---|
39 | use vertical_layers_mod, only: presnivs, pseudoalt |
---|
40 | #ifdef CPP_XIOS |
---|
41 | use xios_output_mod, only: initialize_xios_output, & |
---|
42 | update_xios_timestep, & |
---|
43 | send_xios_field |
---|
44 | #endif |
---|
45 | implicit none |
---|
46 | |
---|
47 | |
---|
48 | !================================================================== |
---|
49 | ! |
---|
50 | ! Purpose |
---|
51 | ! ------- |
---|
52 | ! Central subroutine for all the physics parameterisations in the |
---|
53 | ! universal model. Originally adapted from the Mars LMDZ model. |
---|
54 | ! |
---|
55 | ! The model can be run without or with tracer transport |
---|
56 | ! depending on the value of "tracer" in file "callphys.def". |
---|
57 | ! |
---|
58 | ! |
---|
59 | ! It includes: |
---|
60 | ! |
---|
61 | ! I. Initialization : |
---|
62 | ! I.1 Firstcall initializations. |
---|
63 | ! I.2 Initialization for every call to physiq. |
---|
64 | ! |
---|
65 | ! II. Compute radiative transfer tendencies (longwave and shortwave) : |
---|
66 | ! II.a Option 1 : Call correlated-k radiative transfer scheme. |
---|
67 | ! II.b Option 2 : Call Newtonian cooling scheme. |
---|
68 | ! II.c Option 3 : Atmosphere has no radiative effect. |
---|
69 | ! |
---|
70 | ! III. Vertical diffusion (turbulent mixing) : |
---|
71 | ! |
---|
72 | ! IV. Dry Convective adjustment : |
---|
73 | ! |
---|
74 | ! V. Tracers |
---|
75 | ! V.1. Chemistry |
---|
76 | ! V.2. Aerosols and particles. |
---|
77 | ! V.3. Updates (pressure variations, surface budget). |
---|
78 | ! V.4. Surface Tracer Update. |
---|
79 | ! |
---|
80 | ! VI. Surface and sub-surface soil temperature. |
---|
81 | ! |
---|
82 | ! VII. Perform diagnostics and write output files. |
---|
83 | ! |
---|
84 | ! |
---|
85 | ! arguments |
---|
86 | ! --------- |
---|
87 | ! |
---|
88 | ! INPUT |
---|
89 | ! ----- |
---|
90 | ! |
---|
91 | ! ngrid Size of the horizontal grid. |
---|
92 | ! nlayer Number of vertical layers. |
---|
93 | ! nq Number of advected fields. |
---|
94 | ! nametrac Name of corresponding advected fields. |
---|
95 | ! |
---|
96 | ! firstcall True at the first call. |
---|
97 | ! lastcall True at the last call. |
---|
98 | ! |
---|
99 | ! pday Number of days counted from the North. Spring equinoxe. |
---|
100 | ! ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT. |
---|
101 | ! ptimestep timestep (s). |
---|
102 | ! |
---|
103 | ! pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa). |
---|
104 | ! pplev(ngrid,nlayer+1) Intermediate pressure levels (Pa). |
---|
105 | ! pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2.s-2). |
---|
106 | ! |
---|
107 | ! pu(ngrid,nlayer) u, zonal component of the wind (ms-1). |
---|
108 | ! pv(ngrid,nlayer) v, meridional component of the wind (ms-1). |
---|
109 | ! |
---|
110 | ! pt(ngrid,nlayer) Temperature (K). |
---|
111 | ! |
---|
112 | ! pq(ngrid,nlayer,nq) Advected fields. |
---|
113 | ! |
---|
114 | ! pudyn(ngrid,nlayer) \ |
---|
115 | ! pvdyn(ngrid,nlayer) \ Dynamical temporal derivative for the |
---|
116 | ! ptdyn(ngrid,nlayer) / corresponding variables. |
---|
117 | ! pqdyn(ngrid,nlayer,nq) / |
---|
118 | ! flxw(ngrid,nlayer) vertical mass flux (kg/s) at layer lower boundary |
---|
119 | ! |
---|
120 | ! OUTPUT |
---|
121 | ! ------ |
---|
122 | ! |
---|
123 | ! pdu(ngrid,nlayer) \ |
---|
124 | ! pdv(ngrid,nlayer) \ Temporal derivative of the corresponding |
---|
125 | ! pdt(ngrid,nlayer) / variables due to physical processes. |
---|
126 | ! pdq(ngrid,nlayer) / |
---|
127 | ! pdpsrf(ngrid) / |
---|
128 | ! |
---|
129 | ! |
---|
130 | ! Authors |
---|
131 | ! ------- |
---|
132 | ! Frederic Hourdin 15/10/93 |
---|
133 | ! Francois Forget 1994 |
---|
134 | ! Christophe Hourdin 02/1997 |
---|
135 | ! Subroutine completely rewritten by F. Forget (01/2000) |
---|
136 | ! Water ice clouds: Franck Montmessin (update 06/2003) |
---|
137 | ! Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
---|
138 | ! New correlated-k radiative scheme: R. Wordsworth (2009) |
---|
139 | ! Many specifically Martian subroutines removed: R. Wordsworth (2009) |
---|
140 | ! Improved water cycle: R. Wordsworth / B. Charnay (2010) |
---|
141 | ! To F90: R. Wordsworth (2010) |
---|
142 | ! New turbulent diffusion scheme: J. Leconte (2012) |
---|
143 | ! Loops converted to F90 matrix format: J. Leconte (2012) |
---|
144 | ! No more ngridmx/nqmx, F90 commons and adaptation to parallel: A. Spiga (2012) |
---|
145 | ! Purge of the code : M. Turbet (2015) |
---|
146 | ! Fork for Titan : J. Vatant d'Ollone (2017) |
---|
147 | ! + clean of all too-generic (ocean, water, co2 ...) routines |
---|
148 | ! + Titan's chemistry |
---|
149 | !============================================================================================ |
---|
150 | |
---|
151 | |
---|
152 | ! 0. Declarations : |
---|
153 | ! ------------------ |
---|
154 | |
---|
155 | include "netcdf.inc" |
---|
156 | |
---|
157 | ! Arguments : |
---|
158 | ! ----------- |
---|
159 | |
---|
160 | ! INPUTS: |
---|
161 | ! ------- |
---|
162 | |
---|
163 | integer,intent(in) :: ngrid ! Number of atmospheric columns. |
---|
164 | integer,intent(in) :: nlayer ! Number of atmospheric layers. |
---|
165 | integer,intent(in) :: nq ! Number of tracers. |
---|
166 | character*20,intent(in) :: nametrac(nq) ! Names of the tracers taken from dynamics. |
---|
167 | |
---|
168 | logical,intent(in) :: firstcall ! Signals first call to physics. |
---|
169 | logical,intent(in) :: lastcall ! Signals last call to physics. |
---|
170 | |
---|
171 | real,intent(in) :: pday ! Number of elapsed sols since reference Ls=0. |
---|
172 | real,intent(in) :: ptime ! "Universal time", given as fraction of sol (e.g.: 0.5 for noon). |
---|
173 | real,intent(in) :: ptimestep ! Physics timestep (s). |
---|
174 | real,intent(in) :: pplev(ngrid,nlayer+1) ! Inter-layer pressure (Pa). |
---|
175 | real,intent(in) :: pplay(ngrid,nlayer) ! Mid-layer pressure (Pa). |
---|
176 | real,intent(in) :: pphi(ngrid,nlayer) ! Geopotential at mid-layer (m2s-2). |
---|
177 | real,intent(in) :: pu(ngrid,nlayer) ! Zonal wind component (m/s). |
---|
178 | real,intent(in) :: pv(ngrid,nlayer) ! Meridional wind component (m/s). |
---|
179 | real,intent(in) :: pt(ngrid,nlayer) ! Temperature (K). |
---|
180 | real,intent(in) :: pq(ngrid,nlayer,nq) ! Tracers (kg/kg_of_air). |
---|
181 | real,intent(in) :: flxw(ngrid,nlayer) ! Vertical mass flux (ks/s) at lower boundary of layer |
---|
182 | |
---|
183 | ! OUTPUTS: |
---|
184 | ! -------- |
---|
185 | |
---|
186 | ! Physical tendencies : |
---|
187 | |
---|
188 | real,intent(out) :: pdu(ngrid,nlayer) ! Zonal wind tendencies (m/s/s). |
---|
189 | real,intent(out) :: pdv(ngrid,nlayer) ! Meridional wind tendencies (m/s/s). |
---|
190 | real,intent(out) :: pdt(ngrid,nlayer) ! Temperature tendencies (K/s). |
---|
191 | real,intent(out) :: pdq(ngrid,nlayer,nq) ! Tracer tendencies (kg/kg_of_air/s). |
---|
192 | real,intent(out) :: pdpsrf(ngrid) ! Surface pressure tendency (Pa/s). |
---|
193 | |
---|
194 | ! Local saved variables: |
---|
195 | ! ---------------------- |
---|
196 | |
---|
197 | integer,save :: day_ini ! Initial date of the run (sol since Ls=0). |
---|
198 | integer,save :: icount ! Counter of calls to physiq during the run. |
---|
199 | !$OMP THREADPRIVATE(day_ini,icount) |
---|
200 | |
---|
201 | real, dimension(:),allocatable,save :: tsurf ! Surface temperature (K). |
---|
202 | real, dimension(:,:),allocatable,save :: tsoil ! Sub-surface temperatures (K). |
---|
203 | real, dimension(:,:),allocatable,save :: albedo ! Surface Spectral albedo. By MT2015. |
---|
204 | real, dimension(:),allocatable,save :: albedo_equivalent ! Spectral Mean albedo. |
---|
205 | |
---|
206 | !$OMP THREADPRIVATE(tsurf,tsoil,albedo,albedo_equivalent) |
---|
207 | |
---|
208 | real,dimension(:),allocatable,save :: albedo_bareground ! Bare Ground Albedo. By MT 2015. |
---|
209 | |
---|
210 | !$OMP THREADPRIVATE(albedo_bareground) |
---|
211 | |
---|
212 | real,dimension(:),allocatable,save :: emis ! Thermal IR surface emissivity. |
---|
213 | real,dimension(:,:),allocatable,save :: dtrad ! Net atmospheric radiative heating rate (K.s-1). |
---|
214 | real,dimension(:),allocatable,save :: fluxrad_sky ! Radiative flux from sky absorbed by surface (W.m-2). |
---|
215 | real,dimension(:),allocatable,save :: fluxrad ! Net radiative surface flux (W.m-2). |
---|
216 | real,dimension(:),allocatable,save :: capcal ! Surface heat capacity (J m-2 K-1). |
