[1549] | 1 | module physiq_mod |
---|
| 2 | |
---|
| 3 | implicit none |
---|
| 4 | |
---|
| 5 | contains |
---|
| 6 | |
---|
[751] | 7 | subroutine physiq(ngrid,nlayer,nq, & |
---|
[787] | 8 | nametrac, & |
---|
[253] | 9 | firstcall,lastcall, & |
---|
| 10 | pday,ptime,ptimestep, & |
---|
| 11 | pplev,pplay,pphi, & |
---|
| 12 | pu,pv,pt,pq, & |
---|
[1312] | 13 | flxw, & |
---|
[1576] | 14 | pdu,pdv,pdt,pdq,pdpsrf) |
---|
[253] | 15 | |
---|
[1788] | 16 | use radinc_h, only : L_NSPECTI,L_NSPECTV |
---|
[2328] | 17 | use radcommon_h, only: sigma, gzlat, grav, BWNV |
---|
[1958] | 18 | use comchem_h, only: nkim, cnames, nlaykim_up, ykim_up, ykim_tot, botCH4 |
---|
[1216] | 19 | use comdiurn_h, only: coslat, sinlat, coslon, sinlon |
---|
[1327] | 20 | use comsaison_h, only: mu0, fract, dist_star, declin, right_ascen |
---|
[1216] | 21 | use comsoil_h, only: nsoilmx, layer, mlayer, inertiedat |
---|
[2242] | 22 | use datafile_mod, only: datadir, corrkdir, banddir, haze_opt_file |
---|
[1543] | 23 | use geometry_mod, only: latitude, longitude, cell_area |
---|
[1542] | 24 | USE comgeomfi_h, only: totarea, totarea_planet |
---|
[1795] | 25 | USE tracer_h |
---|
[1525] | 26 | use time_phylmdz_mod, only: ecritphy, iphysiq, nday |
---|
[1670] | 27 | use phyetat0_mod, only: phyetat0 |
---|
[1216] | 28 | use phyredem, only: physdem0, physdem1 |
---|
[1295] | 29 | use planetwide_mod, only: planetwide_minval,planetwide_maxval,planetwide_sumval |
---|
| 30 | use mod_phys_lmdz_para, only : is_master |
---|
[1308] | 31 | use planete_mod, only: apoastr, periastr, year_day, peri_day, & |
---|
| 32 | obliquit, nres, z0 |
---|
[1524] | 33 | use comcstfi_mod, only: pi, g, rcp, r, rad, mugaz, cpp |
---|
| 34 | use time_phylmdz_mod, only: daysec |
---|
[2366] | 35 | #ifndef MESOSCALE |
---|
[1914] | 36 | use logic_mod, only: moyzon_ch |
---|
[1966] | 37 | use moyzon_mod, only: zphibar, zphisbar, zplevbar, zplaybar, & |
---|
| 38 | zzlevbar, zzlaybar, ztfibar, zqfibar |
---|
[2366] | 39 | #endif |
---|
[1397] | 40 | use callkeys_mod |
---|
[2291] | 41 | use phys_state_var_mod |
---|
| 42 | use turb_mod, only : q2,sensibFlux,turb_resolved |
---|
| 43 | #ifndef MESOSCALE |
---|
[1622] | 44 | use vertical_layers_mod, only: presnivs, pseudoalt |
---|
[1896] | 45 | use mod_phys_lmdz_omp_data, ONLY: is_omp_master |
---|
[2291] | 46 | #else |
---|
| 47 | use comm_wrf, only : comm_HR_SW, comm_HR_LW, & |
---|
| 48 | comm_FLUXTOP_DN,comm_FLUXABS_SW,& |
---|
| 49 | comm_FLUXTOP_LW,comm_FLUXSURF_SW,& |
---|
| 50 | comm_FLUXSURF_LW,comm_FLXGRD |
---|
| 51 | #endif |
---|
[1623] | 52 | #ifdef CPP_XIOS |
---|
[1622] | 53 | use xios_output_mod, only: initialize_xios_output, & |
---|
| 54 | update_xios_timestep, & |
---|
| 55 | send_xios_field |
---|
[1896] | 56 | use wxios, only: wxios_context_init, xios_context_finalize |
---|
[1623] | 57 | #endif |
---|
[1926] | 58 | use muphy_diag |
---|
[253] | 59 | implicit none |
---|
| 60 | |
---|
| 61 | |
---|
| 62 | !================================================================== |
---|
| 63 | ! |
---|
| 64 | ! Purpose |
---|
| 65 | ! ------- |
---|
| 66 | ! Central subroutine for all the physics parameterisations in the |
---|
| 67 | ! universal model. Originally adapted from the Mars LMDZ model. |
---|
| 68 | ! |
---|
| 69 | ! The model can be run without or with tracer transport |
---|
| 70 | ! depending on the value of "tracer" in file "callphys.def". |
---|
| 71 | ! |
---|
| 72 | ! |
---|
| 73 | ! It includes: |
---|
| 74 | ! |
---|
[1477] | 75 | ! I. Initialization : |
---|
| 76 | ! I.1 Firstcall initializations. |
---|
| 77 | ! I.2 Initialization for every call to physiq. |
---|
[253] | 78 | ! |
---|
[1477] | 79 | ! II. Compute radiative transfer tendencies (longwave and shortwave) : |
---|
| 80 | ! II.a Option 1 : Call correlated-k radiative transfer scheme. |
---|
| 81 | ! II.b Option 2 : Call Newtonian cooling scheme. |
---|
| 82 | ! II.c Option 3 : Atmosphere has no radiative effect. |
---|
| 83 | ! |
---|
| 84 | ! III. Vertical diffusion (turbulent mixing) : |
---|
| 85 | ! |
---|
| 86 | ! IV. Dry Convective adjustment : |
---|
| 87 | ! |
---|
[1647] | 88 | ! V. Tracers |
---|
[1926] | 89 | ! V.1. Microphysics |
---|
| 90 | ! V.2. Chemistry |
---|
[1672] | 91 | ! V.3. Updates (pressure variations, surface budget). |
---|
| 92 | ! V.4. Surface Tracer Update. |
---|
[1477] | 93 | ! |
---|
[1647] | 94 | ! VI. Surface and sub-surface soil temperature. |
---|
[1477] | 95 | ! |
---|
[1647] | 96 | ! VII. Perform diagnostics and write output files. |
---|
[1477] | 97 | ! |
---|
| 98 | ! |
---|
[253] | 99 | ! arguments |
---|
| 100 | ! --------- |
---|
| 101 | ! |
---|
[1477] | 102 | ! INPUT |
---|
[253] | 103 | ! ----- |
---|
[1477] | 104 | ! |
---|
[253] | 105 | ! ngrid Size of the horizontal grid. |
---|
| 106 | ! nlayer Number of vertical layers. |
---|
[1477] | 107 | ! nq Number of advected fields. |
---|
| 108 | ! nametrac Name of corresponding advected fields. |
---|
| 109 | ! |
---|
| 110 | ! firstcall True at the first call. |
---|
| 111 | ! lastcall True at the last call. |
---|
| 112 | ! |
---|
| 113 | ! pday Number of days counted from the North. Spring equinoxe. |
---|
| 114 | ! ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT. |
---|
| 115 | ! ptimestep timestep (s). |
---|
| 116 | ! |
---|
| 117 | ! pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa). |
---|
| 118 | ! pplev(ngrid,nlayer+1) Intermediate pressure levels (Pa). |
---|
| 119 | ! pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2.s-2). |
---|
| 120 | ! |
---|
| 121 | ! pu(ngrid,nlayer) u, zonal component of the wind (ms-1). |
---|
| 122 | ! pv(ngrid,nlayer) v, meridional component of the wind (ms-1). |
---|
| 123 | ! |
---|
| 124 | ! pt(ngrid,nlayer) Temperature (K). |
---|
| 125 | ! |
---|
| 126 | ! pq(ngrid,nlayer,nq) Advected fields. |
---|
| 127 | ! |
---|
[1216] | 128 | ! pudyn(ngrid,nlayer) \ |
---|
[253] | 129 | ! pvdyn(ngrid,nlayer) \ Dynamical temporal derivative for the |
---|
[1477] | 130 | ! ptdyn(ngrid,nlayer) / corresponding variables. |
---|
[253] | 131 | ! pqdyn(ngrid,nlayer,nq) / |
---|
[1312] | 132 | ! flxw(ngrid,nlayer) vertical mass flux (kg/s) at layer lower boundary |
---|
[253] | 133 | ! |
---|
[1477] | 134 | ! OUTPUT |
---|
[253] | 135 | ! ------ |
---|
| 136 | ! |
---|
[1308] | 137 | ! pdu(ngrid,nlayer) \ |
---|
| 138 | ! pdv(ngrid,nlayer) \ Temporal derivative of the corresponding |
---|
| 139 | ! pdt(ngrid,nlayer) / variables due to physical processes. |
---|
| 140 | ! pdq(ngrid,nlayer) / |
---|
[253] | 141 | ! pdpsrf(ngrid) / |
---|
| 142 | ! |
---|
| 143 | ! |
---|
| 144 | ! Authors |
---|
| 145 | ! ------- |
---|
[1524] | 146 | ! Frederic Hourdin 15/10/93 |
---|
| 147 | ! Francois Forget 1994 |
---|
| 148 | ! Christophe Hourdin 02/1997 |
---|
[253] | 149 | ! Subroutine completely rewritten by F. Forget (01/2000) |
---|
| 150 | ! Water ice clouds: Franck Montmessin (update 06/2003) |
---|
| 151 | ! Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
---|
| 152 | ! New correlated-k radiative scheme: R. Wordsworth (2009) |
---|
| 153 | ! Many specifically Martian subroutines removed: R. Wordsworth (2009) |
---|
| 154 | ! Improved water cycle: R. Wordsworth / B. Charnay (2010) |
---|
| 155 | ! To F90: R. Wordsworth (2010) |
---|
[594] | 156 | ! New turbulent diffusion scheme: J. Leconte (2012) |
---|
[716] | 157 | ! Loops converted to F90 matrix format: J. Leconte (2012) |
---|
[787] | 158 | ! No more ngridmx/nqmx, F90 commons and adaptation to parallel: A. Spiga (2012) |
---|
[1477] | 159 | ! Purge of the code : M. Turbet (2015) |
---|
[1672] | 160 | ! Fork for Titan : J. Vatant d'Ollone (2017) |
---|
| 161 | ! + clean of all too-generic (ocean, water, co2 ...) routines |
---|
| 162 | ! + Titan's chemistry |
---|
[1897] | 163 | ! Microphysical moment model - J.Burgalat / J.Vatant d'Ollone (2017-2018) |
---|
[1647] | 164 | !============================================================================================ |
---|
[253] | 165 | |
---|
| 166 | |
---|
| 167 | ! 0. Declarations : |
---|
| 168 | ! ------------------ |
---|
| 169 | |
---|
[1670] | 170 | include "netcdf.inc" |
---|
[253] | 171 | |
---|
| 172 | ! Arguments : |
---|
| 173 | ! ----------- |
---|
| 174 | |
---|
[1477] | 175 | ! INPUTS: |
---|
[253] | 176 | ! ------- |
---|
| 177 | |
---|
[1477] | 178 | integer,intent(in) :: ngrid ! Number of atmospheric columns. |
---|
| 179 | integer,intent(in) :: nlayer ! Number of atmospheric layers. |
---|
| 180 | integer,intent(in) :: nq ! Number of tracers. |
---|
[1984] | 181 | character*30,intent(in) :: nametrac(nq) ! Names of the tracers taken from dynamics. |
---|
[1477] | 182 | |
---|
| 183 | logical,intent(in) :: firstcall ! Signals first call to physics. |
---|
| 184 | logical,intent(in) :: lastcall ! Signals last call to physics. |
---|
| 185 | |
---|
| 186 | real,intent(in) :: pday ! Number of elapsed sols since reference Ls=0. |
---|
| 187 | real,intent(in) :: ptime ! "Universal time", given as fraction of sol (e.g.: 0.5 for noon). |
---|
| 188 | real,intent(in) :: ptimestep ! Physics timestep (s). |
---|
| 189 | real,intent(in) :: pplev(ngrid,nlayer+1) ! Inter-layer pressure (Pa). |
---|
| 190 | real,intent(in) :: pplay(ngrid,nlayer) ! Mid-layer pressure (Pa). |
---|