---|
217 | real,dimension(:),allocatable,save :: fluxgrd ! Surface conduction flux (W.m-2). |
---|
218 | real,dimension(:,:),allocatable,save :: qsurf ! Tracer on surface (e.g. kg.m-2). |
---|
219 | real,dimension(:,:),allocatable,save :: q2 ! Turbulent Kinetic Energy. |
---|
220 | |
---|
221 | !$OMP THREADPRIVATE(emis,dtrad,fluxrad_sky,fluxrad,capcal,fluxgrd,qsurf,q2) |
---|
222 | |
---|
223 | |
---|
224 | ! Local variables : |
---|
225 | ! ----------------- |
---|
226 | |
---|
227 | ! Aerosol (dust or ice) extinction optical depth at reference wavelength |
---|
228 | ! for the "naerkind" optically active aerosols: |
---|
229 | |
---|
230 | real aerosol(ngrid,nlayer,naerkind) ! Aerosols. |
---|
231 | real zh(ngrid,nlayer) ! Potential temperature (K). |
---|
232 | real pw(ngrid,nlayer) ! Vertical velocity (m/s). (NOTE : >0 WHEN DOWNWARDS !!) |
---|
233 | |
---|
234 | integer l,ig,ierr,iq,nw,isoil |
---|
235 | |
---|
236 | ! FOR DIAGNOSTIC : |
---|
237 | |
---|
238 | real,dimension(:),allocatable,save :: fluxsurf_lw ! Incident Long Wave (IR) surface flux (W.m-2). |
---|
239 | real,dimension(:),allocatable,save :: fluxsurf_sw ! Incident Short Wave (stellar) surface flux (W.m-2). |
---|
240 | real,dimension(:),allocatable,save :: fluxsurfabs_sw ! Absorbed Short Wave (stellar) flux by the surface (W.m-2). |
---|
241 | real,dimension(:),allocatable,save :: fluxtop_lw ! Outgoing LW (IR) flux to space (W.m-2). |
---|
242 | real,dimension(:),allocatable,save :: fluxabs_sw ! Absorbed SW (stellar) flux (W.m-2). |
---|
243 | real,dimension(:),allocatable,save :: fluxtop_dn ! Incoming SW (stellar) radiation at the top of the atmosphere (W.m-2). |
---|
244 | real,dimension(:),allocatable,save :: fluxdyn ! Horizontal heat transport by dynamics (W.m-2). |
---|
245 | real,dimension(:,:),allocatable,save :: OLR_nu ! Outgoing LW radiation in each band (Normalized to the band width (W/m2/cm-1)). |
---|
246 | real,dimension(:,:),allocatable,save :: OSR_nu ! Outgoing SW radiation in each band (Normalized to the band width (W/m2/cm-1)). |
---|
247 | real,dimension(:,:),allocatable,save :: zdtlw ! LW heating tendencies (K/s). |
---|
248 | real,dimension(:,:),allocatable,save :: zdtsw ! SW heating tendencies (K/s). |
---|
249 | real,dimension(:),allocatable,save :: sensibFlux ! Turbulent flux given by the atmosphere to the surface (W.m-2). |
---|
250 | |
---|
251 | !$OMP THREADPRIVATE(fluxsurf_lw,fluxsurf_sw,fluxsurfabs_sw,fluxtop_lw,fluxabs_sw,fluxtop_dn,fluxdyn,OLR_nu,OSR_nu,& |
---|
252 | |
---|
253 | !$OMP zdtlw,zdtsw,sensibFlux) |
---|
254 | |
---|
255 | real zls ! Solar longitude (radians). |
---|
256 | real zlss ! Sub solar point longitude (radians). |
---|
257 | real zday ! Date (time since Ls=0, calculated in sols). |
---|
258 | real zzlay(ngrid,nlayer) ! Altitude at the middle of the atmospheric layers. |
---|
259 | real zzlev(ngrid,nlayer+1) ! Altitude at the atmospheric layer boundaries. |
---|
260 | |
---|
261 | ! TENDENCIES due to various processes : |
---|
262 | |
---|
263 | ! For Surface Temperature : (K/s) |
---|
264 | real zdtsurf(ngrid) ! Cumulated tendencies. |
---|
265 | real zdtsurfmr(ngrid) ! Mass_redistribution routine. |
---|
266 | real zdtsdif(ngrid) ! Turbdiff/vdifc routines. |
---|
267 | |
---|
268 | ! For Atmospheric Temperatures : (K/s) |
---|
269 | real zdtdif(ngrid,nlayer) ! Turbdiff/vdifc routines. |
---|
270 | real zdtmr(ngrid,nlayer) ! Mass_redistribution routine. |
---|
271 | real zdtsw1(ngrid,nlayer), zdtlw1(ngrid,nlayer) ! Callcorrk routine. |
---|
272 | |
---|
273 | ! For Surface Tracers : (kg/m2/s) |
---|
274 | real dqsurf(ngrid,nq) ! Cumulated tendencies. |
---|
275 | real zdqsdif(ngrid,nq) ! Turbdiff/vdifc routines. |
---|
276 | real zdqssed(ngrid,nq) ! Callsedim routine. |
---|
277 | real zdqsurfmr(ngrid,nq) ! Mass_redistribution routine. |
---|
278 | |
---|
279 | ! For Tracers : (kg/kg_of_air/s) |
---|
280 | real zdqadj(ngrid,nlayer,nq) ! Convadj routine. |
---|
281 | real zdqdif(ngrid,nlayer,nq) ! Turbdiff/vdifc routines. |
---|
282 | real zdqevap(ngrid,nlayer) ! Turbdiff routine. |
---|
283 | real zdqsed(ngrid,nlayer,nq) ! Callsedim routine. |
---|
284 | real zdqmr(ngrid,nlayer,nq) ! Mass_redistribution routine. |
---|
285 | |
---|
286 | real zdqchi(ngrid,nlayer,nq) ! Chemical tendency ( chemistry routine ). |
---|
287 | real zdqmph(ngrid,nlayer,nq) ! Microphysical tendency ( condensation routine only for now, no microphysical routines ). |
---|
288 | |
---|
289 | ! For Winds : (m/s/s) |
---|
290 | real zdvadj(ngrid,nlayer),zduadj(ngrid,nlayer) ! Convadj routine. |
---|
291 | real zdumr(ngrid,nlayer),zdvmr(ngrid,nlayer) ! Mass_redistribution routine. |
---|
292 | real zdvdif(ngrid,nlayer),zdudif(ngrid,nlayer) ! Turbdiff/vdifc routines. |
---|
293 | real zdhdif(ngrid,nlayer) ! Turbdiff/vdifc routines. |
---|
294 | real zdhadj(ngrid,nlayer) ! Convadj routine. |
---|
295 | |
---|
296 | ! For Pressure and Mass : |
---|
297 | real zdmassmr(ngrid,nlayer) ! Atmospheric Mass tendency for mass_redistribution (kg_of_air/m2/s). |
---|
298 | real zdmassmr_col(ngrid) ! Atmospheric Column Mass tendency for mass_redistribution (kg_of_air/m2/s). |
---|
299 | real zdpsrfmr(ngrid) ! Pressure tendency for mass_redistribution routine (Pa/s). |
---|
300 | |
---|
301 | |
---|
302 | |
---|
303 | ! Local variables for LOCAL CALCULATIONS: |
---|
304 | ! --------------------------------------- |
---|
305 | real zflubid(ngrid) |
---|
306 | real zplanck(ngrid),zpopsk(ngrid,nlayer) |
---|
307 | real ztim1,ztim2,ztim3, z1,z2 |
---|
308 | real ztime_fin |
---|
309 | real zdh(ngrid,nlayer) |
---|
310 | real gmplanet |
---|
311 | real taux(ngrid),tauy(ngrid) |
---|
312 | |
---|
313 | |
---|
314 | ! local variables for DIAGNOSTICS : (diagfi & stat) |
---|
315 | ! ------------------------------------------------- |
---|
316 | real ps(ngrid) ! Surface Pressure. |
---|
317 | real zt(ngrid,nlayer) ! Atmospheric Temperature. |
---|
318 | real zu(ngrid,nlayer),zv(ngrid,nlayer) ! Zonal and Meridional Winds. |
---|
319 | real zq(ngrid,nlayer,nq) ! Atmospheric Tracers. |
---|
320 | real zdtadj(ngrid,nlayer) ! Convadj Diagnostic. |
---|
321 | real zdtdyn(ngrid,nlayer) ! Dynamical Heating (K/s). |
---|
322 | real zdudyn(ngrid,nlayer) ! Dynamical Zonal Wind tendency (m.s-2). |
---|
323 | real,allocatable,dimension(:,:),save :: ztprevious ! Previous loop Atmospheric Temperature (K) ! Useful for Dynamical Heating calculation. |
---|
324 | real,allocatable,dimension(:,:),save :: zuprevious ! Previous loop Zonal Wind (m.s-1) ! Useful for Zonal Wind tendency calculation. |
---|
325 | !$OMP THREADPRIVATE(ztprevious,zuprevious) |
---|
326 | |
---|
327 | real vmr(ngrid,nlayer) ! volume mixing ratio |
---|
328 | real time_phys |
---|
329 | real,allocatable,dimension(:),save :: tau_col ! Total Aerosol Optical Depth. |
---|
330 | !$OMP THREADPRIVATE(tau_col) |
---|
331 | |
---|
332 | real ISR,ASR,OLR,GND,DYN,GSR,Ts1,Ts2,Ts3,TsS ! for Diagnostic. |
---|
333 | |
---|
334 | real qcol(ngrid,nq) ! Tracer Column Mass (kg/m2). |
---|
335 | |
---|
336 | ! to test energy conservation (RW+JL) |
---|
337 | real mass(ngrid,nlayer),massarea(ngrid,nlayer) |
---|
338 | real dEtot, dEtots, AtmToSurf_TurbFlux |
---|
339 | real,save :: dEtotSW, dEtotsSW, dEtotLW, dEtotsLW |
---|
340 | !$OMP THREADPRIVATE(dEtotSW, dEtotsSW, dEtotLW, dEtotsLW) |
---|
341 | real dEzRadsw(ngrid,nlayer),dEzRadlw(ngrid,nlayer),dEzdiff(ngrid,nlayer) |
---|
342 | real dEdiffs(ngrid),dEdiff(ngrid) |
---|
343 | |
---|
344 | !JL12 conservation test for mean flow kinetic energy has been disabled temporarily |
---|
345 | |
---|
346 | real dItot, dItot_tmp, dVtot, dVtot_tmp |
---|
347 | |
---|
348 | real dWtot, dWtot_tmp, dWtots, dWtots_tmp |
---|
349 | |
---|
350 | |
---|
351 | ! For Clear Sky Case. |
---|
352 | real fluxsurf_lw1(ngrid), fluxsurf_sw1(ngrid), fluxsurfabs_sw1(ngrid) ! For SW/LW flux. |
---|
353 | real fluxtop_lw1(ngrid), fluxabs_sw1(ngrid) ! For SW/LW flux. |
---|
354 | real albedo_equivalent1(ngrid) ! For Equivalent albedo calculation. |
---|
355 | real tau_col1(ngrid) ! For aerosol optical depth diagnostic. |
---|
356 | real OLR_nu1(ngrid,L_NSPECTI), OSR_nu1(ngrid,L_NSPECTV) ! For Outgoing Radiation diagnostics. |
---|
357 | real tf, ntf |
---|
358 | |
---|
359 | real,allocatable,dimension(:,:),save :: qsurf_hist |
---|
360 | !$OMP THREADPRIVATE(qsurf_hist) |
---|
361 | |
---|
362 | real,allocatable,dimension(:,:,:),save :: reffrad ! Aerosol effective radius (m). By RW |
---|
363 | real,allocatable,dimension(:,:,:),save :: nueffrad ! Aerosol effective radius variance. By RW |
---|
364 | !$OMP THREADPRIVATE(reffrad,nueffrad) |
---|
365 | |
---|
366 | real reffcol(ngrid,naerkind) |
---|
367 | |
---|
368 | ! Local variables for Titan chemistry and microphysics (JVO 2017) |
---|
369 | ! ---------------------------------------------------------------------------- |
---|
370 | |
---|
371 | integer,parameter :: nmicro=0 ! Temporary ! To be put in start/def |
---|
372 | |
---|
373 | real ctimestep ! Chemistry timestep (s) |
---|
374 | |
---|
375 | ! Grandeurs en moyennes zonales ------------------------ |
---|
376 | real temp_eq(nlayer), press_eq(nlayer) |
---|
377 | real zplev(ngrid,nlayer+1),zplay(ngrid,nlayer) |
---|
378 | ! real zzlev(ngrid,nlayer+1),zzlay(ngrid,nlayer) |
---|
379 | real ztemp(ngrid,nlayer) |
---|
380 | |
---|
381 | real ychim(ngrid,nlayer,nq-nmicro) |
---|
382 | |
---|
383 | ! 2D vmr tendencies ( chemistry and condensation ) |
---|
384 | real,dimension(:,:,:),allocatable,save :: dycchi |
---|
385 | ! Must be saved since chemistry is not called every step |
---|
386 | |
---|
387 | real dycmph(ngrid,nlayer,nq-nmicro) |
---|
388 | ! ---------------------------------------------------------- |
---|
389 | |
---|
390 | real,dimension(:,:),allocatable,save :: qysat |
---|
391 | |
---|
392 | character*10,dimension(:),allocatable,save :: nomqy |
---|
393 | !$OMP THREADPRIVATE(dycchi,qysat,nomqy) |
---|
394 | |
---|
395 | !----------------------------------------------------------------------------- |
---|
396 | |
---|
397 | !================================================================================================== |
---|
398 | |
---|
399 | ! ----------------- |
---|
400 | ! I. INITIALISATION |
---|
401 | ! ----------------- |
---|
402 | |
---|
403 | ! -------------------------------- |
---|
404 | ! I.1 First Call Initialisation. |
---|
405 | ! -------------------------------- |
---|
406 | if (firstcall) then |
---|
407 | |
---|
408 | ! Allocate saved arrays. |
---|
409 | ALLOCATE(tsurf(ngrid)) |
---|
410 | ALLOCATE(tsoil(ngrid,nsoilmx)) |
---|
411 | ALLOCATE(albedo(ngrid,L_NSPECTV)) |
---|
412 | ALLOCATE(albedo_equivalent(ngrid)) |
---|
413 | ALLOCATE(albedo_bareground(ngrid)) |
---|
414 | ALLOCATE(emis(ngrid)) |
---|
415 | ALLOCATE(dtrad(ngrid,nlayer)) |
---|
416 | ALLOCATE(fluxrad_sky(ngrid)) |
---|
417 | ALLOCATE(fluxrad(ngrid)) |
---|
418 | ALLOCATE(capcal(ngrid)) |
---|
419 | ALLOCATE(fluxgrd(ngrid)) |
---|
420 | ALLOCATE(qsurf(ngrid,nq)) |
---|
421 | ALLOCATE(q2(ngrid,nlayer+1)) |
---|
422 | ALLOCATE(ztprevious(ngrid,nlayer)) |
---|
423 | ALLOCATE(zuprevious(ngrid,nlayer)) |
---|
424 | ALLOCATE(qsurf_hist(ngrid,nq)) |
---|
425 | ALLOCATE(reffrad(ngrid,nlayer,naerkind)) |
---|
426 | ALLOCATE(nueffrad(ngrid,nlayer,naerkind)) |
---|
427 | ALLOCATE(fluxsurf_lw(ngrid)) |
---|
428 | ALLOCATE(fluxsurf_sw(ngrid)) |
---|
429 | ALLOCATE(fluxsurfabs_sw(ngrid)) |
---|
430 | ALLOCATE(fluxtop_lw(ngrid)) |
---|
431 | ALLOCATE(fluxabs_sw(ngrid)) |
---|
432 | ALLOCATE(fluxtop_dn(ngrid)) |
---|
433 | ALLOCATE(fluxdyn(ngrid)) |
---|
434 | ALLOCATE(OLR_nu(ngrid,L_NSPECTI)) |
---|
435 | ALLOCATE(OSR_nu(ngrid,L_NSPECTV)) |
---|
436 | ALLOCATE(sensibFlux(ngrid)) |
---|
437 | ALLOCATE(zdtlw(ngrid,nlayer)) |
---|
438 | ALLOCATE(zdtsw(ngrid,nlayer)) |
---|
439 | ALLOCATE(tau_col(ngrid)) |
---|
440 | ALLOCATE(dycchi(ngrid,nlayer,nq-nmicro)) |
---|
441 | ALLOCATE(qysat(nlayer,nq-nmicro)) |
---|
442 | ALLOCATE(nomqy(nq-nmicro+1)) |
---|
443 | |
---|
444 | ! This is defined in comsaison_h |
---|
445 | ALLOCATE(mu0(ngrid)) |
---|
446 | ALLOCATE(fract(ngrid)) |
---|
447 | ! This is defined in radcommon_h |
---|
448 | ALLOCATE(glat(ngrid)) |
---|
449 | |
---|
450 | |
---|
451 | ! Variables set to 0 |
---|
452 | ! ~~~~~~~~~~~~~~~~~~ |
---|
453 | dtrad(:,:) = 0.0 |
---|
454 | fluxrad(:) = 0.0 |
---|
455 | tau_col(:) = 0.0 |
---|
456 | zdtsw(:,:) = 0.0 |
---|
457 | zdtlw(:,:) = 0.0 |
---|
458 | |
---|
459 | |
---|
460 | ! Initialize aerosol indexes. |
---|
461 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
462 | call iniaerosol() |
---|
463 | |
---|
464 | |
---|
465 | ! Initialize tracer names, indexes and properties. |
---|
466 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
467 | IF (.NOT.ALLOCATED(noms)) ALLOCATE(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on) |
---|
468 | if (tracer) then |
---|
469 | call initracer(ngrid,nq,nametrac) |
---|
470 | endif |
---|
471 | |
---|
472 | |
---|
473 | ! Read 'startfi.nc' file. |
---|
474 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
475 | call phyetat0(startphy_file,ngrid,nlayer,"startfi.nc",0,0,nsoilmx,nq, & |
---|
476 | day_ini,time_phys,tsurf,tsoil,emis,q2,qsurf) |
---|
477 | if (.not.startphy_file) then |
---|
478 | ! additionnal "academic" initialization of physics |
---|
479 | if (is_master) write(*,*) "Physiq: initializing tsurf(:) to pt(:,1) !!" |
---|
480 | tsurf(:)=pt(:,1) |
---|
481 | if (is_master) write(*,*) "Physiq: initializing tsoil(:) to pt(:,1) !!" |
---|
482 | do isoil=1,nsoilmx |
---|
483 | tsoil(1:ngrid,isoil)=tsurf(1:ngrid) |
---|
484 | enddo |
---|
485 | if (is_master) write(*,*) "Physiq: initializing day_ini to pdat !" |
---|
486 | day_ini=pday |
---|
487 | endif |
---|
488 | |
---|
489 | if (pday.ne.day_ini) then |
---|
490 | write(*,*) "ERROR in physiq.F90:" |
---|
491 | write(*,*) "bad synchronization between physics and dynamics" |
---|
492 | write(*,*) "dynamics day: ",pday |
---|
493 | write(*,*) "physics day: ",day_ini |
---|
494 | stop |
---|
495 | endif |
---|
496 | |
---|
497 | write (*,*) 'In physiq day_ini =', day_ini |
---|
498 | |
---|
499 | ! Initialize albedo calculation. |
---|
500 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
501 | albedo(:,:)=0.0 |
---|
502 | albedo_bareground(:)=0.0 |
---|
503 | call surfini(ngrid,nq,qsurf,albedo,albedo_bareground) |
---|
504 | |
---|
505 | ! Initialize orbital calculation. |
---|
506 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
507 | call iniorbit(apoastr,periastr,year_day,peri_day,obliquit) |
---|
508 | |
---|
509 | |
---|
510 | if(tlocked)then |
---|
511 | print*,'Planet is tidally locked at resonance n=',nres |
---|
512 | print*,'Make sure you have the right rotation rate!!!' |
---|
513 | endif |
---|
514 | |
---|
515 | |
---|
516 | ! Initialize soil. |
---|
517 | ! ~~~~~~~~~~~~~~~~ |
---|
518 | if (callsoil) then |
---|
519 | |
---|
520 | call soil(ngrid,nsoilmx,firstcall,lastcall,inertiedat, & |
---|
521 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
522 | |
---|
523 | else ! else of 'callsoil'. |
---|
524 | |
---|
525 | print*,'WARNING! Thermal conduction in the soil turned off' |
---|
526 | capcal(:)=1.e6 |
---|
527 | fluxgrd(:)=intheat |
---|
528 | print*,'Flux from ground = ',intheat,' W m^-2' |
---|
529 | |
---|
530 | endif ! end of 'callsoil'. |
---|
531 | |
---|
532 | icount=1 |
---|
533 | |
---|
534 | |
---|
535 | ! Initialize surface history variable. |
---|
536 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
537 | qsurf_hist(:,:)=qsurf(:,:) |
---|
538 | |
---|
539 | ! Initialize variable for dynamical heating and zonal wind tendency diagnostic |
---|
540 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
541 | ztprevious(:,:)=pt(:,:) |
---|
542 | zuprevious(:,:)=pu(:,:) |
---|
543 | |
---|
544 | |
---|
545 | if(meanOLR)then |
---|
546 | call system('rm -f rad_bal.out') ! to record global radiative balance. |
---|
547 | call system('rm -f tem_bal.out') ! to record global mean/max/min temperatures. |
---|
548 | call system('rm -f h2o_bal.out') ! to record global hydrological balance. |
---|
549 | endif |
---|
550 | |
---|
551 | if (ngrid.ne.1) then ! Note : no need to create a restart file in 1d. |
---|
552 | call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid,nlayer,nq, & |
---|
553 | ptimestep,pday+nday,time_phys,cell_area, & |
---|
554 | albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe) |
---|
555 | endif |
---|
556 | |
---|
557 | ! Sanity check for chemistry |
---|
558 | if ( ((moyzon_ch).and.(.not.callchim)) .or. ((.not.moyzon_ch).and.(callchim)) ) then |
---|
559 | print *, "moyzon_ch=",moyzon_ch," and callchim=",callchim |
---|
560 | print *, "This is not compatible..." |
---|
561 | stop |
---|
562 | endif |
---|
563 | |
---|
564 | ! Initialize names, timestep and saturation profiles for chemistry |
---|
565 | |
---|
566 | if ( callchim .and. (nq.gt.nmicro) ) then |