| 191 | real,intent(in) :: pphi(ngrid,nlayer) ! Geopotential at mid-layer (m2s-2). |
---|
| 192 | real,intent(in) :: pu(ngrid,nlayer) ! Zonal wind component (m/s). |
---|
| 193 | real,intent(in) :: pv(ngrid,nlayer) ! Meridional wind component (m/s). |
---|
| 194 | real,intent(in) :: pt(ngrid,nlayer) ! Temperature (K). |
---|
| 195 | real,intent(in) :: pq(ngrid,nlayer,nq) ! Tracers (kg/kg_of_air). |
---|
| 196 | real,intent(in) :: flxw(ngrid,nlayer) ! Vertical mass flux (ks/s) at lower boundary of layer |
---|
[253] | 197 | |
---|
[1477] | 198 | ! OUTPUTS: |
---|
[253] | 199 | ! -------- |
---|
| 200 | |
---|
[1477] | 201 | ! Physical tendencies : |
---|
| 202 | |
---|
| 203 | real,intent(out) :: pdu(ngrid,nlayer) ! Zonal wind tendencies (m/s/s). |
---|
| 204 | real,intent(out) :: pdv(ngrid,nlayer) ! Meridional wind tendencies (m/s/s). |
---|
| 205 | real,intent(out) :: pdt(ngrid,nlayer) ! Temperature tendencies (K/s). |
---|
| 206 | real,intent(out) :: pdq(ngrid,nlayer,nq) ! Tracer tendencies (kg/kg_of_air/s). |
---|
| 207 | real,intent(out) :: pdpsrf(ngrid) ! Surface pressure tendency (Pa/s). |
---|
| 208 | |
---|
[253] | 209 | ! Local saved variables: |
---|
| 210 | ! ---------------------- |
---|
[1622] | 211 | integer,save :: day_ini ! Initial date of the run (sol since Ls=0). |
---|
| 212 | integer,save :: icount ! Counter of calls to physiq during the run. |
---|
[2366] | 213 | !$OMP THREADPRIVATE(day_ini,icount) |
---|
[1622] | 214 | |
---|
[253] | 215 | ! Local variables : |
---|
| 216 | ! ----------------- |
---|
| 217 | |
---|
[1477] | 218 | real zh(ngrid,nlayer) ! Potential temperature (K). |
---|
| 219 | real pw(ngrid,nlayer) ! Vertical velocity (m/s). (NOTE : >0 WHEN DOWNWARDS !!) |
---|
| 220 | |
---|
[1670] | 221 | integer l,ig,ierr,iq,nw,isoil |
---|
[1161] | 222 | |
---|
[1477] | 223 | ! FOR DIAGNOSTIC : |
---|
[253] | 224 | |
---|
[1477] | 225 | real zls ! Solar longitude (radians). |
---|
| 226 | real zlss ! Sub solar point longitude (radians). |
---|
| 227 | real zday ! Date (time since Ls=0, calculated in sols). |
---|
[2097] | 228 | real zzlay(ngrid,nlayer) ! Altitude at the middle of the atmospheric layers (ref : local surf). |
---|
| 229 | real zzlev(ngrid,nlayer+1) ! Altitude at the atmospheric layer boundaries (ref : local surf). |
---|
| 230 | real zzlay_eff(ngrid,nlayer) ! Effective altitude at the middle of the atmospheric layers (ref : geoid ). |
---|
| 231 | real zzlev_eff(ngrid,nlayer+1) ! Effective altitude at the atmospheric layer boundaries ( ref : geoid ). |
---|
| 232 | |
---|
[1477] | 233 | ! TENDENCIES due to various processes : |
---|
[253] | 234 | |
---|
[1477] | 235 | ! For Surface Temperature : (K/s) |
---|
| 236 | real zdtsurf(ngrid) ! Cumulated tendencies. |
---|
| 237 | real zdtsurfmr(ngrid) ! Mass_redistribution routine. |
---|
| 238 | real zdtsdif(ngrid) ! Turbdiff/vdifc routines. |
---|
| 239 | |
---|
| 240 | ! For Atmospheric Temperatures : (K/s) |
---|
[1647] | 241 | real zdtdif(ngrid,nlayer) ! Turbdiff/vdifc routines. |
---|
[1477] | 242 | real zdtmr(ngrid,nlayer) ! Mass_redistribution routine. |
---|
| 243 | real zdtsw1(ngrid,nlayer), zdtlw1(ngrid,nlayer) ! Callcorrk routine. |
---|
| 244 | |
---|
| 245 | ! For Surface Tracers : (kg/m2/s) |
---|
| 246 | real dqsurf(ngrid,nq) ! Cumulated tendencies. |
---|
| 247 | real zdqsdif(ngrid,nq) ! Turbdiff/vdifc routines. |
---|
| 248 | real zdqsurfmr(ngrid,nq) ! Mass_redistribution routine. |
---|
| 249 | |
---|
| 250 | ! For Tracers : (kg/kg_of_air/s) |
---|
| 251 | real zdqadj(ngrid,nlayer,nq) ! Convadj routine. |
---|
| 252 | real zdqdif(ngrid,nlayer,nq) ! Turbdiff/vdifc routines. |
---|
| 253 | real zdqevap(ngrid,nlayer) ! Turbdiff routine. |
---|
| 254 | real zdqmr(ngrid,nlayer,nq) ! Mass_redistribution routine. |
---|
[1672] | 255 | |
---|
| 256 | real zdqchi(ngrid,nlayer,nq) ! Chemical tendency ( chemistry routine ). |
---|
[1795] | 257 | |
---|
| 258 | real zdqmufi(ngrid,nlayer,nq) ! Microphysical tendency. |
---|
[1926] | 259 | |
---|
| 260 | real zdqfibar(ngrid,nlayer,nq) ! For 2D chemistry |
---|
| 261 | real zdqmufibar(ngrid,nlayer,nq) ! For 2D chemistry |
---|
[1477] | 262 | |
---|
| 263 | ! For Winds : (m/s/s) |
---|
| 264 | real zdvadj(ngrid,nlayer),zduadj(ngrid,nlayer) ! Convadj routine. |
---|
| 265 | real zdumr(ngrid,nlayer),zdvmr(ngrid,nlayer) ! Mass_redistribution routine. |
---|
| 266 | real zdvdif(ngrid,nlayer),zdudif(ngrid,nlayer) ! Turbdiff/vdifc routines. |
---|
| 267 | real zdhdif(ngrid,nlayer) ! Turbdiff/vdifc routines. |
---|
| 268 | real zdhadj(ngrid,nlayer) ! Convadj routine. |
---|
| 269 | |
---|
| 270 | ! For Pressure and Mass : |
---|
| 271 | real zdmassmr(ngrid,nlayer) ! Atmospheric Mass tendency for mass_redistribution (kg_of_air/m2/s). |
---|
| 272 | real zdmassmr_col(ngrid) ! Atmospheric Column Mass tendency for mass_redistribution (kg_of_air/m2/s). |
---|
| 273 | real zdpsrfmr(ngrid) ! Pressure tendency for mass_redistribution routine (Pa/s). |
---|
[253] | 274 | |
---|
[1477] | 275 | |
---|
| 276 | |
---|
| 277 | ! Local variables for LOCAL CALCULATIONS: |
---|
| 278 | ! --------------------------------------- |
---|
[787] | 279 | real zflubid(ngrid) |
---|
[1308] | 280 | real zplanck(ngrid),zpopsk(ngrid,nlayer) |
---|
[253] | 281 | real ztim1,ztim2,ztim3, z1,z2 |
---|
| 282 | real ztime_fin |
---|
[1308] | 283 | real zdh(ngrid,nlayer) |
---|
[1194] | 284 | real gmplanet |
---|
[1297] | 285 | real taux(ngrid),tauy(ngrid) |
---|
[1194] | 286 | |
---|
[253] | 287 | |
---|
[1477] | 288 | ! local variables for DIAGNOSTICS : (diagfi & stat) |
---|
| 289 | ! ------------------------------------------------- |
---|
| 290 | real ps(ngrid) ! Surface Pressure. |
---|
| 291 | real zt(ngrid,nlayer) ! Atmospheric Temperature. |
---|
| 292 | real zu(ngrid,nlayer),zv(ngrid,nlayer) ! Zonal and Meridional Winds. |
---|
| 293 | real zq(ngrid,nlayer,nq) ! Atmospheric Tracers. |
---|
| 294 | real zdtadj(ngrid,nlayer) ! Convadj Diagnostic. |
---|
| 295 | real zdtdyn(ngrid,nlayer) ! Dynamical Heating (K/s). |
---|
[1637] | 296 | real zdudyn(ngrid,nlayer) ! Dynamical Zonal Wind tendency (m.s-2). |
---|
[253] | 297 | |
---|
[2002] | 298 | real zhorizwind(ngrid,nlayer) ! Horizontal Wind ( sqrt(u**+v*v)) |
---|
| 299 | |
---|
[1477] | 300 | real vmr(ngrid,nlayer) ! volume mixing ratio |
---|
[253] | 301 | real time_phys |
---|
[597] | 302 | |
---|
[1477] | 303 | real ISR,ASR,OLR,GND,DYN,GSR,Ts1,Ts2,Ts3,TsS ! for Diagnostic. |
---|
| 304 | |
---|
[594] | 305 | ! to test energy conservation (RW+JL) |
---|
[1308] | 306 | real mass(ngrid,nlayer),massarea(ngrid,nlayer) |
---|
[651] | 307 | real dEtot, dEtots, AtmToSurf_TurbFlux |
---|
[959] | 308 | real,save :: dEtotSW, dEtotsSW, dEtotLW, dEtotsLW |
---|
[1315] | 309 | !$OMP THREADPRIVATE(dEtotSW, dEtotsSW, dEtotLW, dEtotsLW) |
---|
[1308] | 310 | real dEzRadsw(ngrid,nlayer),dEzRadlw(ngrid,nlayer),dEzdiff(ngrid,nlayer) |
---|
[787] | 311 | real dEdiffs(ngrid),dEdiff(ngrid) |
---|
[1477] | 312 | |
---|
[594] | 313 | !JL12 conservation test for mean flow kinetic energy has been disabled temporarily |
---|
[1477] | 314 | |
---|
[1295] | 315 | real dItot, dItot_tmp, dVtot, dVtot_tmp |
---|
[1647] | 316 | |
---|
[1295] | 317 | real dWtot, dWtot_tmp, dWtots, dWtots_tmp |
---|
[1477] | 318 | |
---|
| 319 | |
---|
[1482] | 320 | ! For Clear Sky Case. |
---|
| 321 | real fluxsurf_lw1(ngrid), fluxsurf_sw1(ngrid), fluxsurfabs_sw1(ngrid) ! For SW/LW flux. |
---|
| 322 | real fluxtop_lw1(ngrid), fluxabs_sw1(ngrid) ! For SW/LW flux. |
---|
| 323 | real albedo_equivalent1(ngrid) ! For Equivalent albedo calculation. |
---|
[1647] | 324 | real tf, ntf |
---|
[253] | 325 | |
---|
[1822] | 326 | ! Miscellaneous : |
---|
| 327 | character(len=10) :: tmp1 |
---|
| 328 | character(len=10) :: tmp2 |
---|
[2133] | 329 | |
---|
| 330 | character*2 :: str2 |
---|
[253] | 331 | |
---|
[2366] | 332 | #ifndef MESOSCALE |
---|
| 333 | |
---|
[1903] | 334 | ! Local variables for Titan chemistry and microphysics |
---|
| 335 | ! ---------------------------------------------------- |
---|
| 336 | |
---|
[1914] | 337 | real,save :: ctimestep ! Chemistry timestep (s) |
---|
| 338 | !$OMP THREADPRIVATE(ctimestep) |
---|
[1672] | 339 | |
---|
[1903] | 340 | ! Chemical tracers in molar fraction |
---|
[1914] | 341 | real, dimension(ngrid,nlayer,nkim) :: ychim ! (mol/mol) |
---|
[1926] | 342 | real, dimension(ngrid,nlayer,nkim) :: ychimbar ! For 2D chemistry |
---|
[1672] | 343 | |
---|
[1958] | 344 | ! Molar fraction tendencies ( chemistry, condensation and evaporation ) for tracers (mol/mol/s) |
---|
[1960] | 345 | real, dimension(ngrid,nlayer,nq) :: dyccond ! Condensation rate. NB : for all tracers, as we want to use indx on it. |
---|
[1958] | 346 | real, dimension(ngrid,nlayer,nq) :: dyccondbar ! For 2D chemistry |
---|
[1960] | 347 | real, dimension(ngrid) :: dycevapCH4 ! Surface "pseudo-evaporation" rate (forcing constant surface humidity). |
---|
[1672] | 348 | |
---|
[1903] | 349 | ! Saturation profiles |
---|
[1966] | 350 | real, dimension(ngrid,nlayer,nkim) :: ysat ! (mol/mol) |
---|
[1903] | 351 | |
---|
[1789] | 352 | |
---|
[2050] | 353 | real :: i2e(ngrid,nlayer) ! int 2 ext factor ( X.kg-1 -> X.m-3 for diags ) |
---|
[1958] | 354 | |
---|
[2366] | 355 | #ifdef USE_QTEST |
---|
[1897] | 356 | real,save,dimension(:,:,:), allocatable :: tpq ! Tracers for decoupled microphysical tests ( temporary in 01/18 ) |
---|
| 357 | !$OMP THREADPRIVATE(tpq) |
---|
[1915] | 358 | real,dimension(ngrid,nlayer,nq) :: dtpq ! (temporary in 01/18) |
---|
[2366] | 359 | #endif |
---|
[1897] | 360 | |
---|
[2242] | 361 | logical file_ok |
---|
[1897] | 362 | |
---|
[1672] | 363 | !----------------------------------------------------------------------------- |
---|
[1795] | 364 | ! Interface to calmufi |
---|
| 365 | ! --> needed in order to pass assumed-shape arrays. Otherwise we must put calmufi in a module |
---|
[1897] | 366 | ! (to have an explicit interface generated by the compiler). |
---|
[1795] | 367 | ! Or one can put calmufi in MMP_GCM module (in muphytitan). |
---|
| 368 | INTERFACE |
---|
[1947] | 369 | SUBROUTINE calmufi(dt, plev, zlev, play, zlay, g3d, temp, pq, zdqfi, zdq) |
---|
[1902] | 370 | REAL(kind=8), INTENT(IN) :: dt !! Physics timestep (s). |
---|
[1795] | 371 | REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: plev !! Pressure levels (Pa). |
---|
| 372 | REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: zlev !! Altitude levels (m). |
---|
| 373 | REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: play !! Pressure layers (Pa). |
---|
| 374 | REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: zlay !! Altitude at the center of each layer (m). |
---|
[1947] | 375 | REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: g3d !! Latitude-Altitude depending gravitational acceleration (m.s-2). |
---|
[1795] | 376 | REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: temp !! Temperature at the center of each layer (K). |
---|
[2242] | 377 | REAL(kind=8), DIMENSION(:,:,:), INTENT(IN) :: pq !! Tracers (\(X.kg^{-1}}\)). |
---|
| 378 | REAL(kind=8), DIMENSION(:,:,:), INTENT(IN) :: zdqfi !! Tendency from former processes for tracers (\(X.kg^{-1}}\)). |
---|
| 379 | REAL(kind=8), DIMENSION(:,:,:), INTENT(OUT) :: zdq !! Microphysical tendency for tracers (\(X.kg^{-1}}\)). |
---|
[1795] | 380 | END SUBROUTINE calmufi |
---|
| 381 | END INTERFACE |
---|
[2366] | 382 | |
---|
| 383 | #endif |
---|
[1672] | 384 | |
---|
[1477] | 385 | !================================================================================================== |
---|
[253] | 386 | |
---|
| 387 | ! ----------------- |
---|
[1477] | 388 | ! I. INITIALISATION |
---|
| 389 | ! ----------------- |
---|
[253] | 390 | |
---|
[1477] | 391 | ! -------------------------------- |
---|
| 392 | ! I.1 First Call Initialisation. |
---|
| 393 | ! -------------------------------- |
---|
[253] | 394 | if (firstcall) then |
---|
[2366] | 395 | |
---|
| 396 | #ifdef USE_QTEST |
---|
[1897] | 397 | allocate(tpq(ngrid,nlayer,nq)) |
---|
| 398 | tpq(:,:,:) = pq(:,:,:) |
---|
[2366] | 399 | #endif |
---|
[1844] | 400 | ! Initialisation of nmicro as well as tracers names, indexes ... |
---|
[1903] | 401 | if (ngrid.ne.1) then ! Already done in rcm1d |
---|
[1926] | 402 | call initracer2(nq,nametrac) ! WARNING JB (27/03/2018): should be wrapped in an OMP SINGLE statement (see module notes) |
---|
[1844] | 403 | endif |
---|
[1795] | 404 | |
---|
[2366] | 405 | ! Allocate saved arrays (except for 1D model, where this has already been done) |
---|
| 406 | #ifndef MESOSCALE |
---|
| 407 | if (ngrid>1) call phys_state_var_init(nq) |
---|
[2291] | 408 | #endif |
---|
| 409 | |
---|
[1477] | 410 | ! Variables set to 0 |
---|
[253] | 411 | ! ~~~~~~~~~~~~~~~~~~ |
---|
[2242] | 412 | dtrad(:,:) = 0.D0 |
---|
| 413 | fluxrad(:) = 0.D0 |
---|
| 414 | zdtsw(:,:) = 0.D0 |
---|
| 415 | zdtlw(:,:) = 0.D0 |
---|
[726] | 416 | |
---|
[1822] | 417 | ! Initialize setup for correlated-k radiative transfer |
---|
[2242] | 418 | ! JVO 17 : Was in callcorrk firstcall, but we need spectral intervals for microphysics. |
---|
| 419 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1822] | 420 | |
---|
| 421 | if (corrk) then |
---|
| 422 | |
---|
| 423 | call system('rm -f surf_vals_long.out') |
---|
| 424 | |
---|
| 425 | write( tmp1, '(i3)' ) L_NSPECTI |
---|
| 426 | write( tmp2, '(i3)' ) L_NSPECTV |
---|
| 427 | banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) |
---|
| 428 | banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) |
---|
| 429 | |
---|
| 430 | call setspi ! Basic infrared properties. |
---|
| 431 | call setspv ! Basic visible properties. |
---|
| 432 | call sugas_corrk ! Set up gaseous absorption properties. |
---|
| 433 | |
---|
[2133] | 434 | OLR_nu(:,:) = 0.D0 |
---|
| 435 | OSR_nu(:,:) = 0.D0 |
---|
[1822] | 436 | |
---|
[2133] | 437 | int_dtaui(:,:,:) = 0.D0 |
---|
| 438 | int_dtauv(:,:,:) = 0.D0 |
---|
[2372] | 439 | |
---|
| 440 | #ifndef MESOSCALE |
---|
[2242] | 441 | IF (callmufi .AND. (.NOT. uncoupl_optic_haze)) THEN |
---|
| 442 | haze_opt_file=trim(datadir)//'/HAZE_OPTIC_'//trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2))//'.DAT' |
---|
| 443 | inquire(file=trim(haze_opt_file),exist=file_ok) |
---|
| 444 | if(.not.file_ok) then |
---|
| 445 | write(*,*) 'The file ',TRIM(haze_opt_file),' with the haze optical properties' |
---|
| 446 | write(*,*) 'was not found by optci.F90 ! Check in ', TRIM(datadir) |
---|
| 447 | write(*,*) 'that you have the one corresponding to the given spectral resolution !!' |
---|
| 448 | write(*,*) 'Meanwhile I abort ...' |
---|
| 449 | call abort |
---|
| 450 | endif |
---|
| 451 | ENDIF |
---|
[2372] | 452 | #endif |
---|
| 453 | |
---|
[1822] | 454 | endif |
---|
| 455 | |
---|
[2366] | 456 | #ifndef MESOSCALE |
---|
[1966] | 457 | ! Initialize names and timestep for chemistry |
---|
| 458 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1795] | 459 | |
---|
[1903] | 460 | if ( callchim ) then |
---|
[1795] | 461 | |
---|
[1914] | 462 | if ( moyzon_ch .and. ngrid.eq.1 ) then |
---|
| 463 | print *, "moyzon_ch=",moyzon_ch," and ngrid=1" |
---|
| 464 | print *, "Please desactivate zonal mean for 1D !" |
---|
| 465 | stop |
---|
| 466 | endif |
---|
[2366] | 467 | |
---|
[1903] | 468 | ! Chemistry timestep |
---|
[1795] | 469 | ctimestep = ptimestep*REAL(ichim) |
---|
| 470 | |
---|
[1477] | 471 | endif |
---|
[253] | 472 | |
---|
[1795] | 473 | ! Initialize microphysics. |
---|
| 474 | ! ~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[726] | 475 | |
---|
[1795] | 476 | IF ( callmufi ) THEN |
---|
[2242] | 477 | ! WARNING JB (27/03/2018): inimufi should be wrapped in an OMP SINGLE statement. |
---|
[1926] | 478 | call inimufi(ptimestep) |
---|
[1795] | 479 | |
---|
[1926] | 480 | ! initialize microphysics diagnostics arrays. |
---|
| 481 | call ini_diag_arrays(ngrid,nlayer,nice) |
---|
| 482 | |
---|
[1795] | 483 | ENDIF |
---|
[2366] | 484 | #endif |
---|
[1795] | 485 | |
---|
[1896] | 486 | #ifdef CPP_XIOS |
---|
| 487 | ! Initialize XIOS context |
---|
| 488 | write(*,*) "physiq: call wxios_context_init" |
---|
| 489 | CALL wxios_context_init |
---|
| 490 | #endif |
---|
| 491 | |
---|
[1477] | 492 | ! Read 'startfi.nc' file. |
---|
[253] | 493 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2291] | 494 | #ifndef MESOSCALE |
---|
[2366] | 495 | call phyetat0(startphy_file, & |
---|
| 496 | ngrid,nlayer,"startfi.nc",0,0,nsoilmx,nq, & |
---|
[1789] | 497 | day_ini,time_phys,tsurf,tsoil,emis,q2,qsurf,tankCH4) |
---|
[2291] | 498 | #else |
---|
| 499 | emis(:)=0.0 |
---|
| 500 | q2(:,:)=0.0 |
---|
| 501 | qsurf(:,:)=0.0 |
---|
[2366] | 502 | tankCH4(:)=0.0 |
---|
[2291] | 503 | day_ini = pday |
---|
| 504 | #endif |
---|
| 505 | |
---|
| 506 | #ifndef MESOSCALE |
---|
[1670] | 507 | if (.not.startphy_file) then |
---|
| 508 | ! additionnal "academic" initialization of physics |
---|
| 509 | if (is_master) write(*,*) "Physiq: initializing tsurf(:) to pt(:,1) !!" |
---|
| 510 | tsurf(:)=pt(:,1) |
---|
| 511 | if (is_master) write(*,*) "Physiq: initializing tsoil(:) to pt(:,1) !!" |
---|
| 512 | do isoil=1,nsoilmx |
---|
[1914] | 513 | tsoil(:,isoil)=tsurf(:) |
---|
[1670] | 514 | enddo |
---|
| 515 | if (is_master) write(*,*) "Physiq: initializing day_ini to pdat !" |
---|
| 516 | day_ini=pday |
---|
| 517 | endif |
---|
[2291] | 518 | #endif |
---|
[253] | 519 | |
---|
| 520 | if (pday.ne.day_ini) then |
---|
| 521 | write(*,*) "ERROR in physiq.F90:" |
---|
| 522 | write(*,*) "bad synchronization between physics and dynamics" |
---|
| 523 | write(*,*) "dynamics day: ",pday |
---|
| 524 | write(*,*) "physics day: ",day_ini |
---|
| 525 | stop |
---|
| 526 | endif |
---|
| 527 | write (*,*) 'In physiq day_ini =', day_ini |
---|
| 528 | |
---|
[1482] | 529 | ! Initialize albedo calculation. |
---|
| 530 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2242] | 531 | albedo(:,:)=0.D0 |
---|
| 532 | albedo_bareground(:)=0.D0 |
---|
[1647] | 533 | call surfini(ngrid,nq,qsurf,albedo,albedo_bareground) |
---|
[1482] | 534 | |
---|
| 535 | ! Initialize orbital calculation. |
---|
| 536 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[253] | 537 | call iniorbit(apoastr,periastr,year_day,peri_day,obliquit) |
---|
| 538 | |
---|
[2366] | 539 | |
---|
[253] | 540 | if(tlocked)then |
---|
| 541 | print*,'Planet is tidally locked at resonance n=',nres |
---|
| 542 | print*,'Make sure you have the right rotation rate!!!' |
---|
| 543 | endif |
---|
| 544 | |
---|
[1297] | 545 | |