---|
567 | |
---|
568 | ctimestep = ptimestep*REAL(ichim) |
---|
569 | |
---|
570 | do iq=nmicro+1,nq |
---|
571 | nomqy(iq-nmicro) = nametrac(iq) |
---|
572 | enddo |
---|
573 | |
---|
574 | nomqy(nq-nmicro+1) = "HV" |
---|
575 | |
---|
576 | ! qysat is taken at the equator ( small variations of t,p) |
---|
577 | temp_eq(:) = tmoy(:) |
---|
578 | press_eq(:) = playmoy(:)/100. ! en mbar |
---|
579 | |
---|
580 | call inicondens(nq-nmicro,press_eq,temp_eq,nomqy,qysat) |
---|
581 | |
---|
582 | endif |
---|
583 | |
---|
584 | ! XIOS outputs |
---|
585 | #ifdef CPP_XIOS |
---|
586 | |
---|
587 | write(*,*) "physiq: call initialize_xios_output" |
---|
588 | call initialize_xios_output(pday,ptime,ptimestep,daysec, & |
---|
589 | presnivs,pseudoalt) |
---|
590 | #endif |
---|
591 | endif ! end of 'firstcall' |
---|
592 | |
---|
593 | ! ------------------------------------------------------ |
---|
594 | ! I.2 Initializations done at every physical timestep: |
---|
595 | ! ------------------------------------------------------ |
---|
596 | |
---|
597 | #ifdef CPP_XIOS |
---|
598 | ! update XIOS time/calendar |
---|
599 | call update_xios_timestep |
---|
600 | #endif |
---|
601 | |
---|
602 | ! Initialize various variables |
---|
603 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
604 | |
---|
605 | pdt(1:ngrid,1:nlayer) = 0.0 |
---|
606 | zdtsurf(1:ngrid) = 0.0 |
---|
607 | pdq(1:ngrid,1:nlayer,1:nq) = 0.0 |
---|
608 | dqsurf(1:ngrid,1:nq)= 0.0 |
---|
609 | pdu(1:ngrid,1:nlayer) = 0.0 |
---|
610 | pdv(1:ngrid,1:nlayer) = 0.0 |
---|
611 | pdpsrf(1:ngrid) = 0.0 |
---|
612 | zflubid(1:ngrid) = 0.0 |
---|
613 | taux(1:ngrid) = 0.0 |
---|
614 | tauy(1:ngrid) = 0.0 |
---|
615 | |
---|
616 | zday=pday+ptime ! Compute time, in sols (and fraction thereof). |
---|
617 | |
---|
618 | ! Compute Stellar Longitude (Ls), and orbital parameters. |
---|
619 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
620 | if (season) then |
---|
621 | call stellarlong(zday,zls) |
---|
622 | else |
---|
623 | call stellarlong(float(day_ini),zls) |
---|
624 | end if |
---|
625 | |
---|
626 | call orbite(zls,dist_star,declin,right_ascen) |
---|
627 | |
---|
628 | if (tlocked) then |
---|
629 | zlss=Mod(-(2.*pi*(zday/year_day)*nres - right_ascen),2.*pi) |
---|
630 | elseif (diurnal) then |
---|
631 | zlss=-2.*pi*(zday-.5) |
---|
632 | else if(diurnal .eqv. .false.) then |
---|
633 | zlss=9999. |
---|
634 | endif |
---|
635 | |
---|
636 | |
---|
637 | ! Compute variations of g with latitude (oblate case). |
---|
638 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
639 | if (oblate .eqv. .false.) then |
---|
640 | glat(:) = g |
---|
641 | else if (flatten .eq. 0.0 .or. J2 .eq. 0.0 .or. Rmean .eq. 0.0 .or. MassPlanet .eq. 0.0) then |
---|
642 | print*,'I need values for flatten, J2, Rmean and MassPlanet to compute glat (else set oblate=.false.)' |
---|
643 | call abort |
---|
644 | else |
---|
645 | gmplanet = MassPlanet*grav*1e24 |
---|
646 | do ig=1,ngrid |
---|
647 | glat(ig)= gmplanet/(Rmean**2) * (1.D0 + 0.75 *J2 - 2.0*flatten/3. + (2.*flatten - 15./4.* J2) * cos(2. * (pi/2. - latitude(ig)))) |
---|
648 | end do |
---|
649 | endif |
---|
650 | |
---|
651 | ! Compute geopotential between layers. |
---|
652 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
653 | zzlay(1:ngrid,1:nlayer)=pphi(1:ngrid,1:nlayer) |
---|
654 | do l=1,nlayer |
---|
655 | zzlay(1:ngrid,l)= zzlay(1:ngrid,l)/glat(1:ngrid) |
---|
656 | enddo |
---|
657 | |
---|
658 | zzlev(1:ngrid,1)=0. |
---|
659 | zzlev(1:ngrid,nlayer+1)=1.e7 ! Dummy top of last layer above 10000 km... |
---|
660 | |
---|
661 | do l=2,nlayer |
---|
662 | do ig=1,ngrid |
---|
663 | z1=(pplay(ig,l-1)+pplev(ig,l))/(pplay(ig,l-1)-pplev(ig,l)) |
---|
664 | z2=(pplev(ig,l)+pplay(ig,l))/(pplev(ig,l)-pplay(ig,l)) |
---|
665 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
666 | enddo |
---|
667 | enddo |
---|
668 | |
---|
669 | ! -------------------------------Taken from old Titan -------------------------- |
---|
670 | ! zonal averages needed |
---|
671 | if (moyzon_ch) then |
---|
672 | |
---|
673 | zzlaybar(1,:)=(zphibar(1,:)+zphisbar(1))/g |
---|
674 | ! SI ON TIENT COMPTE DE LA VARIATION DE G AVEC L'ALTITUDE: |
---|
675 | ! zzlaybar(1,:)=RG*RA*RA/(RG*RA-(zphibar(1,:)+zphisbar(1)))-RA |
---|
676 | zzlevbar(1,1)=zphisbar(1)/g |
---|
677 | DO l=2,nlayer |
---|
678 | z1=(zplaybar(1,l-1)+zplevbar(1,l))/(zplevbar(1,l-1)-zplevbar(1,l)) |
---|
679 | z2=(zplevbar(1,l) +zplaybar(1,l))/(zplevbar(1,l) -zplaybar(1,l)) |
---|
680 | zzlevbar(1,l)=(z1*zzlaybar(1,l-1)+z2*zzlaybar(1,l))/(z1+z2) |
---|
681 | ENDDO |
---|
682 | zzlevbar(1,nlayer+1)=zzlaybar(1,nlayer)+(zzlaybar(1,nlayer)-zzlevbar(1,nlayer)) |
---|
683 | |
---|
684 | DO ig=2,ngrid |
---|
685 | if (latitude(ig).ne.latitude(ig-1)) then |
---|
686 | DO l=1,nlayer |
---|
687 | zzlaybar(ig,l)=(zphibar(ig,l)+zphisbar(ig))/g |
---|
688 | ! SI ON TIENT COMPTE DE LA VARIATION DE G AVEC L'ALTITUDE: |
---|
689 | !zzlaybar(ig,l)=RG*RA*RA/(RG*RA-(zphibar(ig,l)+zphisbar(ig)))-RA |
---|
690 | ENDDO |
---|
691 | zzlevbar(ig,1)=zphisbar(ig)/g |
---|
692 | DO l=2,nlayer |
---|
693 | z1=(zplaybar(ig,l-1)+zplevbar(ig,l))/ (zplevbar(ig,l-1)-zplevbar(ig,l)) |
---|
694 | z2=(zplevbar(ig,l) +zplaybar(ig,l))/(zplevbar(ig,l) -zplaybar(ig,l)) |
---|
695 | zzlevbar(ig,l)=(z1*zzlaybar(ig,l-1)+z2*zzlaybar(ig,l))/(z1+z2) |
---|
696 | ENDDO |
---|
697 | zzlevbar(ig,nlayer+1)=zzlaybar(ig,nlayer)+(zzlaybar(ig,nlayer)-zzlevbar(ig,nlayer)) |
---|
698 | else |
---|
699 | zzlaybar(ig,:)=zzlaybar(ig-1,:) |
---|
700 | zzlevbar(ig,:)=zzlevbar(ig-1,:) |
---|
701 | endif |
---|
702 | ENDDO |
---|
703 | |
---|
704 | endif ! moyzon |
---|
705 | ! ------------------------------------------------------------------------------------- |
---|
706 | |
---|
707 | ! Compute potential temperature |
---|
708 | ! Note : Potential temperature calculation may not be the same in physiq and dynamic... |
---|
709 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
710 | do l=1,nlayer |
---|
711 | do ig=1,ngrid |
---|
712 | zpopsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**rcp |
---|
713 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
---|
714 | mass(ig,l) = (pplev(ig,l) - pplev(ig,l+1))/glat(ig) |
---|
715 | massarea(ig,l)=mass(ig,l)*cell_area(ig) |
---|
716 | enddo |
---|
717 | enddo |
---|
718 | |
---|
719 | ! Compute vertical velocity (m/s) from vertical mass flux |
---|
720 | ! w = F / (rho*area) and rho = P/(r*T) |
---|
721 | ! But first linearly interpolate mass flux to mid-layers |
---|
722 | do l=1,nlayer-1 |
---|
723 | pw(1:ngrid,l)=0.5*(flxw(1:ngrid,l)+flxw(1:ngrid,l+1)) |
---|
724 | enddo |
---|
725 | pw(1:ngrid,nlayer)=0.5*flxw(1:ngrid,nlayer) ! since flxw(nlayer+1)=0 |
---|
726 | do l=1,nlayer |
---|
727 | pw(1:ngrid,l)=(pw(1:ngrid,l)*r*pt(1:ngrid,l)) / & |
---|
728 | (pplay(1:ngrid,l)*cell_area(1:ngrid)) |
---|
729 | enddo |
---|
730 | |
---|
731 | !--------------------------------- |
---|
732 | ! II. Compute radiative tendencies |
---|
733 | !--------------------------------- |
---|
734 | |
---|
735 | if (callrad) then |
---|
736 | if( mod(icount-1,iradia).eq.0.or.lastcall) then |
---|
737 | |
---|
738 | ! Compute local stellar zenith angles |
---|
739 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
740 | if (tlocked) then |
---|
741 | ! JL14 corrects tidally resonant (and inclined) cases. nres=omega_rot/omega_orb |
---|
742 | ztim1=SIN(declin) |
---|
743 | ztim2=COS(declin)*COS(zlss) |
---|
744 | ztim3=COS(declin)*SIN(zlss) |
---|
745 | |
---|
746 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
---|
747 | ztim1,ztim2,ztim3,mu0,fract, flatten) |
---|
748 | |
---|
749 | elseif (diurnal) then |
---|
750 | ztim1=SIN(declin) |
---|
751 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
---|
752 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
---|
753 | |
---|
754 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
---|
755 | ztim1,ztim2,ztim3,mu0,fract, flatten) |
---|
756 | else if(diurnal .eqv. .false.) then |
---|
757 | |
---|
758 | call mucorr(ngrid,declin,latitude,mu0,fract,10000.,rad,flatten) |
---|
759 | ! WARNING: this function appears not to work in 1D |
---|
760 | |
---|
761 | endif |
---|
762 | |
---|
763 | ! Eclipse incoming sunlight (e.g. Saturn ring shadowing). |
---|
764 | if(rings_shadow) then |
---|
765 | call call_rings(ngrid, ptime, pday, diurnal) |
---|
766 | endif |
---|
767 | |
---|
768 | |
---|
769 | if (corrk) then |