---|
[1477] | 546 | ! Initialize soil. |
---|
| 547 | ! ~~~~~~~~~~~~~~~~ |
---|
[253] | 548 | if (callsoil) then |
---|
[1477] | 549 | |
---|
[787] | 550 | call soil(ngrid,nsoilmx,firstcall,lastcall,inertiedat, & |
---|
[1477] | 551 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
[1297] | 552 | |
---|
[1477] | 553 | else ! else of 'callsoil'. |
---|
| 554 | |
---|
[253] | 555 | print*,'WARNING! Thermal conduction in the soil turned off' |
---|
[918] | 556 | capcal(:)=1.e6 |
---|
[952] | 557 | fluxgrd(:)=intheat |
---|
| 558 | print*,'Flux from ground = ',intheat,' W m^-2' |
---|
[1477] | 559 | |
---|
| 560 | endif ! end of 'callsoil'. |
---|
| 561 | |
---|
[253] | 562 | icount=1 |
---|
[1477] | 563 | |
---|
[253] | 564 | |
---|
[1477] | 565 | ! Initialize surface history variable. |
---|
[253] | 566 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[728] | 567 | qsurf_hist(:,:)=qsurf(:,:) |
---|
[253] | 568 | |
---|
[1637] | 569 | ! Initialize variable for dynamical heating and zonal wind tendency diagnostic |
---|
| 570 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[253] | 571 | ztprevious(:,:)=pt(:,:) |
---|
[1637] | 572 | zuprevious(:,:)=pu(:,:) |
---|
[253] | 573 | |
---|
| 574 | |
---|
[1477] | 575 | if(meanOLR)then |
---|
| 576 | call system('rm -f rad_bal.out') ! to record global radiative balance. |
---|
| 577 | call system('rm -f tem_bal.out') ! to record global mean/max/min temperatures. |
---|
| 578 | call system('rm -f h2o_bal.out') ! to record global hydrological balance. |
---|
[253] | 579 | endif |
---|
| 580 | |
---|
[2291] | 581 | #ifndef MESOSCALE |
---|
[2366] | 582 | if (ngrid.ne.1) then ! Note : no need to create a restart file in 1d. |
---|
[1542] | 583 | call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid,nlayer,nq, & |
---|
[2366] | 584 | ptimestep,pday+nday,time_phys,cell_area, & |
---|
| 585 | albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe) |
---|
[1904] | 586 | endif |
---|
[2366] | 587 | #endif |
---|
[1843] | 588 | |
---|
[1622] | 589 | ! XIOS outputs |
---|
| 590 | #ifdef CPP_XIOS |
---|
| 591 | |
---|
| 592 | write(*,*) "physiq: call initialize_xios_output" |
---|
| 593 | call initialize_xios_output(pday,ptime,ptimestep,daysec, & |
---|
| 594 | presnivs,pseudoalt) |
---|
| 595 | #endif |
---|
[1896] | 596 | write(*,*) "physiq: end of firstcall" |
---|
[1477] | 597 | endif ! end of 'firstcall' |
---|
[253] | 598 | |
---|
[1477] | 599 | ! ------------------------------------------------------ |
---|
| 600 | ! I.2 Initializations done at every physical timestep: |
---|
| 601 | ! ------------------------------------------------------ |
---|
| 602 | |
---|
[1622] | 603 | #ifdef CPP_XIOS |
---|
| 604 | ! update XIOS time/calendar |
---|
| 605 | call update_xios_timestep |
---|
| 606 | #endif |
---|
| 607 | |
---|
[1477] | 608 | ! Initialize various variables |
---|
| 609 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1647] | 610 | |
---|
[2242] | 611 | pdt(:,:) = 0.D0 |
---|
| 612 | zdtsurf(:) = 0.D0 |
---|
| 613 | pdq(:,:,:) = 0.D0 |
---|
| 614 | dqsurf(:,:) = 0.D0 |
---|
| 615 | pdu(:,:) = 0.D0 |
---|
| 616 | pdv(:,:) = 0.D0 |
---|
| 617 | pdpsrf(:) = 0.D0 |
---|
| 618 | zflubid(:) = 0.D0 |
---|
| 619 | taux(:) = 0.D0 |
---|
| 620 | tauy(:) = 0.D0 |
---|
[253] | 621 | |
---|
[1477] | 622 | zday=pday+ptime ! Compute time, in sols (and fraction thereof). |
---|
[1297] | 623 | |
---|
[1477] | 624 | ! Compute Stellar Longitude (Ls), and orbital parameters. |
---|
| 625 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[253] | 626 | if (season) then |
---|
| 627 | call stellarlong(zday,zls) |
---|
| 628 | else |
---|
[2366] | 629 | call stellarlong(noseason_day,zls) |
---|
[253] | 630 | end if |
---|
| 631 | |
---|
[1329] | 632 | call orbite(zls,dist_star,declin,right_ascen) |
---|
[1477] | 633 | |
---|
[1329] | 634 | if (tlocked) then |
---|
| 635 | zlss=Mod(-(2.*pi*(zday/year_day)*nres - right_ascen),2.*pi) |
---|
| 636 | elseif (diurnal) then |
---|
[1524] | 637 | zlss=-2.*pi*(zday-.5) |
---|
[1329] | 638 | else if(diurnal .eqv. .false.) then |
---|
| 639 | zlss=9999. |
---|
| 640 | endif |
---|
[1194] | 641 | |
---|
| 642 | |
---|
[1477] | 643 | ! Compute variations of g with latitude (oblate case). |
---|
| 644 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 645 | if (oblate .eqv. .false.) then |
---|
[1947] | 646 | gzlat(:,:) = g |
---|
[1477] | 647 | else if (flatten .eq. 0.0 .or. J2 .eq. 0.0 .or. Rmean .eq. 0.0 .or. MassPlanet .eq. 0.0) then |
---|
[1947] | 648 | print*,'I need values for flatten, J2, Rmean and MassPlanet to compute gzlat (else set oblate=.false.)' |
---|
[1477] | 649 | call abort |
---|
| 650 | else |
---|
| 651 | gmplanet = MassPlanet*grav*1e24 |
---|
| 652 | do ig=1,ngrid |
---|
[1947] | 653 | gzlat(ig,:)= gmplanet/(Rmean**2) * (1.D0 + 0.75 *J2 - 2.0*flatten/3. + (2.*flatten - 15./4.* J2) * cos(2. * (pi/2. - latitude(ig)))) |
---|
[1477] | 654 | end do |
---|
| 655 | endif |
---|
[1947] | 656 | |
---|
| 657 | ! Compute altitudes with the geopotential coming from the dynamics. |
---|
| 658 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1297] | 659 | |
---|
[1947] | 660 | if (eff_gz .eqv. .false.) then |
---|
| 661 | |
---|
| 662 | do l=1,nlayer |
---|
[2097] | 663 | zzlay(:,l) = pphi(:,l) / gzlat(:,l) ! Reference = local surface |
---|
[1947] | 664 | enddo |
---|
| 665 | |
---|
| 666 | else ! In this case we consider variations of g with altitude |
---|
| 667 | |
---|
| 668 | do l=1,nlayer |
---|
[2097] | 669 | zzlay(:,l) = g*rad*rad / ( g*rad - ( pphi(:,l) + phisfi(:) )) - rad |
---|
[1947] | 670 | gzlat(:,l) = g*rad*rad / ( rad + zzlay(:,l) )**2 |
---|
| 671 | end do |
---|
| 672 | |
---|
| 673 | endif ! if eff_gz |
---|
[728] | 674 | |
---|
[1914] | 675 | zzlev(:,1)=0. |
---|
| 676 | zzlev(:,nlayer+1)=1.e7 ! Dummy top of last layer above 10000 km... |
---|
[2097] | 677 | ! JVO 19 : This altitude is indeed dummy for the GCM and fits ptop=0 |
---|
| 678 | ! but for upper chemistry that's a pb -> we anyway redefine it just after .. |
---|
[728] | 679 | |
---|
[253] | 680 | do l=2,nlayer |
---|
| 681 | do ig=1,ngrid |
---|
| 682 | z1=(pplay(ig,l-1)+pplev(ig,l))/(pplay(ig,l-1)-pplev(ig,l)) |
---|
| 683 | z2=(pplev(ig,l)+pplay(ig,l))/(pplev(ig,l)-pplay(ig,l)) |
---|
| 684 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
| 685 | enddo |
---|
[1477] | 686 | enddo |
---|
[253] | 687 | |
---|
[2097] | 688 | ! Effective altitudes ( eg needed for chemistry ) with correct g, and with reference to the geoid |
---|
| 689 | ! JVO 19 : We shall always have correct altitudes in chemistry no matter what's in physics |
---|
| 690 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2366] | 691 | #ifndef MESOSCALE |
---|
[2097] | 692 | if (moyzon_ch) then ! Zonal averages |
---|
[1672] | 693 | |
---|
[2097] | 694 | zzlaybar(1,:)=g*rad*rad/(g*rad-(zphibar(1,:)+zphisbar(1)))-rad ! reference = geoid |
---|
[1947] | 695 | zzlevbar(1,1)=zphisbar(1)/g |
---|
[1672] | 696 | DO l=2,nlayer |
---|
[1947] | 697 | z1=(zplaybar(1,l-1)+zplevbar(1,l))/(zplaybar(1,l-1)-zplevbar(1,l)) |
---|
[1672] | 698 | z2=(zplevbar(1,l) +zplaybar(1,l))/(zplevbar(1,l) -zplaybar(1,l)) |
---|
| 699 | zzlevbar(1,l)=(z1*zzlaybar(1,l-1)+z2*zzlaybar(1,l))/(z1+z2) |
---|
| 700 | ENDDO |
---|
| 701 | zzlevbar(1,nlayer+1)=zzlaybar(1,nlayer)+(zzlaybar(1,nlayer)-zzlevbar(1,nlayer)) |
---|
| 702 | |
---|
| 703 | DO ig=2,ngrid |
---|
[1947] | 704 | if (latitude(ig).ne.latitude(ig-1)) then |
---|
| 705 | DO l=1,nlayer |
---|
[2097] | 706 | zzlaybar(ig,l)=g*rad*rad/(g*rad-(zphibar(ig,l)+zphisbar(ig)))-rad |
---|
[1672] | 707 | ENDDO |
---|
| 708 | zzlevbar(ig,1)=zphisbar(ig)/g |
---|
| 709 | DO l=2,nlayer |
---|
[1947] | 710 | z1=(zplaybar(ig,l-1)+zplevbar(ig,l))/ (zplaybar(ig,l-1)-zplevbar(ig,l)) |
---|
[1672] | 711 | z2=(zplevbar(ig,l) +zplaybar(ig,l))/(zplevbar(ig,l) -zplaybar(ig,l)) |
---|
| 712 | zzlevbar(ig,l)=(z1*zzlaybar(ig,l-1)+z2*zzlaybar(ig,l))/(z1+z2) |
---|
| 713 | ENDDO |
---|
[1947] | 714 | zzlevbar(ig,nlayer+1)=zzlaybar(ig,nlayer)+(zzlaybar(ig,nlayer)-zzlevbar(ig,nlayer)) |
---|
[1672] | 715 | else |
---|
| 716 | zzlaybar(ig,:)=zzlaybar(ig-1,:) |
---|
| 717 | zzlevbar(ig,:)=zzlevbar(ig-1,:) |
---|
[1947] | 718 | endif |
---|
[1672] | 719 | ENDDO |
---|
| 720 | |
---|
[2097] | 721 | else ! if not moyzon |
---|
[2366] | 722 | #endif |
---|
[2097] | 723 | |
---|
[2098] | 724 | DO ig=1,ngrid |
---|
| 725 | DO l=1,nlayer |
---|
| 726 | zzlay_eff(ig,l)=g*rad*rad/(g*rad-(pphi(ig,l)+phisfi(ig)))-rad ! reference = geoid |
---|
| 727 | ENDDO |
---|
| 728 | zzlev_eff(ig,1)=phisfi(ig)/g |
---|
| 729 | DO l=2,nlayer |
---|
[2097] | 730 | z1=(pplay(ig,l-1)+pplev(ig,l))/ (pplay(ig,l-1)-pplev(ig,l)) |
---|
| 731 | z2=(pplev(ig,l) +pplay(ig,l))/(pplev(ig,l) -pplay(ig,l)) |
---|
| 732 | zzlev_eff(ig,l)=(z1*zzlay_eff(ig,l-1)+z2*zzlay_eff(ig,l))/(z1+z2) |
---|
[2098] | 733 | ENDDO |
---|
| 734 | zzlev_eff(ig,nlayer+1)=zzlay_eff(ig,nlayer)+(zzlay_eff(ig,nlayer)-zzlev_eff(ig,nlayer)) |
---|
| 735 | ENDDO |
---|
[2097] | 736 | |
---|
[2366] | 737 | #ifndef MESOSCALE |
---|
[1672] | 738 | endif ! moyzon |
---|
[2366] | 739 | #endif |
---|
[1795] | 740 | |
---|
[1672] | 741 | ! ------------------------------------------------------------------------------------- |
---|