---|
770 | |
---|
771 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
772 | ! II.a Call correlated-k radiative transfer scheme |
---|
773 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
774 | |
---|
775 | call call_profilgases(nlayer) |
---|
776 | |
---|
777 | ! standard callcorrk |
---|
778 | call callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
779 | albedo,albedo_equivalent,emis,mu0,pplev,pplay,pt, & |
---|
780 | tsurf,fract,dist_star,aerosol, & |
---|
781 | zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw, & |
---|
782 | fluxsurfabs_sw,fluxtop_lw, & |
---|
783 | fluxabs_sw,fluxtop_dn,OLR_nu,OSR_nu, & |
---|
784 | tau_col,firstcall,lastcall) |
---|
785 | |
---|
786 | ! Radiative flux from the sky absorbed by the surface (W.m-2). |
---|
787 | GSR=0.0 |
---|
788 | fluxrad_sky(1:ngrid)=emis(1:ngrid)*fluxsurf_lw(1:ngrid)+fluxsurfabs_sw(1:ngrid) |
---|
789 | |
---|
790 | !if(noradsurf)then ! no lower surface; SW flux just disappears |
---|
791 | ! GSR = SUM(fluxsurf_sw(1:ngrid)*cell_area(1:ngrid))/totarea |
---|
792 | ! fluxrad_sky(1:ngrid)=emis(1:ngrid)*fluxsurf_lw(1:ngrid) |
---|
793 | ! print*,'SW lost in deep atmosphere = ',GSR,' W m^-2' |
---|
794 | !endif |
---|
795 | |
---|
796 | ! Net atmospheric radiative heating rate (K.s-1) |
---|
797 | dtrad(1:ngrid,1:nlayer)=zdtsw(1:ngrid,1:nlayer)+zdtlw(1:ngrid,1:nlayer) |
---|
798 | |
---|
799 | elseif(newtonian)then |
---|
800 | |
---|
801 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
802 | ! II.b Call Newtonian cooling scheme |
---|
803 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
804 | call newtrelax(ngrid,nlayer,mu0,sinlat,zpopsk,pt,pplay,pplev,dtrad,firstcall) |
---|
805 | |
---|
806 | zdtsurf(1:ngrid) = +(pt(1:ngrid,1)-tsurf(1:ngrid))/ptimestep |
---|
807 | ! e.g. surface becomes proxy for 1st atmospheric layer ? |
---|
808 | |
---|
809 | else |
---|
810 | |
---|
811 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
812 | ! II.c Atmosphere has no radiative effect |
---|
813 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
814 | fluxtop_dn(1:ngrid) = fract(1:ngrid)*mu0(1:ngrid)*Fat1AU/dist_star**2 |
---|
815 | if(ngrid.eq.1)then ! / by 4 globally in 1D case... |
---|
816 | fluxtop_dn(1) = fract(1)*Fat1AU/dist_star**2/2.0 |
---|
817 | endif |
---|
818 | fluxsurf_sw(1:ngrid) = fluxtop_dn(1:ngrid) |
---|
819 | print*,'------------WARNING---WARNING------------' ! by MT2015. |
---|
820 | print*,'You are in corrk=false mode, ' |
---|
821 | print*,'and the surface albedo is taken equal to the first visible spectral value' |
---|
822 | |
---|
823 | fluxsurfabs_sw(1:ngrid) = fluxtop_dn(1:ngrid)*(1.-albedo(1:ngrid,1)) |
---|
824 | fluxrad_sky(1:ngrid) = fluxsurfabs_sw(1:ngrid) |
---|
825 | fluxtop_lw(1:ngrid) = emis(1:ngrid)*sigma*tsurf(1:ngrid)**4 |
---|
826 | |
---|
827 | dtrad(1:ngrid,1:nlayer)=0.0 ! no atmospheric radiative heating |
---|
828 | |
---|
829 | endif ! end of corrk |
---|
830 | |
---|
831 | endif ! of if(mod(icount-1,iradia).eq.0) |
---|
832 | |
---|
833 | |
---|
834 | ! Transformation of the radiative tendencies |
---|
835 | ! ------------------------------------------ |
---|
836 | zplanck(1:ngrid)=tsurf(1:ngrid)*tsurf(1:ngrid) |
---|
837 | zplanck(1:ngrid)=emis(1:ngrid)*sigma*zplanck(1:ngrid)*zplanck(1:ngrid) |
---|
838 | fluxrad(1:ngrid)=fluxrad_sky(1:ngrid)-zplanck(1:ngrid) |
---|
839 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer)+dtrad(1:ngrid,1:nlayer) |
---|
840 | |
---|
841 | ! Test of energy conservation |
---|
842 | !---------------------------- |
---|
843 | if(enertest)then |
---|
844 | call planetwide_sumval(cpp*massarea(:,:)*zdtsw(:,:)/totarea_planet,dEtotSW) |
---|
845 | call planetwide_sumval(cpp*massarea(:,:)*zdtlw(:,:)/totarea_planet,dEtotLW) |
---|
846 | !call planetwide_sumval(fluxsurf_sw(:)*(1.-albedo_equivalent(:))*cell_area(:)/totarea_planet,dEtotsSW) !JL13 carefull, albedo can have changed since the last time we called corrk |
---|
847 | call planetwide_sumval(fluxsurfabs_sw(:)*cell_area(:)/totarea_planet,dEtotsSW) !JL13 carefull, albedo can have changed since the last time we called corrk |
---|
848 | call planetwide_sumval((fluxsurf_lw(:)*emis(:)-zplanck(:))*cell_area(:)/totarea_planet,dEtotsLW) |
---|
849 | dEzRadsw(:,:)=cpp*mass(:,:)*zdtsw(:,:) |
---|
850 | dEzRadlw(:,:)=cpp*mass(:,:)*zdtlw(:,:) |
---|
851 | if (is_master) then |
---|
852 | print*,'---------------------------------------------------------------' |
---|
853 | print*,'In corrk SW atmospheric heating =',dEtotSW,' W m-2' |
---|
854 | print*,'In corrk LW atmospheric heating =',dEtotLW,' W m-2' |
---|
855 | print*,'atmospheric net rad heating (SW+LW) =',dEtotLW+dEtotSW,' W m-2' |
---|
856 | print*,'In corrk SW surface heating =',dEtotsSW,' W m-2' |
---|
857 | print*,'In corrk LW surface heating =',dEtotsLW,' W m-2' |
---|
858 | print*,'surface net rad heating (SW+LW) =',dEtotsLW+dEtotsSW,' W m-2' |
---|
859 | endif |
---|
860 | endif ! end of 'enertest' |
---|
861 | |
---|
862 | endif ! of if (callrad) |
---|
863 | |
---|
864 | |
---|
865 | |
---|
866 | ! -------------------------------------------- |
---|
867 | ! III. Vertical diffusion (turbulent mixing) : |
---|
868 | ! -------------------------------------------- |
---|
869 | |
---|
870 | if (calldifv) then |
---|
871 | |
---|
872 | zflubid(1:ngrid)=fluxrad(1:ngrid)+fluxgrd(1:ngrid) |
---|
873 | |
---|
874 | ! JL12 the following if test is temporarily there to allow us to compare the old vdifc with turbdiff. |
---|
875 | if (UseTurbDiff) then |
---|
876 | |
---|
877 | call turbdiff(ngrid,nlayer,nq, & |
---|
878 | ptimestep,capcal,lwrite, & |
---|
879 | pplay,pplev,zzlay,zzlev,z0, & |
---|
880 | pu,pv,pt,zpopsk,pq,tsurf,emis,qsurf, & |
---|
881 | pdt,pdq,zflubid, & |
---|
882 | zdudif,zdvdif,zdtdif,zdtsdif, & |
---|
883 | sensibFlux,q2,zdqdif,zdqsdif, & |
---|
884 | taux,tauy,lastcall) |
---|
885 | |
---|
886 | else |
---|
887 | |
---|
888 | zdh(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer)/zpopsk(1:ngrid,1:nlayer) |
---|
889 | |
---|
890 | call vdifc(ngrid,nlayer,nq,zpopsk, & |
---|
891 | ptimestep,capcal,lwrite, & |
---|
892 | pplay,pplev,zzlay,zzlev,z0, & |
---|
893 | pu,pv,zh,pq,tsurf,emis,qsurf, & |
---|
894 | zdh,pdq,zflubid, & |
---|
895 | zdudif,zdvdif,zdhdif,zdtsdif, & |
---|
896 | sensibFlux,q2,zdqdif,zdqsdif, & |
---|
897 | taux,tauy,lastcall) |
---|
898 | |
---|
899 | zdtdif(1:ngrid,1:nlayer)=zdhdif(1:ngrid,1:nlayer)*zpopsk(1:ngrid,1:nlayer) ! for diagnostic only |
---|
900 | zdqevap(1:ngrid,1:nlayer)=0. |
---|
901 | |
---|
902 | end if !end of 'UseTurbDiff' |
---|
903 | |
---|
904 | |
---|
905 | pdv(1:ngrid,1:nlayer)=pdv(1:ngrid,1:nlayer)+zdvdif(1:ngrid,1:nlayer) |
---|
906 | pdu(1:ngrid,1:nlayer)=pdu(1:ngrid,1:nlayer)+zdudif(1:ngrid,1:nlayer) |
---|
907 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer)+zdtdif(1:ngrid,1:nlayer) |
---|
908 | zdtsurf(1:ngrid)=zdtsurf(1:ngrid)+zdtsdif(1:ngrid) |
---|
909 | |
---|
910 | if (tracer) then |
---|
911 | pdq(1:ngrid,1:nlayer,1:nq)=pdq(1:ngrid,1:nlayer,1:nq)+ zdqdif(1:ngrid,1:nlayer,1:nq) |
---|
912 | dqsurf(1:ngrid,1:nq)=dqsurf(1:ngrid,1:nq) + zdqsdif(1:ngrid,1:nq) |
---|
913 | end if ! of if (tracer) |
---|
914 | |
---|
915 | |
---|
916 | ! test energy conservation |
---|
917 | !------------------------- |
---|
918 | if(enertest)then |
---|
919 | |
---|
920 | dEzdiff(:,:)=cpp*mass(:,:)*zdtdif(:,:) |
---|
921 | do ig = 1, ngrid |
---|
922 | dEdiff(ig)=SUM(dEzdiff (ig,:))+ sensibFlux(ig)! subtract flux to the ground |
---|
923 | dEzdiff(ig,1)= dEzdiff(ig,1)+ sensibFlux(ig)! subtract flux to the ground |
---|
924 | enddo |
---|
925 | |
---|
926 | call planetwide_sumval(dEdiff(:)*cell_area(:)/totarea_planet,dEtot) |
---|
927 | dEdiffs(:)=capcal(:)*zdtsdif(:)-zflubid(:)-sensibFlux(:) |
---|
928 | call planetwide_sumval(dEdiffs(:)*cell_area(:)/totarea_planet,dEtots) |
---|
929 | call planetwide_sumval(sensibFlux(:)*cell_area(:)/totarea_planet,AtmToSurf_TurbFlux) |
---|
930 | |
---|
931 | if (is_master) then |
---|
932 | |
---|
933 | if (UseTurbDiff) then |
---|
934 | print*,'In TurbDiff sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
---|
935 | print*,'In TurbDiff non-cons atm nrj change =',dEtot,' W m-2' |
---|
936 | print*,'In TurbDiff (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
---|
937 | else |
---|
938 | print*,'In vdifc sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
---|
939 | print*,'In vdifc non-cons atm nrj change =',dEtot,' W m-2' |
---|
940 | print*,'In vdifc (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
---|
941 | end if |
---|
942 | endif ! end of 'is_master' |
---|
943 | |
---|
944 | ! JL12 : note that the black body radiative flux emitted by the surface has been updated by the implicit scheme but not given back elsewhere. |
---|
945 | endif ! end of 'enertest' |
---|
946 | |
---|
947 | else ! calldifv |
---|
948 | |
---|
949 | if(.not.newtonian)then |
---|
950 | |
---|
951 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + (fluxrad(1:ngrid) + fluxgrd(1:ngrid))/capcal(1:ngrid) |
---|
952 | |
---|
953 | endif |
---|
954 | |
---|
955 | endif ! end of 'calldifv' |
---|
956 | |
---|
957 | |
---|
958 | !---------------------------------- |
---|
959 | ! IV. Dry convective adjustment : |
---|
960 | !---------------------------------- |
---|
961 | |
---|
962 | if(calladj) then |
---|
963 | |
---|
964 | zdh(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer)/zpopsk(1:ngrid,1:nlayer) |
---|
965 | zduadj(1:ngrid,1:nlayer)=0.0 |
---|
966 | zdvadj(1:ngrid,1:nlayer)=0.0 |
---|
967 | zdhadj(1:ngrid,1:nlayer)=0.0 |
---|
968 | |
---|
969 | |
---|
970 | call convadj(ngrid,nlayer,nq,ptimestep, & |
---|
971 | pplay,pplev,zpopsk, & |
---|
972 | pu,pv,zh,pq, & |
---|
973 | pdu,pdv,zdh,pdq, & |
---|
974 | zduadj,zdvadj,zdhadj, & |
---|
975 | zdqadj) |
---|
976 | |
---|
977 | pdu(1:ngrid,1:nlayer) = pdu(1:ngrid,1:nlayer) + zduadj(1:ngrid,1:nlayer) |
---|
978 | pdv(1:ngrid,1:nlayer) = pdv(1:ngrid,1:nlayer) + zdvadj(1:ngrid,1:nlayer) |
---|
979 | pdt(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer) + zdhadj(1:ngrid,1:nlayer)*zpopsk(1:ngrid,1:nlayer) |
---|
980 | zdtadj(1:ngrid,1:nlayer) = zdhadj(1:ngrid,1:nlayer)*zpopsk(1:ngrid,1:nlayer) ! for diagnostic only |
---|
981 | |
---|
982 | if(tracer) then |
---|
983 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq) + zdqadj(1:ngrid,1:nlayer,1:nq) |
---|
984 | end if |
---|
985 | |
---|
986 | ! Test energy conservation |
---|
987 | if(enertest)then |
---|
988 | call planetwide_sumval(cpp*massarea(:,:)*zdtadj(:,:)/totarea_planet,dEtot) |
---|
989 | if (is_master) print*,'In convadj atmospheric energy change =',dEtot,' W m-2' |
---|
990 | endif |
---|
991 | |
---|
992 | |
---|
993 | endif ! end of 'calladj' |
---|
994 | |
---|
995 | |
---|
996 | !--------------------------------------------- |
---|
997 | ! V. Specific parameterizations for tracers |
---|
998 | !--------------------------------------------- |
---|
999 | |
---|
1000 | if (tracer) then |
---|
1001 | |
---|
1002 | ! ------------------------- |
---|
1003 | ! V.1. Chemistry |
---|
1004 | ! ------------------------- |
---|
1005 | if (callchim) then |
---|
1006 | |
---|
1007 | zplev(:,:) = zplevbar(:,:) |
---|
1008 | zplay(:,:) = zplaybar(:,:) |
---|
1009 | zzlev(:,:) = zzlevbar(:,:) |
---|
1010 | zzlay(:,:) = zzlaybar(:,:) |
---|
1011 | ztemp(:,:) = ztfibar(:,:) |
---|
1012 | |
---|
1013 | if (nq.gt.nmicro) then |
---|
1014 | do iq = nmicro+1,nq |
---|
1015 | ychim(:,:,iq-nmicro) = pq(:,:,iq) |
---|
1016 | enddo |
---|
1017 | endif |
---|
1018 | |
---|
1019 | ! Condensation tendency after the transport |
---|
1020 | do iq=1,nq-nmicro |
---|
1021 | do l=1,nlayer |
---|
1022 | do ig=1,ngrid |
---|
1023 | if ( ychim(ig,l,iq).gt.qysat(l,iq) ) then |
---|
1024 | dycmph(ig,l,nmicro+iq)= ( -ychim(ig,l,iq)+qysat(l,iq) ) / ptimestep |
---|
1025 | endif |
---|
1026 | enddo |
---|
1027 | enddo |
---|
1028 | enddo |
---|
1029 | |
---|
1030 | if( mod(icount-1,ichim).eq.0.) then |
---|
1031 | |
---|
1032 | print *, "On passe dans la chimie..." |
---|
1033 | |
---|
1034 | call calchim(ngrid,nq-nmicro,ychim,nomqy,declin,zls,ctimestep, & |
---|
1035 | ztemp,zplay,zplev,zzlay,zzlev,dycchi,nlayer+70) |
---|
1036 | |
---|
1037 | ! JVO 2017 : NLEV = nlayer+70, en accord avec le C. Quid si nlay=/ 55 ? |
---|
1038 | |
---|
1039 | endif |
---|
1040 | |
---|
1041 | if (nq.gt.nmicro) then |
---|
1042 | ! We convert tendencies back to 3D and mass mixing ratio |
---|
1043 | do iq=nmicro+1,nq |
---|
1044 | zdqchi(:,:,iq) = dycchi(:,:,iq-nmicro)*pq(:,:,iq) / ychim(:,:,iq-nmicro) |
---|
1045 | zdqmph(:,:,iq) = dycmph(:,:,iq-nmicro)*pq(:,:,iq) / ychim(:,:,iq-nmicro) |
---|
1046 | enddo |
---|
1047 | |
---|
1048 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq) + & |
---|
1049 | zdqchi(1:ngrid,1:nlayer,1:nq) + zdqmph(1:ngrid,1:nlayer,1:nq) |
---|
1050 | |
---|
1051 | endif |
---|
1052 | |
---|
1053 | endif |
---|
1054 | |
---|
1055 | ! ------------------------- |
---|
1056 | ! V.2. Aerosol particles |
---|
1057 | ! ------------------------- |
---|
1058 | |
---|
1059 | ! Sedimentation. |
---|
1060 | if (sedimentation) then |
---|
1061 | |
---|
1062 | zdqsed(1:ngrid,1:nlayer,1:nq) = 0.0 |
---|
1063 | zdqssed(1:ngrid,1:nq) = 0.0 |
---|
1064 | |
---|
1065 | call callsedim(ngrid,nlayer,ptimestep, & |
---|
1066 | pplev,zzlev,pt,pdt,pq,pdq, & |
---|
1067 | zdqsed,zdqssed,nq) |
---|
1068 | |
---|
1069 | ! Whether it falls as rain or snow depends only on the surface temperature |
---|
1070 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq) + zdqsed(1:ngrid,1:nlayer,1:nq) |
---|
1071 | dqsurf(1:ngrid,1:nq) = dqsurf(1:ngrid,1:nq) + zdqssed(1:ngrid,1:nq) |
---|
1072 | |
---|
1073 | end if ! end of 'sedimentation' |
---|
1074 | |
---|
1075 | |
---|
1076 | ! --------------- |
---|
1077 | ! V.3 Updates |
---|
1078 | ! --------------- |
---|
1079 | |
---|
1080 | ! Updating Atmospheric Mass and Tracers budgets. |
---|
1081 | if(mass_redistrib) then |
---|
1082 | |
---|
1083 | zdmassmr(1:ngrid,1:nlayer) = mass(1:ngrid,1:nlayer) * zdqevap(1:ngrid,1:nlayer) |
---|
1084 | |
---|
1085 | do ig = 1, ngrid |
---|
1086 | zdmassmr_col(ig)=SUM(zdmassmr(ig,1:nlayer)) |
---|
1087 | enddo |
---|
1088 | |
---|
1089 | call writediagfi(ngrid,"mass_evap","mass gain"," ",3,zdmassmr) |
---|
1090 | call writediagfi(ngrid,"mass_evap_col","mass gain col"," ",2,zdmassmr_col) |
---|
1091 | call writediagfi(ngrid,"mass","mass","kg/m2",3,mass) |
---|
1092 | |
---|
1093 | call mass_redistribution(ngrid,nlayer,nq,ptimestep, & |
---|
1094 | capcal,pplay,pplev,pt,tsurf,pq,qsurf, & |
---|
1095 | pu,pv,pdt,zdtsurf,pdq,pdu,pdv,zdmassmr, & |
---|
1096 | zdtmr,zdtsurfmr,zdpsrfmr,zdumr,zdvmr,zdqmr,zdqsurfmr) |
---|
1097 | |
---|
1098 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq) + zdqmr(1:ngrid,1:nlayer,1:nq) |
---|
1099 | dqsurf(1:ngrid,1:nq) = dqsurf(1:ngrid,1:nq) + zdqsurfmr(1:ngrid,1:nq) |
---|
1100 | pdt(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer) + zdtmr(1:ngrid,1:nlayer) |
---|
1101 | pdu(1:ngrid,1:nlayer) = pdu(1:ngrid,1:nlayer) + zdumr(1:ngrid,1:nlayer) |
---|
1102 | pdv(1:ngrid,1:nlayer) = pdv(1:ngrid,1:nlayer) + zdvmr(1:ngrid,1:nlayer) |
---|
1103 | pdpsrf(1:ngrid) = pdpsrf(1:ngrid) + zdpsrfmr(1:ngrid) |
---|
1104 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + zdtsurfmr(1:ngrid) |
---|
1105 | |
---|
1106 | endif |
---|
1107 | |
---|
1108 | ! ----------------------------- |
---|
1109 | ! V.4. Surface Tracer Update |
---|
1110 | ! ----------------------------- |
---|
1111 | |
---|
1112 | qsurf(1:ngrid,1:nq) = qsurf(1:ngrid,1:nq) + ptimestep*dqsurf(1:ngrid,1:nq) |
---|
1113 | |
---|
1114 | ! Add qsurf to qsurf_hist, which is what we save in diagfi.nc. At the same time, we set the water |
---|
1115 | ! content of ocean gridpoints back to zero, in order to avoid rounding errors in vdifc, rain. |
---|
1116 | qsurf_hist(:,:) = qsurf(:,:) |
---|
1117 | |
---|
1118 | endif! end of if 'tracer' |
---|
1119 | |
---|
1120 | |
---|
1121 | !------------------------------------------------ |
---|
1122 | ! VI. Surface and sub-surface soil temperature |
---|
1123 | !------------------------------------------------ |
---|
1124 | |
---|
1125 | |
---|
1126 | ! Increment surface temperature |
---|
1127 | |
---|
1128 | tsurf(1:ngrid)=tsurf(1:ngrid)+ptimestep*zdtsurf(1:ngrid) |
---|
1129 | |
---|
1130 | ! Compute soil temperatures and subsurface heat flux. |
---|
1131 | if (callsoil) then |
---|
1132 | call soil(ngrid,nsoilmx,.false.,lastcall,inertiedat, & |
---|
1133 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
1134 | endif |
---|
1135 | |
---|
1136 | |
---|
1137 | ! Test energy conservation |
---|
1138 | if(enertest)then |
---|
1139 | call planetwide_sumval(cell_area(:)*capcal(:)*zdtsurf(:)/totarea_planet,dEtots) |
---|
1140 | if (is_master) print*,'Surface energy change =',dEtots,' W m-2' |
---|
1141 | endif |
---|
1142 | |
---|
1143 | |
---|
1144 | !--------------------------------------------------- |