[1477] | 742 | ! Compute potential temperature |
---|
| 743 | ! Note : Potential temperature calculation may not be the same in physiq and dynamic... |
---|
| 744 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[597] | 745 | do l=1,nlayer |
---|
[787] | 746 | do ig=1,ngrid |
---|
[253] | 747 | zpopsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**rcp |
---|
[597] | 748 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
---|
[1947] | 749 | mass(ig,l) = (pplev(ig,l) - pplev(ig,l+1))/gzlat(ig,l) |
---|
[1542] | 750 | massarea(ig,l)=mass(ig,l)*cell_area(ig) |
---|
[253] | 751 | enddo |
---|
| 752 | enddo |
---|
| 753 | |
---|
[1312] | 754 | ! Compute vertical velocity (m/s) from vertical mass flux |
---|
[1346] | 755 | ! w = F / (rho*area) and rho = P/(r*T) |
---|
[1477] | 756 | ! But first linearly interpolate mass flux to mid-layers |
---|
| 757 | do l=1,nlayer-1 |
---|
[1914] | 758 | pw(:,l)=0.5*(flxw(:,l)+flxw(:,l+1)) |
---|
[1477] | 759 | enddo |
---|
[1914] | 760 | pw(:,nlayer)=0.5*flxw(:,nlayer) ! since flxw(nlayer+1)=0 |
---|
[1477] | 761 | do l=1,nlayer |
---|
[1914] | 762 | pw(:,l)=(pw(:,l)*r*pt(:,l)) / (pplay(:,l)*cell_area(:)) |
---|
[1477] | 763 | enddo |
---|
[1194] | 764 | |
---|
[1477] | 765 | !--------------------------------- |
---|
| 766 | ! II. Compute radiative tendencies |
---|
| 767 | !--------------------------------- |
---|
[253] | 768 | |
---|
| 769 | if (callrad) then |
---|
[526] | 770 | if( mod(icount-1,iradia).eq.0.or.lastcall) then |
---|
[253] | 771 | |
---|
[1477] | 772 | ! Compute local stellar zenith angles |
---|
| 773 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 774 | if (tlocked) then |
---|
| 775 | ! JL14 corrects tidally resonant (and inclined) cases. nres=omega_rot/omega_orb |
---|
| 776 | ztim1=SIN(declin) |
---|
| 777 | ztim2=COS(declin)*COS(zlss) |
---|
| 778 | ztim3=COS(declin)*SIN(zlss) |
---|
[253] | 779 | |
---|
[1477] | 780 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
---|
| 781 | ztim1,ztim2,ztim3,mu0,fract, flatten) |
---|
[253] | 782 | |
---|
[1477] | 783 | elseif (diurnal) then |
---|
| 784 | ztim1=SIN(declin) |
---|
| 785 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
---|
| 786 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
---|
[253] | 787 | |
---|
[1477] | 788 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
---|
| 789 | ztim1,ztim2,ztim3,mu0,fract, flatten) |
---|
| 790 | else if(diurnal .eqv. .false.) then |
---|
[253] | 791 | |
---|
[1542] | 792 | call mucorr(ngrid,declin,latitude,mu0,fract,10000.,rad,flatten) |
---|
[1161] | 793 | ! WARNING: this function appears not to work in 1D |
---|
[253] | 794 | |
---|
[1477] | 795 | endif |
---|
[1161] | 796 | |
---|
[1477] | 797 | ! Eclipse incoming sunlight (e.g. Saturn ring shadowing). |
---|
[1429] | 798 | if(rings_shadow) then |
---|
| 799 | call call_rings(ngrid, ptime, pday, diurnal) |
---|
| 800 | endif |
---|
[1133] | 801 | |
---|
[1329] | 802 | |
---|
[1477] | 803 | if (corrk) then |
---|
| 804 | |
---|
| 805 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 806 | ! II.a Call correlated-k radiative transfer scheme |
---|
| 807 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1297] | 808 | |
---|
[1648] | 809 | call call_profilgases(nlayer) |
---|
| 810 | |
---|
[1477] | 811 | ! standard callcorrk |
---|
[2050] | 812 | call callcorrk(ngrid,nlayer,pq,nq,qsurf,zday, & |
---|
[1482] | 813 | albedo,albedo_equivalent,emis,mu0,pplev,pplay,pt, & |
---|
[1788] | 814 | tsurf,fract,dist_star, & |
---|
[1482] | 815 | zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw, & |
---|
| 816 | fluxsurfabs_sw,fluxtop_lw, & |
---|
| 817 | fluxabs_sw,fluxtop_dn,OLR_nu,OSR_nu, & |
---|
[2133] | 818 | int_dtaui,int_dtauv,lastcall) |
---|
[1297] | 819 | |
---|
[1482] | 820 | ! Radiative flux from the sky absorbed by the surface (W.m-2). |
---|
[1477] | 821 | GSR=0.0 |
---|
[1914] | 822 | fluxrad_sky(:)=emis(:)*fluxsurf_lw(:)+fluxsurfabs_sw(:) |
---|
[253] | 823 | |
---|
[1477] | 824 | !if(noradsurf)then ! no lower surface; SW flux just disappears |
---|
[1914] | 825 | ! GSR = SUM(fluxsurf_sw(:)*cell_area(:))/totarea |
---|
| 826 | ! fluxrad_sky(:)=emis(:)*fluxsurf_lw(:) |
---|
[1477] | 827 | ! print*,'SW lost in deep atmosphere = ',GSR,' W m^-2' |
---|
| 828 | !endif |
---|
[253] | 829 | |
---|
[1477] | 830 | ! Net atmospheric radiative heating rate (K.s-1) |
---|
[1914] | 831 | dtrad(:,:)=zdtsw(:,:)+zdtlw(:,:) |
---|
[1498] | 832 | |
---|
[1477] | 833 | elseif(newtonian)then |
---|
[1482] | 834 | |
---|
| 835 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 836 | ! II.b Call Newtonian cooling scheme |
---|
| 837 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1477] | 838 | call newtrelax(ngrid,nlayer,mu0,sinlat,zpopsk,pt,pplay,pplev,dtrad,firstcall) |
---|
[253] | 839 | |
---|
[1914] | 840 | zdtsurf(:) = +(pt(:,1)-tsurf(:))/ptimestep |
---|
[1477] | 841 | ! e.g. surface becomes proxy for 1st atmospheric layer ? |
---|
[253] | 842 | |
---|
[1477] | 843 | else |
---|
| 844 | |
---|
| 845 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 846 | ! II.c Atmosphere has no radiative effect |
---|
| 847 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1914] | 848 | fluxtop_dn(:) = fract(:)*mu0(:)*Fat1AU/dist_star**2 |
---|
[1477] | 849 | if(ngrid.eq.1)then ! / by 4 globally in 1D case... |
---|
| 850 | fluxtop_dn(1) = fract(1)*Fat1AU/dist_star**2/2.0 |
---|
| 851 | endif |
---|
[1914] | 852 | fluxsurf_sw(:) = fluxtop_dn(:) |
---|
[1482] | 853 | print*,'------------WARNING---WARNING------------' ! by MT2015. |
---|
| 854 | print*,'You are in corrk=false mode, ' |
---|
[1498] | 855 | print*,'and the surface albedo is taken equal to the first visible spectral value' |
---|
| 856 | |
---|
[1914] | 857 | fluxsurfabs_sw(:) = fluxtop_dn(:)*(1.-albedo(:,1)) |
---|
| 858 | fluxrad_sky(:) = fluxsurfabs_sw(:) |
---|
| 859 | fluxtop_lw(:) = emis(:)*sigma*tsurf(:)**4 |
---|
[253] | 860 | |
---|
[2242] | 861 | dtrad(:,:)=0.D0 ! no atmospheric radiative heating |
---|
[253] | 862 | |
---|
[1477] | 863 | endif ! end of corrk |
---|
[253] | 864 | |
---|
[1477] | 865 | endif ! of if(mod(icount-1,iradia).eq.0) |
---|
[787] | 866 | |
---|
[253] | 867 | |
---|
[1477] | 868 | ! Transformation of the radiative tendencies |
---|
| 869 | ! ------------------------------------------ |
---|
[1914] | 870 | zplanck(:)=tsurf(:)*tsurf(:) |
---|
| 871 | zplanck(:)=emis(:)*sigma*zplanck(:)*zplanck(:) |
---|
| 872 | fluxrad(:)=fluxrad_sky(:)-zplanck(:) |
---|
| 873 | pdt(:,:)=pdt(:,:)+dtrad(:,:) |
---|
[1477] | 874 | |
---|
| 875 | ! Test of energy conservation |
---|
| 876 | !---------------------------- |
---|
[253] | 877 | if(enertest)then |
---|
[1524] | 878 | call planetwide_sumval(cpp*massarea(:,:)*zdtsw(:,:)/totarea_planet,dEtotSW) |
---|
| 879 | call planetwide_sumval(cpp*massarea(:,:)*zdtlw(:,:)/totarea_planet,dEtotLW) |
---|
[1542] | 880 | !call planetwide_sumval(fluxsurf_sw(:)*(1.-albedo_equivalent(:))*cell_area(:)/totarea_planet,dEtotsSW) !JL13 carefull, albedo can have changed since the last time we called corrk |
---|
| 881 | call planetwide_sumval(fluxsurfabs_sw(:)*cell_area(:)/totarea_planet,dEtotsSW) !JL13 carefull, albedo can have changed since the last time we called corrk |
---|
| 882 | call planetwide_sumval((fluxsurf_lw(:)*emis(:)-zplanck(:))*cell_area(:)/totarea_planet,dEtotsLW) |
---|
[1524] | 883 | dEzRadsw(:,:)=cpp*mass(:,:)*zdtsw(:,:) |
---|
| 884 | dEzRadlw(:,:)=cpp*mass(:,:)*zdtlw(:,:) |
---|
| 885 | if (is_master) then |
---|
[1477] | 886 | print*,'---------------------------------------------------------------' |
---|
| 887 | print*,'In corrk SW atmospheric heating =',dEtotSW,' W m-2' |
---|
| 888 | print*,'In corrk LW atmospheric heating =',dEtotLW,' W m-2' |
---|
| 889 | print*,'atmospheric net rad heating (SW+LW) =',dEtotLW+dEtotSW,' W m-2' |
---|
| 890 | print*,'In corrk SW surface heating =',dEtotsSW,' W m-2' |
---|
| 891 | print*,'In corrk LW surface heating =',dEtotsLW,' W m-2' |
---|
| 892 | print*,'surface net rad heating (SW+LW) =',dEtotsLW+dEtotsSW,' W m-2' |
---|
[1524] | 893 | endif |
---|
[1477] | 894 | endif ! end of 'enertest' |
---|
[253] | 895 | |
---|
| 896 | endif ! of if (callrad) |
---|
| 897 | |
---|
| 898 | |
---|
[1477] | 899 | |
---|
| 900 | ! -------------------------------------------- |
---|
| 901 | ! III. Vertical diffusion (turbulent mixing) : |
---|
| 902 | ! -------------------------------------------- |
---|
| 903 | |
---|
[253] | 904 | if (calldifv) then |
---|
[526] | 905 | |
---|
[1914] | 906 | zflubid(:)=fluxrad(:)+fluxgrd(:) |
---|
[253] | 907 | |
---|
[1477] | 908 | ! JL12 the following if test is temporarily there to allow us to compare the old vdifc with turbdiff. |
---|
[1524] | 909 | if (UseTurbDiff) then |
---|
| 910 | |
---|
[1647] | 911 | call turbdiff(ngrid,nlayer,nq, & |
---|
[1477] | 912 | ptimestep,capcal,lwrite, & |
---|
| 913 | pplay,pplev,zzlay,zzlev,z0, & |
---|
| 914 | pu,pv,pt,zpopsk,pq,tsurf,emis,qsurf, & |
---|
| 915 | pdt,pdq,zflubid, & |
---|
| 916 | zdudif,zdvdif,zdtdif,zdtsdif, & |
---|
[1647] | 917 | sensibFlux,q2,zdqdif,zdqsdif, & |
---|
[1477] | 918 | taux,tauy,lastcall) |
---|
[594] | 919 | |
---|
[1524] | 920 | else |
---|
| 921 | |
---|
[1914] | 922 | zdh(:,:)=pdt(:,:)/zpopsk(:,:) |
---|
[594] | 923 | |
---|