---|
1145 | ! VII. Perform diagnostics and write output files |
---|
1146 | !--------------------------------------------------- |
---|
1147 | |
---|
1148 | ! Note : For output only: the actual model integration is performed in the dynamics. |
---|
1149 | |
---|
1150 | |
---|
1151 | |
---|
1152 | ! Temperature, zonal and meridional winds. |
---|
1153 | zt(1:ngrid,1:nlayer) = pt(1:ngrid,1:nlayer) + pdt(1:ngrid,1:nlayer)*ptimestep |
---|
1154 | zu(1:ngrid,1:nlayer) = pu(1:ngrid,1:nlayer) + pdu(1:ngrid,1:nlayer)*ptimestep |
---|
1155 | zv(1:ngrid,1:nlayer) = pv(1:ngrid,1:nlayer) + pdv(1:ngrid,1:nlayer)*ptimestep |
---|
1156 | |
---|
1157 | ! Diagnostic. |
---|
1158 | zdtdyn(1:ngrid,1:nlayer) = (pt(1:ngrid,1:nlayer)-ztprevious(1:ngrid,1:nlayer)) / ptimestep |
---|
1159 | ztprevious(1:ngrid,1:nlayer) = zt(1:ngrid,1:nlayer) |
---|
1160 | |
---|
1161 | zdudyn(1:ngrid,1:nlayer) = (pu(1:ngrid,1:nlayer)-zuprevious(1:ngrid,1:nlayer)) / ptimestep |
---|
1162 | zuprevious(1:ngrid,1:nlayer) = zu(1:ngrid,1:nlayer) |
---|
1163 | |
---|
1164 | if(firstcall)then |
---|
1165 | zdtdyn(1:ngrid,1:nlayer)=0.0 |
---|
1166 | zdudyn(1:ngrid,1:nlayer)=0.0 |
---|
1167 | endif |
---|
1168 | |
---|
1169 | ! Dynamical heating diagnostic. |
---|
1170 | do ig=1,ngrid |
---|
1171 | fluxdyn(ig)= SUM(zdtdyn(ig,:) *mass(ig,:))*cpp |
---|
1172 | enddo |
---|
1173 | |
---|
1174 | ! Tracers. |
---|
1175 | zq(1:ngrid,1:nlayer,1:nq) = pq(1:ngrid,1:nlayer,1:nq) + pdq(1:ngrid,1:nlayer,1:nq)*ptimestep |
---|
1176 | |
---|
1177 | ! Surface pressure. |
---|
1178 | ps(1:ngrid) = pplev(1:ngrid,1) + pdpsrf(1:ngrid)*ptimestep |
---|
1179 | |
---|
1180 | |
---|
1181 | |
---|
1182 | ! Surface and soil temperature information |
---|
1183 | call planetwide_sumval(cell_area(:)*tsurf(:)/totarea_planet,Ts1) |
---|
1184 | call planetwide_minval(tsurf(:),Ts2) |
---|
1185 | call planetwide_maxval(tsurf(:),Ts3) |
---|
1186 | if(callsoil)then |
---|
1187 | TsS = SUM(cell_area(:)*tsoil(:,nsoilmx))/totarea ! mean temperature at bottom soil layer |
---|
1188 | if (is_master) then |
---|
1189 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf] ave[Tdeep]' |
---|
1190 | print*,Ts1,Ts2,Ts3,TsS |
---|
1191 | end if |
---|
1192 | else |
---|
1193 | if (is_master) then |
---|
1194 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf]' |
---|
1195 | print*,Ts1,Ts2,Ts3 |
---|
1196 | endif |
---|
1197 | end if |
---|
1198 | |
---|
1199 | |
---|
1200 | ! Check the energy balance of the simulation during the run |
---|
1201 | if(corrk)then |
---|
1202 | |
---|
1203 | call planetwide_sumval(cell_area(:)*fluxtop_dn(:)/totarea_planet,ISR) |
---|
1204 | call planetwide_sumval(cell_area(:)*fluxabs_sw(:)/totarea_planet,ASR) |
---|
1205 | call planetwide_sumval(cell_area(:)*fluxtop_lw(:)/totarea_planet,OLR) |
---|
1206 | call planetwide_sumval(cell_area(:)*fluxgrd(:)/totarea_planet,GND) |
---|
1207 | call planetwide_sumval(cell_area(:)*fluxdyn(:)/totarea_planet,DYN) |
---|
1208 | do ig=1,ngrid |
---|
1209 | if(fluxtop_dn(ig).lt.0.0)then |
---|
1210 | print*,'fluxtop_dn has gone crazy' |
---|
1211 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
1212 | print*,'tau_col=',tau_col(ig) |
---|
1213 | print*,'aerosol=',aerosol(ig,:,:) |
---|
1214 | print*,'temp= ',pt(ig,:) |
---|
1215 | print*,'pplay= ',pplay(ig,:) |
---|
1216 | call abort |
---|
1217 | endif |
---|
1218 | end do |
---|
1219 | |
---|
1220 | if(ngrid.eq.1)then |
---|
1221 | DYN=0.0 |
---|
1222 | endif |
---|
1223 | |
---|
1224 | if (is_master) then |
---|
1225 | print*,' ISR ASR OLR GND DYN [W m^-2]' |
---|
1226 | print*, ISR,ASR,OLR,GND,DYN |
---|
1227 | endif |
---|
1228 | |
---|
1229 | if(enertest .and. is_master)then |
---|
1230 | print*,'SW flux/heating difference SW++ - ASR = ',dEtotSW+dEtotsSW-ASR,' W m-2' |
---|
1231 | print*,'LW flux/heating difference LW++ - OLR = ',dEtotLW+dEtotsLW+OLR,' W m-2' |
---|
1232 | print*,'LW energy balance LW++ + ASR = ',dEtotLW+dEtotsLW+ASR,' W m-2' |
---|
1233 | endif |
---|
1234 | |
---|
1235 | if(meanOLR .and. is_master)then |
---|
1236 | if((ngrid.gt.1) .or. (mod(icount-1,ecritphy).eq.0))then |
---|
1237 | ! to record global radiative balance |
---|
1238 | open(92,file="rad_bal.out",form='formatted',position='append') |
---|
1239 | write(92,*) zday,ISR,ASR,OLR |
---|
1240 | close(92) |
---|
1241 | open(93,file="tem_bal.out",form='formatted',position='append') |
---|
1242 | if(callsoil)then |
---|
1243 | write(93,*) zday,Ts1,Ts2,Ts3,TsS |
---|
1244 | else |
---|
1245 | write(93,*) zday,Ts1,Ts2,Ts3 |
---|
1246 | endif |
---|
1247 | close(93) |
---|
1248 | endif |
---|
1249 | endif |
---|
1250 | |
---|
1251 | endif ! end of 'corrk' |
---|
1252 | |
---|
1253 | |
---|
1254 | ! Diagnostic to test radiative-convective timescales in code. |
---|
1255 | if(testradtimes)then |
---|
1256 | open(38,file="tau_phys.out",form='formatted',position='append') |
---|
1257 | ig=1 |
---|
1258 | do l=1,nlayer |
---|
1259 | write(38,*) -1./pdt(ig,l),pt(ig,l),pplay(ig,l) |
---|
1260 | enddo |
---|
1261 | close(38) |
---|
1262 | print*,'As testradtimes enabled,' |
---|
1263 | print*,'exiting physics on first call' |
---|
1264 | call abort |
---|
1265 | endif |
---|
1266 | |
---|
1267 | |
---|
1268 | ! Compute column amounts (kg m-2) if tracers are enabled. |
---|
1269 | if(tracer)then |
---|
1270 | qcol(1:ngrid,1:nq)=0.0 |
---|
1271 | do iq=1,nq |
---|
1272 | do ig=1,ngrid |
---|
1273 | qcol(ig,iq) = SUM( zq(ig,1:nlayer,iq) * mass(ig,1:nlayer)) |
---|
1274 | enddo |
---|
1275 | enddo |
---|
1276 | |
---|
1277 | ! Generalised for arbitrary aerosols now. By LK |
---|
1278 | reffcol(1:ngrid,1:naerkind)=0.0 |
---|
1279 | |
---|
1280 | endif ! end of 'tracer' |
---|
1281 | |
---|
1282 | |
---|
1283 | if (is_master) print*,'--> Ls =',zls*180./pi |
---|
1284 | |
---|
1285 | |
---|
1286 | !---------------------------------------------------------------------- |
---|
1287 | ! Writing NetCDF file "RESTARTFI" at the end of the run |
---|
1288 | !---------------------------------------------------------------------- |
---|
1289 | |
---|
1290 | ! Note: 'restartfi' is stored just before dynamics are stored |
---|
1291 | ! in 'restart'. Between now and the writting of 'restart', |
---|
1292 | ! there will have been the itau=itau+1 instruction and |
---|
1293 | ! a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
---|
1294 | ! thus we store for time=time+dtvr |
---|
1295 | |
---|
1296 | |
---|
1297 | |
---|
1298 | if(lastcall) then |
---|
1299 | ztime_fin = ptime + ptimestep/(float(iphysiq)*daysec) |
---|
1300 | |
---|
1301 | if (ngrid.ne.1) then |
---|
1302 | write(*,*)'PHYSIQ: for physdem ztime_fin =',ztime_fin |
---|
1303 | |
---|
1304 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq, & |
---|
1305 | ptimestep,ztime_fin, & |
---|
1306 | tsurf,tsoil,emis,q2,qsurf_hist) |
---|
1307 | endif |
---|
1308 | |
---|
1309 | endif ! end of 'lastcall' |
---|
1310 | |
---|
1311 | |
---|
1312 | !----------------------------------- |
---|
1313 | ! Saving statistics : |
---|
1314 | !----------------------------------- |
---|
1315 | |
---|
1316 | ! Note :("stats" stores and accumulates 8 key variables in file "stats.nc" |
---|
1317 | ! which can later be used to make the statistic files of the run: |
---|
1318 | ! "stats") only possible in 3D runs !!! |
---|
1319 | |
---|
1320 | |
---|
1321 | if (callstats) then |
---|
1322 | |
---|
1323 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
1324 | call wstats(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
1325 | call wstats(ngrid,"fluxsurf_lw", & |
---|
1326 | "Thermal IR radiative flux to surface","W.m-2",2, & |
---|
1327 | fluxsurf_lw) |
---|
1328 | call wstats(ngrid,"fluxtop_lw", & |
---|
1329 | "Thermal IR radiative flux to space","W.m-2",2, & |
---|
1330 | fluxtop_lw) |
---|
1331 | |
---|
1332 | ! call wstats(ngrid,"fluxsurf_sw", & |
---|
1333 | ! "Solar radiative flux to surface","W.m-2",2, & |
---|
1334 | ! fluxsurf_sw_tot) |
---|
1335 | ! call wstats(ngrid,"fluxtop_sw", & |
---|
1336 | ! "Solar radiative flux to space","W.m-2",2, & |
---|
1337 | ! fluxtop_sw_tot) |
---|
1338 | |
---|
1339 | |
---|
1340 | call wstats(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) |
---|
1341 | call wstats(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) |
---|
1342 | call wstats(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) |
---|
1343 | !call wstats(ngrid,"ALB","Surface albedo"," ",2,albedo_equivalent) |
---|