[1647] | 924 | call vdifc(ngrid,nlayer,nq,zpopsk, & |
---|
[1477] | 925 | ptimestep,capcal,lwrite, & |
---|
| 926 | pplay,pplev,zzlay,zzlev,z0, & |
---|
| 927 | pu,pv,zh,pq,tsurf,emis,qsurf, & |
---|
| 928 | zdh,pdq,zflubid, & |
---|
| 929 | zdudif,zdvdif,zdhdif,zdtsdif, & |
---|
[1524] | 930 | sensibFlux,q2,zdqdif,zdqsdif, & |
---|
[1477] | 931 | taux,tauy,lastcall) |
---|
[253] | 932 | |
---|
[1914] | 933 | zdtdif(:,:)=zdhdif(:,:)*zpopsk(:,:) ! for diagnostic only |
---|
| 934 | zdqevap(:,:)=0. |
---|
[594] | 935 | |
---|
[1477] | 936 | end if !end of 'UseTurbDiff' |
---|
[594] | 937 | |
---|
[2291] | 938 | if (.not. turb_resolved) then |
---|
| 939 | pdv(:,:)=pdv(:,:)+zdvdif(:,:) |
---|
| 940 | pdu(:,:)=pdu(:,:)+zdudif(:,:) |
---|
| 941 | pdt(:,:)=pdt(:,:)+zdtdif(:,:) |
---|
| 942 | endif |
---|
| 943 | zdtsurf(:)=zdtsurf(:)+zdtsdif(:) |
---|
[1477] | 944 | |
---|
[253] | 945 | if (tracer) then |
---|
[1914] | 946 | pdq(:,:,:)=pdq(:,:,:)+ zdqdif(:,:,:) |
---|
| 947 | dqsurf(:,:)=dqsurf(:,:) + zdqsdif(:,:) |
---|
[253] | 948 | end if ! of if (tracer) |
---|
| 949 | |
---|
[1477] | 950 | |
---|
| 951 | ! test energy conservation |
---|
[253] | 952 | !------------------------- |
---|
| 953 | if(enertest)then |
---|
[1477] | 954 | |
---|
[1524] | 955 | dEzdiff(:,:)=cpp*mass(:,:)*zdtdif(:,:) |
---|
[253] | 956 | do ig = 1, ngrid |
---|
[1524] | 957 | dEdiff(ig)=SUM(dEzdiff (ig,:))+ sensibFlux(ig)! subtract flux to the ground |
---|
| 958 | dEzdiff(ig,1)= dEzdiff(ig,1)+ sensibFlux(ig)! subtract flux to the ground |
---|
[253] | 959 | enddo |
---|
[1477] | 960 | |
---|
[1542] | 961 | call planetwide_sumval(dEdiff(:)*cell_area(:)/totarea_planet,dEtot) |
---|
[1524] | 962 | dEdiffs(:)=capcal(:)*zdtsdif(:)-zflubid(:)-sensibFlux(:) |
---|
[1542] | 963 | call planetwide_sumval(dEdiffs(:)*cell_area(:)/totarea_planet,dEtots) |
---|
| 964 | call planetwide_sumval(sensibFlux(:)*cell_area(:)/totarea_planet,AtmToSurf_TurbFlux) |
---|
[1477] | 965 | |
---|
[1524] | 966 | if (is_master) then |
---|
[1477] | 967 | |
---|
| 968 | if (UseTurbDiff) then |
---|
[1524] | 969 | print*,'In TurbDiff sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
---|
| 970 | print*,'In TurbDiff non-cons atm nrj change =',dEtot,' W m-2' |
---|
[1477] | 971 | print*,'In TurbDiff (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
---|
[1524] | 972 | else |
---|
| 973 | print*,'In vdifc sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
---|
| 974 | print*,'In vdifc non-cons atm nrj change =',dEtot,' W m-2' |
---|
| 975 | print*,'In vdifc (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
---|
| 976 | end if |
---|
| 977 | endif ! end of 'is_master' |
---|
[1477] | 978 | |
---|
| 979 | ! JL12 : note that the black body radiative flux emitted by the surface has been updated by the implicit scheme but not given back elsewhere. |
---|
| 980 | endif ! end of 'enertest' |
---|
[253] | 981 | |
---|
[1477] | 982 | else ! calldifv |
---|
[253] | 983 | |
---|
| 984 | if(.not.newtonian)then |
---|
| 985 | |
---|
[1914] | 986 | zdtsurf(:) = zdtsurf(:) + (fluxrad(:) + fluxgrd(:))/capcal(:) |
---|
[253] | 987 | |
---|
| 988 | endif |
---|
| 989 | |
---|
[1477] | 990 | endif ! end of 'calldifv' |
---|
[253] | 991 | |
---|
| 992 | |
---|
[1477] | 993 | !---------------------------------- |
---|
| 994 | ! IV. Dry convective adjustment : |
---|
| 995 | !---------------------------------- |
---|
[253] | 996 | |
---|
| 997 | if(calladj) then |
---|
| 998 | |
---|
[1914] | 999 | zdh(:,:) = pdt(:,:)/zpopsk(:,:) |
---|
[2242] | 1000 | zduadj(:,:)=0.D0 |
---|
| 1001 | zdvadj(:,:)=0.D0 |
---|
| 1002 | zdhadj(:,:)=0.D0 |
---|
[253] | 1003 | |
---|
| 1004 | |
---|
[1477] | 1005 | call convadj(ngrid,nlayer,nq,ptimestep, & |
---|
| 1006 | pplay,pplev,zpopsk, & |
---|
| 1007 | pu,pv,zh,pq, & |
---|
| 1008 | pdu,pdv,zdh,pdq, & |
---|
| 1009 | zduadj,zdvadj,zdhadj, & |
---|
| 1010 | zdqadj) |
---|
[253] | 1011 | |
---|
[1914] | 1012 | pdu(:,:) = pdu(:,:) + zduadj(:,:) |
---|
| 1013 | pdv(:,:) = pdv(:,:) + zdvadj(:,:) |
---|
| 1014 | pdt(:,:) = pdt(:,:) + zdhadj(:,:)*zpopsk(:,:) |
---|
| 1015 | zdtadj(:,:) = zdhadj(:,:)*zpopsk(:,:) ! for diagnostic only |
---|
[1283] | 1016 | |
---|
[253] | 1017 | if(tracer) then |
---|
[1914] | 1018 | pdq(:,:,:) = pdq(:,:,:) + zdqadj(:,:,:) |
---|
[253] | 1019 | end if |
---|
| 1020 | |
---|
[1477] | 1021 | ! Test energy conservation |
---|
[253] | 1022 | if(enertest)then |
---|
[1524] | 1023 | call planetwide_sumval(cpp*massarea(:,:)*zdtadj(:,:)/totarea_planet,dEtot) |
---|
[1295] | 1024 | if (is_master) print*,'In convadj atmospheric energy change =',dEtot,' W m-2' |
---|
[253] | 1025 | endif |
---|
| 1026 | |
---|
[787] | 1027 | |
---|
[1477] | 1028 | endif ! end of 'calladj' |
---|
| 1029 | |
---|
[253] | 1030 | |
---|
[1477] | 1031 | !--------------------------------------------- |
---|
[1647] | 1032 | ! V. Specific parameterizations for tracers |
---|
[1477] | 1033 | !--------------------------------------------- |
---|
[253] | 1034 | |
---|
[1477] | 1035 | if (tracer) then |
---|
[1914] | 1036 | |
---|
[2366] | 1037 | |
---|
| 1038 | #ifndef MESOSCALE |
---|
| 1039 | !! JVO 20 : For now, no chemistry or microphysics in MESOSCALE, but why not in the future ? |
---|
| 1040 | |
---|
[1926] | 1041 | ! ------------------- |
---|
| 1042 | ! V.1 Microphysics |
---|
| 1043 | ! ------------------- |
---|
[1795] | 1044 | |
---|
[1926] | 1045 | ! JVO 05/18 : We must call microphysics before chemistry, for condensation ! |
---|
| 1046 | |
---|
| 1047 | if (callmufi) then |
---|
[2242] | 1048 | |
---|
| 1049 | zzlev(:,nlayer+1)=zzlay(:,nlayer)+(zzlay(:,nlayer)-zzlev(:,nlayer)) ! JVO 19 : We assume zzlev isn't reused later on (could be done cleaner) |
---|
| 1050 | |
---|
[1926] | 1051 | #ifdef USE_QTEST |
---|
[2242] | 1052 | dtpq(:,:,:) = 0.D0 ! we want tpq to go only through mufi |
---|
[1947] | 1053 | call calmufi(ptimestep,pplev,zzlev,pplay,zzlay,gzlat,pt,tpq,dtpq,zdqmufi) |
---|
[1926] | 1054 | tpq(:,:,:) = tpq(:,:,:) + zdqmufi(:,:,:)*ptimestep ! only manipulation of tpq->*ptimestep here |
---|
| 1055 | #else |
---|
[2242] | 1056 | |
---|
[2109] | 1057 | call calmufi(ptimestep,pplev,zzlev,pplay,zzlay,gzlat,pt,pq,pdq,zdqmufi) |
---|
[2242] | 1058 | |
---|
[1926] | 1059 | pdq(:,:,:) = pdq(:,:,:) + zdqmufi(:,:,:) |
---|
[2242] | 1060 | |
---|
| 1061 | ! Sanity check ( way safer to be done here rather than within YAMMS ) |
---|
| 1062 | ! Important : the sanity check intentionally include the former processes tendency ! |
---|
| 1063 | ! NB : Despite this sanity check there might be still some unphysical values going through : |
---|
| 1064 | ! - Negatives, but harmless as it will be only for the output files |
---|
| 1065 | ! just remove them in post-proc. |
---|
| 1066 | ! - Weird unphysical ratio of m0 and m3, ok for now, but take care of them if |
---|
| 1067 | ! you want to compute optics from radii. |
---|
| 1068 | WHERE ( (pq(:,:,1)+pdq(:,:,1)*ptimestep < 0.D0) .OR. (pq(:,:,2)+pdq(:,:,2)*ptimestep < 0.D0) ) |
---|
| 1069 | pdq(:,:,1) = (epsilon(1.0)-1.D0)*pq(:,:,1)/ptimestep |
---|
| 1070 | pdq(:,:,2) = (epsilon(1.0)-1.D0)*pq(:,:,2)/ptimestep |
---|
| 1071 | ENDWHERE |
---|
| 1072 | WHERE ( (pq(:,:,3)+pdq(:,:,3)*ptimestep < 0.D0) .OR. (pq(:,:,4)+pdq(:,:,4)*ptimestep < 0.D0) ) |
---|
| 1073 | pdq(:,:,3) = (epsilon(1.0)-1.D0)*pq(:,:,3)/ptimestep |
---|
| 1074 | pdq(:,:,4) = (epsilon(1.0)-1.D0)*pq(:,:,4)/ptimestep |
---|
| 1075 | ENDWHERE |
---|
[1926] | 1076 | #endif |
---|
| 1077 | |
---|
| 1078 | ! Microphysics condensation for 2D fields to sent non-saturated fields to photochem |
---|
| 1079 | if ( callclouds .and. moyzon_ch .and. mod(icount-1,ichim).eq.0 ) then |
---|
[2117] | 1080 | zdqfibar(:,:,:) = 0.D0 ! We work in zonal average -> forget processes other than condensation |
---|
[1926] | 1081 | call calmufi(ptimestep,zplevbar,zzlevbar,zplaybar,zzlaybar, & |
---|
[1947] | 1082 | gzlat,ztfibar,zqfibar,zdqfibar,zdqmufibar) |
---|
[2242] | 1083 | ! TODO : Add a sanity check here ! |
---|
[1926] | 1084 | endif |
---|
| 1085 | |
---|
| 1086 | endif |
---|
| 1087 | |
---|
| 1088 | ! ----------------- |
---|
| 1089 | ! V.2. Chemistry |
---|
| 1090 | ! ----------------- |
---|
| 1091 | ! NB : Must be call last ( brings fields back to an equilibrium ) |
---|
| 1092 | |
---|
| 1093 | ! Known bug ? ( JVO 18 ) : If you try to use chimi_indx instead of iq+nmicro |
---|
| 1094 | ! it leads to weird results / crash on dev mod ( ok in debug ) ... Why ? Idk ... |
---|
| 1095 | |
---|
[1672] | 1096 | if (callchim) then |
---|
| 1097 | |
---|
[1914] | 1098 | ! o. Convert updated tracers to molar fraction |
---|
| 1099 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1100 | do iq = 1,nkim |
---|
| 1101 | ychim(:,:,iq) = ( pq(:,:,iq+nmicro) + pdq(:,:,iq+nmicro) ) / rat_mmol(iq+nmicro) |
---|
| 1102 | enddo |
---|
[1672] | 1103 | |
---|
[1926] | 1104 | ! JVO 05/18 : We update zonally averaged fields with condensation |
---|
| 1105 | ! as it is compulsory to have correct photochem production. But for other |
---|
| 1106 | ! processes ( convadj ... ) we miss them in any case as we work in zonally/diurnal |
---|
| 1107 | ! mean -> no fine diurnal/short time evolution, only seasonal evolution only. |
---|
| 1108 | if ( moyzon_ch .and. mod(icount-1,ichim).eq. 0 ) then |
---|
| 1109 | do iq = 1,nkim |
---|
| 1110 | ychimbar(:,:,iq) = zqfibar(:,:,iq+nmicro) / rat_mmol(iq+nmicro) |
---|
| 1111 | if ( callclouds ) then |
---|
| 1112 | ychimbar(:,:,iq) = ychimbar(:,:,iq) + ( zdqmufibar(:,:,iq+nmicro) / rat_mmol(iq+nmicro) ) |
---|
| 1113 | endif |
---|
| 1114 | enddo |
---|
| 1115 | endif |
---|
| 1116 | |
---|
[1958] | 1117 | ! i. Condensation of the 3D tracers after the transport |
---|
| 1118 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1966] | 1119 | |
---|
[1967] | 1120 | call calc_ysat(ngrid,nlayer,pplay/100.0,pt,ysat) ! Compute saturation profiles for every grid point |
---|
[1966] | 1121 | |
---|
[2117] | 1122 | dyccond(:,:,:) = 0.D0 ! Default value -> no condensation |
---|
[1966] | 1123 | |
---|
[1903] | 1124 | do iq=1,nkim |
---|
[1966] | 1125 | where ( ychim(:,:,iq).gt.ysat(:,:,iq) ) & |
---|
| 1126 | dyccond(:,:,iq+nmicro) = ( -ychim(:,:,iq)+ysat(:,:,iq) ) / ptimestep |
---|
[1672] | 1127 | enddo |
---|
| 1128 | |
---|
[2117] | 1129 | if ( callclouds ) dyccond(:,:,ices_indx) = 0.D0 ! Condensation have been calculated in the cloud microphysics |
---|
[1795] | 1130 | |
---|
[1914] | 1131 | do iq=1,nkim |
---|
| 1132 | ychim(:,:,iq) = ychim(:,:,iq) + dyccond(:,:,iq+nmicro) ! update molar ychim for following calchim |
---|
[1958] | 1133 | |
---|
| 1134 | pdq(:,:,iq+nmicro) = pdq(:,:,iq+nmicro) + dyccond(:,:,iq+nmicro)*rat_mmol(iq+nmicro) ! convert tendencies to mass mixing ratio |
---|
[1914] | 1135 | enddo |
---|
| 1136 | |
---|
| 1137 | |
---|
[1958] | 1138 | ! ii. 2D zonally averaged fields need to condense and evap before photochem |
---|
| 1139 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1926] | 1140 | if ( moyzon_ch .and. mod(icount-1,ichim).eq. 0 ) then |
---|
[1958] | 1141 | |
---|
[1967] | 1142 | call calc_ysat(ngrid,nlayer,zplaybar/100.0,ztfibar,ysat) ! Compute saturation profiles for every grid point for the zon-ave fields |
---|
[1966] | 1143 | |
---|
[2117] | 1144 | dyccondbar(:,:,:) = 0.D0 ! Default value -> no condensation |
---|
[1966] | 1145 | |
---|
[1926] | 1146 | do iq = 1,nkim |
---|
[1966] | 1147 | where ( ychimbar(:,:,iq).gt.ysat(:,:,iq) ) & |
---|
| 1148 | dyccondbar(:,:,iq+nmicro) = ( -ychimbar(:,:,iq)+ysat(:,:,iq) ) / ptimestep |
---|
[1926] | 1149 | enddo |
---|
| 1150 | |
---|
[2117] | 1151 | if ( callclouds ) dyccondbar(:,:,ices_indx) = 0.D0 ! Condensation have been calculated in the cloud microphysics |
---|
[1926] | 1152 | |
---|
| 1153 | do iq=1,nkim |
---|
| 1154 | ychimbar(:,:,iq) = ychimbar(:,:,iq) + dyccondbar(:,:,iq+nmicro) |
---|
| 1155 | enddo |
---|
| 1156 | |
---|
[1958] | 1157 | ! Pseudo-evap ( forcing constant surface humidity ) |
---|
| 1158 | do ig=1,ngrid |
---|
[2117] | 1159 | if ( ychimbar(ig,1,7) .lt. botCH4 ) ychimbar(ig,1,7) = botCH4 |
---|
[1958] | 1160 | enddo |
---|
| 1161 | |
---|
[1926] | 1162 | endif ! if ( moyzon_ch .and. mod(icount-1,ichim).eq. 0 ) |
---|
| 1163 | |
---|
[1958] | 1164 | ! iii. Photochemistry ( must be call after condensation (and evap of 2D) ) |
---|
| 1165 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[1795] | 1166 | if( mod(icount-1,ichim).eq.0. ) then |
---|
[1672] | 1167 | |
---|
[1795] | 1168 | print *, "We enter in the chemistry ..." |
---|
[1672] | 1169 | |
---|
[1914] | 1170 | if (moyzon_ch) then ! 2D zonally averaged chemistry |
---|
| 1171 | |
---|
[1926] | 1172 | ! Here we send zonal average fields ( corrected with cond ) from dynamics to chem. module |
---|
[2097] | 1173 | call calchim(ngrid,ychimbar,declin,ctimestep,ztfibar,zphibar,zphisbar, & |
---|
[1958] | 1174 | zplaybar,zplevbar,zzlaybar,zzlevbar,dycchi) |
---|
[1904] | 1175 | else ! 3D chemistry (or 1D run) |
---|
[2097] | 1176 | call calchim(ngrid,ychim,declin,ctimestep,pt,pphi,phisfi, & |
---|
| 1177 | pplay,pplev,zzlay_eff,zzlev_eff,dycchi) |
---|
[1914] | 1178 | endif ! if moyzon |
---|
[1915] | 1179 | |
---|
[1672] | 1180 | endif |
---|
| 1181 | |
---|
[1958] | 1182 | ! iv. Surface pseudo-evaporation |
---|
| 1183 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1184 | do ig=1,ngrid |
---|
[2117] | 1185 | if ( (ychim(ig,1,7)+dycchi(ig,1,7)*ptimestep) .lt. botCH4 ) then ! +dycchi because ychim not yet updated |
---|
| 1186 | dycevapCH4(ig) = ( -ychim(ig,1,7)+botCH4 ) / ptimestep - dycchi(ig,1,7) |
---|
[1958] | 1187 | else |
---|
[2117] | 1188 | dycevapCH4(ig) = 0.D0 |
---|
[1958] | 1189 | endif |
---|
| 1190 | enddo |
---|
| 1191 | |
---|
| 1192 | pdq(:,1,7+nmicro) = pdq(:,1,7+nmicro) + dycevapCH4(:)*rat_mmol(7+nmicro) |
---|
[1956] | 1193 | |
---|
[1958] | 1194 | ! v. Updates and positivity check |
---|
| 1195 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[2242] | 1196 | zdqchi(:,:,:) = 0.D0 ! -> dycchi is saved but for the nmicro tracers we must update to 0 at each step |
---|
[2117] | 1197 | |
---|
[1903] | 1198 | do iq=1,nkim |
---|
[1926] | 1199 | zdqchi(:,:,iq+nmicro) = dycchi(:,:,iq)*rat_mmol(iq+nmicro) ! convert tendencies to mass mixing ratio |
---|
[1672] | 1200 | |
---|
[1926] | 1201 | where( (pq(:,:,iq+nmicro) + ( pdq(:,:,iq+nmicro)+zdqchi(:,:,iq+nmicro) )*ptimestep ) .LT. 0.) & ! When using zonal means we set the same tendency |
---|
[2117] | 1202 | zdqchi(:,:,iq+nmicro) = 1.D-30 - pdq(:,:,iq+nmicro) - pq(:,:,iq+nmicro)/ptimestep ! everywhere in longitude -> could lead to negs ! |
---|
[1926] | 1203 | enddo |
---|
| 1204 | |
---|
[1914] | 1205 | pdq(:,:,:) = pdq(:,:,:) + zdqchi(:,:,:) |
---|
[1672] | 1206 | |
---|
[1795] | 1207 | endif ! end of 'callchim' |
---|
| 1208 | |
---|
[2366] | 1209 | #endif |
---|
| 1210 | |
---|
[1477] | 1211 | ! --------------- |
---|
[1672] | 1212 | ! V.3 Updates |
---|
[1477] | 1213 | ! --------------- |
---|
[253] | 1214 | |
---|
[1477] | 1215 | ! Updating Atmospheric Mass and Tracers budgets. |
---|
[728] | 1216 | if(mass_redistrib) then |
---|
| 1217 | |
---|
[1914] | 1218 | zdmassmr(:,:) = mass(:,:) * zdqevap(:,:) |
---|
[863] | 1219 | |
---|
| 1220 | do ig = 1, ngrid |
---|
[1914] | 1221 | zdmassmr_col(ig)=SUM(zdmassmr(ig,:)) |
---|
[863] | 1222 | enddo |
---|
[728] | 1223 | |
---|
[1524] | 1224 | call writediagfi(ngrid,"mass_evap","mass gain"," ",3,zdmassmr) |
---|
| 1225 | call writediagfi(ngrid,"mass_evap_col","mass gain col"," ",2,zdmassmr_col) |
---|
| 1226 | call writediagfi(ngrid,"mass","mass","kg/m2",3,mass) |
---|
[728] | 1227 | |
---|
[1524] | 1228 | call mass_redistribution(ngrid,nlayer,nq,ptimestep, & |
---|
[1647] | 1229 | capcal,pplay,pplev,pt,tsurf,pq,qsurf, & |
---|
[1524] | 1230 | pu,pv,pdt,zdtsurf,pdq,pdu,pdv,zdmassmr, & |
---|
| 1231 | zdtmr,zdtsurfmr,zdpsrfmr,zdumr,zdvmr,zdqmr,zdqsurfmr) |
---|
| 1232 | |
---|
[1914] | 1233 | pdq(:,:,:) = pdq(:,:,:) + zdqmr(:,:,:) |
---|
| 1234 | dqsurf(:,:) = dqsurf(:,:) + zdqsurfmr(:,:) |
---|
| 1235 | pdt(:,:) = pdt(:,:) + zdtmr(:,:) |
---|
| 1236 | pdu(:,:) = pdu(:,:) + zdumr(:,:) |
---|
| 1237 | pdv(:,:) = pdv(:,:) + zdvmr(:,:) |
---|
| 1238 | pdpsrf(:) = pdpsrf(:) + zdpsrfmr(:) |
---|
| 1239 | zdtsurf(:) = zdtsurf(:) + zdtsurfmr(:) |
---|
[1524] | 1240 | |
---|
| 1241 | endif |
---|
[728] | 1242 | |
---|
[1477] | 1243 | ! ----------------------------- |
---|
[1672] | 1244 | ! V.4. Surface Tracer Update |
---|
[1477] | 1245 | ! ----------------------------- |
---|
[1297] | 1246 | |
---|
[1914] | 1247 | qsurf(:,:) = qsurf(:,:) + ptimestep*dqsurf(:,:) |
---|
[253] | 1248 | |
---|
[1477] | 1249 | ! Add qsurf to qsurf_hist, which is what we save in diagfi.nc. At the same time, we set the water |
---|
| 1250 | ! content of ocean gridpoints back to zero, in order to avoid rounding errors in vdifc, rain. |
---|
[622] | 1251 | qsurf_hist(:,:) = qsurf(:,:) |
---|
[253] | 1252 | |
---|
[1477] | 1253 | endif! end of if 'tracer' |
---|
[253] | 1254 | |
---|
| 1255 | |
---|
[1477] | 1256 | !------------------------------------------------ |
---|
[1647] | 1257 | ! VI. Surface and sub-surface soil temperature |
---|
[1477] | 1258 | !------------------------------------------------ |
---|
[253] | 1259 | |
---|
[1477] | 1260 | |
---|
| 1261 | ! Increment surface temperature |
---|
[1297] | 1262 | |
---|
[1914] | 1263 | tsurf(:)=tsurf(:)+ptimestep*zdtsurf(:) |
---|
[1477] | 1264 | |
---|
| 1265 | ! Compute soil temperatures and subsurface heat flux. |
---|
[253] | 1266 | if (callsoil) then |
---|
[787] | 1267 | call soil(ngrid,nsoilmx,.false.,lastcall,inertiedat, & |
---|
[1477] | 1268 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
[253] | 1269 | endif |
---|
| 1270 | |
---|
[1297] | 1271 | |
---|
[1477] | 1272 | ! Test energy conservation |
---|
[253] | 1273 | if(enertest)then |
---|
[1542] | 1274 | call planetwide_sumval(cell_area(:)*capcal(:)*zdtsurf(:)/totarea_planet,dEtots) |
---|
[1524] | 1275 | if (is_master) print*,'Surface energy change =',dEtots,' W m-2' |
---|
[253] | 1276 | endif |
---|
| 1277 | |
---|
| 1278 | |
---|
[1477] | 1279 | !--------------------------------------------------- |
---|
[1647] | 1280 | ! VII. Perform diagnostics and write output files |
---|
[1477] | 1281 | !--------------------------------------------------- |
---|
| 1282 | |
---|
| 1283 | ! Note : For output only: the actual model integration is performed in the dynamics. |
---|
[253] | 1284 | |
---|
[1477] | 1285 | ! Temperature, zonal and meridional winds. |
---|
[1914] | 1286 | zt(:,:) = pt(:,:) + pdt(:,:)*ptimestep |