1344 | !call wstats(ngrid,"ALB_1st","First Band Surface albedo"," ",2,albedo(:,1)) |
---|
1345 | call wstats(ngrid,"p","Pressure","Pa",3,pplay) |
---|
1346 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
---|
1347 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
---|
1348 | call wstats(ngrid,"v","Meridional (North-South) wind","m.s-1",3,zv) |
---|
1349 | call wstats(ngrid,"w","Vertical (down-up) wind","m.s-1",3,pw) |
---|
1350 | call wstats(ngrid,"q2","Boundary layer eddy kinetic energy","m2.s-2",3,q2) |
---|
1351 | |
---|
1352 | if (tracer) then |
---|
1353 | do iq=1,nq |
---|
1354 | call wstats(ngrid,noms(iq),noms(iq),'kg/kg',3,zq(1,1,iq)) |
---|
1355 | call wstats(ngrid,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
1356 | 'kg m^-2',2,qsurf(1,iq) ) |
---|
1357 | call wstats(ngrid,trim(noms(iq))//'_col',trim(noms(iq))//'_col', & |
---|
1358 | 'kg m^-2',2,qcol(1,iq) ) |
---|
1359 | |
---|
1360 | ! call wstats(ngrid,trim(noms(iq))//'_reff', & |
---|
1361 | ! trim(noms(iq))//'_reff', & |
---|
1362 | ! 'm',3,reffrad(1,1,iq)) |
---|
1363 | |
---|
1364 | end do |
---|
1365 | |
---|
1366 | endif ! end of 'tracer' |
---|
1367 | |
---|
1368 | if(lastcall) then |
---|
1369 | write (*,*) "Writing stats..." |
---|
1370 | call mkstats(ierr) |
---|
1371 | endif |
---|
1372 | |
---|
1373 | endif ! end of 'callstats' |
---|
1374 | |
---|
1375 | |
---|
1376 | !----------------------------------------------------------------------------------------------------- |
---|
1377 | ! OUTPUT in netcdf file "DIAGFI.NC", containing any variable for diagnostic |
---|
1378 | ! |
---|
1379 | ! Note 1 : output with period "ecritphy", set in "run.def" |
---|
1380 | ! |
---|
1381 | ! Note 2 : writediagfi can also be called from any other subroutine for any variable, |
---|
1382 | ! but its preferable to keep all the calls in one place ... |
---|
1383 | !----------------------------------------------------------------------------------------------------- |
---|
1384 | |
---|
1385 | |
---|
1386 | call writediagfi(ngrid,"Ls","solar longitude","deg",0,zls*180./pi) |
---|
1387 | call writediagfi(ngrid,"Lss","sub solar longitude","deg",0,zlss*180./pi) |
---|
1388 | call writediagfi(ngrid,"RA","right ascension","deg",0,right_ascen*180./pi) |
---|
1389 | call writediagfi(ngrid,"Declin","solar declination","deg",0,declin*180./pi) |
---|
1390 | call writediagfi(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
1391 | call writediagfi(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
1392 | call writediagfi(ngrid,"temp","temperature","K",3,zt) |
---|
1393 | call writediagfi(ngrid,"teta","potential temperature","K",3,zh) |
---|
1394 | call writediagfi(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
1395 | call writediagfi(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
1396 | call writediagfi(ngrid,"w","Vertical wind","m.s-1",3,pw) |
---|
1397 | call writediagfi(ngrid,"p","Pressure","Pa",3,pplay) |
---|
1398 | |
---|
1399 | ! Subsurface temperatures |
---|
1400 | ! call writediagsoil(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
1401 | ! call writediagsoil(ngrid,"temp","temperature","K",3,tsoil) |
---|
1402 | |
---|
1403 | |
---|
1404 | |
---|
1405 | ! Total energy balance diagnostics |
---|
1406 | if(callrad.and.(.not.newtonian))then |
---|
1407 | |
---|
1408 | !call writediagfi(ngrid,"ALB","Surface albedo"," ",2,albedo_equivalent) |
---|
1409 | !call writediagfi(ngrid,"ALB_1st","First Band Surface albedo"," ",2,albedo(:,1)) |
---|
1410 | call writediagfi(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) |
---|
1411 | call writediagfi(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) |
---|
1412 | call writediagfi(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) |
---|
1413 | call writediagfi(ngrid,"shad","rings"," ", 2, fract) |
---|
1414 | |
---|
1415 | ! call writediagfi(ngrid,"ASRcs","absorbed stellar rad (cs).","W m-2",2,fluxabs_sw1) |
---|
1416 | ! call writediagfi(ngrid,"OLRcs","outgoing longwave rad (cs).","W m-2",2,fluxtop_lw1) |
---|
1417 | ! call writediagfi(ngrid,"fluxsurfsw","sw surface flux.","W m-2",2,fluxsurf_sw) |
---|
1418 | ! call writediagfi(ngrid,"fluxsurflw","lw back radiation.","W m-2",2,fluxsurf_lw) |
---|
1419 | ! call writediagfi(ngrid,"fluxsurfswcs","sw surface flux (cs).","W m-2",2,fluxsurf_sw1) |
---|
1420 | ! call writediagfi(ngrid,"fluxsurflwcs","lw back radiation (cs).","W m-2",2,fluxsurf_lw1) |
---|
1421 | |
---|
1422 | |
---|
1423 | call writediagfi(ngrid,"GND","heat flux from ground","W m-2",2,fluxgrd) |
---|
1424 | |
---|
1425 | call writediagfi(ngrid,"DYN","dynamical heat input","W m-2",2,fluxdyn) |
---|
1426 | |
---|
1427 | endif ! end of 'callrad' |
---|
1428 | |
---|
1429 | if(enertest) then |
---|
1430 | |
---|
1431 | if (calldifv) then |
---|
1432 | |
---|
1433 | call writediagfi(ngrid,"q2","turbulent kinetic energy","J.kg^-1",3,q2) |
---|
1434 | call writediagfi(ngrid,"sensibFlux","sensible heat flux","w.m^-2",2,sensibFlux) |
---|
1435 | |
---|
1436 | ! call writediagfi(ngrid,"dEzdiff","turbulent diffusion heating (-sensible flux)","w.m^-2",3,dEzdiff) |
---|
1437 | ! call writediagfi(ngrid,"dEdiff","integrated turbulent diffusion heating (-sensible flux)","w.m^-2",2,dEdiff) |
---|
1438 | ! call writediagfi(ngrid,"dEdiffs","In TurbDiff (correc rad+latent heat) surf nrj change","w.m^-2",2,dEdiffs) |
---|
1439 | |
---|
1440 | endif |
---|
1441 | |
---|
1442 | if (corrk) then |
---|
1443 | call writediagfi(ngrid,"dEzradsw","radiative heating","w.m^-2",3,dEzradsw) |
---|
1444 | call writediagfi(ngrid,"dEzradlw","radiative heating","w.m^-2",3,dEzradlw) |
---|
1445 | endif |
---|
1446 | |
---|
1447 | endif ! end of 'enertest' |
---|
1448 | |
---|
1449 | ! Temporary inclusions for winds diagnostics. |
---|
1450 | call writediagfi(ngrid,"zdudif","Turbdiff tend. zon. wind","m s-2",3,zdudif) |
---|
1451 | call writediagfi(ngrid,"zdudyn","Dyn. tend. zon. wind","m s-2",3,zdudyn) |
---|
1452 | |
---|
1453 | ! Temporary inclusions for heating diagnostics. |
---|
1454 | call writediagfi(ngrid,"zdtsw","SW heating","T s-1",3,zdtsw) |
---|
1455 | call writediagfi(ngrid,"zdtlw","LW heating","T s-1",3,zdtlw) |
---|
1456 | call writediagfi(ngrid,"dtrad","radiative heating","K s-1",3,dtrad) |
---|
1457 | call writediagfi(ngrid,"zdtdyn","Dyn. heating","T s-1",3,zdtdyn) |
---|
1458 | |
---|
1459 | ! For Debugging. |
---|
1460 | call writediagfi(ngrid,'pphi','Geopotential',' ',3,pphi) |
---|
1461 | |
---|
1462 | |
---|
1463 | ! Output tracers. |
---|
1464 | if (tracer) then |
---|
1465 | |
---|
1466 | do iq=1,nq |
---|
1467 | call writediagfi(ngrid,noms(iq),noms(iq),'kg/kg',3,zq(1,1,iq)) |
---|
1468 | call writediagfi(ngrid,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
1469 | 'kg m^-2',2,qsurf_hist(1,iq) ) |
---|
1470 | call writediagfi(ngrid,trim(noms(iq))//'_col',trim(noms(iq))//'_col', & |
---|
1471 | 'kg m^-2',2,qcol(1,iq) ) |
---|
1472 | |
---|
1473 | ! call writediagfi(ngrid,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
1474 | ! 'kg m^-2',2,qsurf(1,iq) ) |
---|
1475 | |
---|
1476 | do ig=1,ngrid |
---|
1477 | if(tau_col(ig).gt.1.e3)then |
---|
1478 | print*,'WARNING: tau_col=',tau_col(ig) |
---|
1479 | print*,'at ig=',ig,'in PHYSIQ' |
---|
1480 | endif |
---|
1481 | end do |
---|
1482 | |
---|
1483 | call writediagfi(ngrid,"tau_col","Total aerosol optical depth","[]",2,tau_col) |
---|
1484 | |
---|
1485 | enddo ! end of 'nq' loop |
---|
1486 | |
---|
1487 | endif ! end of 'tracer' |
---|
1488 | |
---|
1489 | |
---|
1490 | ! Output spectrum. |
---|
1491 | if(specOLR.and.corrk)then |
---|
1492 | call writediagspecIR(ngrid,"OLR3D","OLR(lon,lat,band)","W/m^2/cm^-1",3,OLR_nu) |
---|
1493 | call writediagspecVI(ngrid,"OSR3D","OSR(lon,lat,band)","W/m^2/cm^-1",3,OSR_nu) |
---|
1494 | endif |
---|
1495 | |
---|
1496 | ! XIOS outputs |
---|
1497 | #ifdef CPP_XIOS |
---|
1498 | ! Send fields to XIOS: (NB these fields must also be defined as |
---|
1499 | ! <field id="..." /> in context_lmdz_physics.xml to be correctly used) |
---|
1500 | CALL send_xios_field("ls",zls) |
---|
1501 | |
---|
1502 | CALL send_xios_field("ps",ps) |
---|
1503 | CALL send_xios_field("area",cell_area) |
---|
1504 | |
---|
1505 | CALL send_xios_field("temperature",zt) |
---|
1506 | CALL send_xios_field("u",zu) |
---|
1507 | CALL send_xios_field("v",zv) |
---|
1508 | |
---|
1509 | #endif |
---|
1510 | |
---|
1511 | icount=icount+1 |
---|
1512 | |
---|
1513 | end subroutine physiq |
---|
1514 | |
---|
1515 | end module physiq_mod |
---|