---|
| 1287 | zu(:,:) = pu(:,:) + pdu(:,:)*ptimestep |
---|
| 1288 | zv(:,:) = pv(:,:) + pdv(:,:)*ptimestep |
---|
[253] | 1289 | |
---|
[1477] | 1290 | ! Diagnostic. |
---|
[1914] | 1291 | zdtdyn(:,:) = (pt(:,:)-ztprevious(:,:)) / ptimestep |
---|
| 1292 | ztprevious(:,:) = zt(:,:) |
---|
[253] | 1293 | |
---|
[1914] | 1294 | zdudyn(:,:) = (pu(:,:)-zuprevious(:,:)) / ptimestep |
---|
| 1295 | zuprevious(:,:) = zu(:,:) |
---|
[1637] | 1296 | |
---|
[253] | 1297 | if(firstcall)then |
---|
[2242] | 1298 | zdtdyn(:,:)=0.D0 |
---|
| 1299 | zdudyn(:,:)=0.D0 |
---|
[253] | 1300 | endif |
---|
| 1301 | |
---|
[2002] | 1302 | ! Horizotal wind |
---|
| 1303 | zhorizwind(:,:) = sqrt( zu(:,:)*zu(:,:) + zv(:,:)*zv(:,:) ) |
---|
| 1304 | |
---|
[1477] | 1305 | ! Dynamical heating diagnostic. |
---|
[253] | 1306 | do ig=1,ngrid |
---|
[1637] | 1307 | fluxdyn(ig)= SUM(zdtdyn(ig,:) *mass(ig,:))*cpp |
---|
[253] | 1308 | enddo |
---|
| 1309 | |
---|
[1477] | 1310 | ! Tracers. |
---|
[1914] | 1311 | zq(:,:,:) = pq(:,:,:) + pdq(:,:,:)*ptimestep |
---|
[253] | 1312 | |
---|
[1477] | 1313 | ! Surface pressure. |
---|
[1914] | 1314 | ps(:) = pplev(:,1) + pdpsrf(:)*ptimestep |
---|
[253] | 1315 | |
---|
| 1316 | |
---|
| 1317 | |
---|
[1477] | 1318 | ! Surface and soil temperature information |
---|
[1542] | 1319 | call planetwide_sumval(cell_area(:)*tsurf(:)/totarea_planet,Ts1) |
---|
[1295] | 1320 | call planetwide_minval(tsurf(:),Ts2) |
---|
| 1321 | call planetwide_maxval(tsurf(:),Ts3) |
---|
[253] | 1322 | if(callsoil)then |
---|
[1542] | 1323 | TsS = SUM(cell_area(:)*tsoil(:,nsoilmx))/totarea ! mean temperature at bottom soil layer |
---|
[1722] | 1324 | if (is_master) then |
---|
| 1325 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf] ave[Tdeep]' |
---|
| 1326 | print*,Ts1,Ts2,Ts3,TsS |
---|
| 1327 | end if |
---|
[959] | 1328 | else |
---|
[1722] | 1329 | if (is_master) then |
---|
| 1330 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf]' |
---|
[1477] | 1331 | print*,Ts1,Ts2,Ts3 |
---|
[1524] | 1332 | endif |
---|
[959] | 1333 | end if |
---|
[253] | 1334 | |
---|
| 1335 | |
---|
[1477] | 1336 | ! Check the energy balance of the simulation during the run |
---|
[253] | 1337 | if(corrk)then |
---|
| 1338 | |
---|
[1542] | 1339 | call planetwide_sumval(cell_area(:)*fluxtop_dn(:)/totarea_planet,ISR) |
---|
| 1340 | call planetwide_sumval(cell_area(:)*fluxabs_sw(:)/totarea_planet,ASR) |
---|
| 1341 | call planetwide_sumval(cell_area(:)*fluxtop_lw(:)/totarea_planet,OLR) |
---|
| 1342 | call planetwide_sumval(cell_area(:)*fluxgrd(:)/totarea_planet,GND) |
---|
| 1343 | call planetwide_sumval(cell_area(:)*fluxdyn(:)/totarea_planet,DYN) |
---|
[787] | 1344 | do ig=1,ngrid |
---|
[253] | 1345 | if(fluxtop_dn(ig).lt.0.0)then |
---|
| 1346 | print*,'fluxtop_dn has gone crazy' |
---|
| 1347 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
| 1348 | print*,'temp= ',pt(ig,:) |
---|
| 1349 | print*,'pplay= ',pplay(ig,:) |
---|
| 1350 | call abort |
---|
| 1351 | endif |
---|
| 1352 | end do |
---|
| 1353 | |
---|
[787] | 1354 | if(ngrid.eq.1)then |
---|
[253] | 1355 | DYN=0.0 |
---|
| 1356 | endif |
---|
[1524] | 1357 | |
---|
| 1358 | if (is_master) then |
---|
[1477] | 1359 | print*,' ISR ASR OLR GND DYN [W m^-2]' |
---|
| 1360 | print*, ISR,ASR,OLR,GND,DYN |
---|
[1524] | 1361 | endif |
---|
[253] | 1362 | |
---|
[1295] | 1363 | if(enertest .and. is_master)then |
---|
[651] | 1364 | print*,'SW flux/heating difference SW++ - ASR = ',dEtotSW+dEtotsSW-ASR,' W m-2' |
---|
| 1365 | print*,'LW flux/heating difference LW++ - OLR = ',dEtotLW+dEtotsLW+OLR,' W m-2' |
---|
| 1366 | print*,'LW energy balance LW++ + ASR = ',dEtotLW+dEtotsLW+ASR,' W m-2' |
---|
[253] | 1367 | endif |
---|
| 1368 | |
---|
[1295] | 1369 | if(meanOLR .and. is_master)then |
---|
[1216] | 1370 | if((ngrid.gt.1) .or. (mod(icount-1,ecritphy).eq.0))then |
---|
[253] | 1371 | ! to record global radiative balance |
---|
[588] | 1372 | open(92,file="rad_bal.out",form='formatted',position='append') |
---|
[651] | 1373 | write(92,*) zday,ISR,ASR,OLR |
---|
[253] | 1374 | close(92) |
---|
[588] | 1375 | open(93,file="tem_bal.out",form='formatted',position='append') |
---|
[1295] | 1376 | if(callsoil)then |
---|
[1524] | 1377 | write(93,*) zday,Ts1,Ts2,Ts3,TsS |
---|
| 1378 | else |
---|
| 1379 | write(93,*) zday,Ts1,Ts2,Ts3 |
---|
| 1380 | endif |
---|
[253] | 1381 | close(93) |
---|
| 1382 | endif |
---|
| 1383 | endif |
---|
| 1384 | |
---|
[1477] | 1385 | endif ! end of 'corrk' |
---|
[253] | 1386 | |
---|
[651] | 1387 | |
---|
[1477] | 1388 | ! Diagnostic to test radiative-convective timescales in code. |
---|
[253] | 1389 | if(testradtimes)then |
---|
[588] | 1390 | open(38,file="tau_phys.out",form='formatted',position='append') |
---|
[253] | 1391 | ig=1 |
---|
| 1392 | do l=1,nlayer |
---|
| 1393 | write(38,*) -1./pdt(ig,l),pt(ig,l),pplay(ig,l) |
---|
| 1394 | enddo |
---|
| 1395 | close(38) |
---|
[726] | 1396 | print*,'As testradtimes enabled,' |
---|
| 1397 | print*,'exiting physics on first call' |
---|
[253] | 1398 | call abort |
---|
| 1399 | endif |
---|
| 1400 | |
---|
[1477] | 1401 | |
---|
[1722] | 1402 | if (is_master) print*,'--> Ls =',zls*180./pi |
---|
[1477] | 1403 | |
---|
| 1404 | |
---|
| 1405 | !---------------------------------------------------------------------- |
---|
[253] | 1406 | ! Writing NetCDF file "RESTARTFI" at the end of the run |
---|
[1477] | 1407 | !---------------------------------------------------------------------- |
---|
| 1408 | |
---|
[253] | 1409 | ! Note: 'restartfi' is stored just before dynamics are stored |
---|
| 1410 | ! in 'restart'. Between now and the writting of 'restart', |
---|
| 1411 | ! there will have been the itau=itau+1 instruction and |
---|
| 1412 | ! a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
---|
| 1413 | ! thus we store for time=time+dtvr |
---|
| 1414 | |
---|
| 1415 | |
---|
| 1416 | |
---|
[1477] | 1417 | if(lastcall) then |
---|
| 1418 | ztime_fin = ptime + ptimestep/(float(iphysiq)*daysec) |
---|
[305] | 1419 | |
---|
[2291] | 1420 | #ifndef MESOSCALE |
---|
[1477] | 1421 | if (ngrid.ne.1) then |
---|
| 1422 | write(*,*)'PHYSIQ: for physdem ztime_fin =',ztime_fin |
---|
| 1423 | |
---|
| 1424 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq, & |
---|
| 1425 | ptimestep,ztime_fin, & |
---|
[1789] | 1426 | tsurf,tsoil,emis,q2,qsurf_hist,tankCH4) |
---|
[1477] | 1427 | endif |
---|
[2291] | 1428 | #endif |
---|
| 1429 | |
---|
[1896] | 1430 | endif ! end of 'lastcall' |
---|
[253] | 1431 | |
---|
[2291] | 1432 | #ifndef MESOSCALE |
---|
[1477] | 1433 | !----------------------------------------------------------------------------------------------------- |
---|
| 1434 | ! OUTPUT in netcdf file "DIAGFI.NC", containing any variable for diagnostic |
---|
| 1435 | ! |
---|
| 1436 | ! Note 1 : output with period "ecritphy", set in "run.def" |
---|
| 1437 | ! |
---|
| 1438 | ! Note 2 : writediagfi can also be called from any other subroutine for any variable, |
---|
| 1439 | ! but its preferable to keep all the calls in one place ... |
---|
| 1440 | !----------------------------------------------------------------------------------------------------- |
---|
[253] | 1441 | |
---|
| 1442 | |
---|
[1477] | 1443 | call writediagfi(ngrid,"Ls","solar longitude","deg",0,zls*180./pi) |
---|
| 1444 | call writediagfi(ngrid,"Lss","sub solar longitude","deg",0,zlss*180./pi) |
---|
| 1445 | call writediagfi(ngrid,"RA","right ascension","deg",0,right_ascen*180./pi) |
---|
| 1446 | call writediagfi(ngrid,"Declin","solar declination","deg",0,declin*180./pi) |
---|
| 1447 | call writediagfi(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
| 1448 | call writediagfi(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
| 1449 | call writediagfi(ngrid,"temp","temperature","K",3,zt) |
---|
| 1450 | call writediagfi(ngrid,"teta","potential temperature","K",3,zh) |
---|
| 1451 | call writediagfi(ngrid,"u","Zonal wind","m.s-1",3,zu) |
---|
| 1452 | call writediagfi(ngrid,"v","Meridional wind","m.s-1",3,zv) |
---|
| 1453 | call writediagfi(ngrid,"w","Vertical wind","m.s-1",3,pw) |
---|
| 1454 | call writediagfi(ngrid,"p","Pressure","Pa",3,pplay) |
---|
| 1455 | |
---|
[965] | 1456 | ! Subsurface temperatures |
---|
[969] | 1457 | ! call writediagsoil(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
| 1458 | ! call writediagsoil(ngrid,"temp","temperature","K",3,tsoil) |
---|
[965] | 1459 | |
---|
[1477] | 1460 | |
---|
[1297] | 1461 | |
---|
[1477] | 1462 | ! Total energy balance diagnostics |
---|
| 1463 | if(callrad.and.(.not.newtonian))then |
---|
| 1464 | |
---|
[1482] | 1465 | !call writediagfi(ngrid,"ALB","Surface albedo"," ",2,albedo_equivalent) |
---|
[1477] | 1466 | call writediagfi(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) |
---|
| 1467 | call writediagfi(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) |
---|
| 1468 | call writediagfi(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) |
---|
| 1469 | |
---|
[1016] | 1470 | ! call writediagfi(ngrid,"ASRcs","absorbed stellar rad (cs).","W m-2",2,fluxabs_sw1) |
---|
| 1471 | ! call writediagfi(ngrid,"OLRcs","outgoing longwave rad (cs).","W m-2",2,fluxtop_lw1) |
---|
| 1472 | ! call writediagfi(ngrid,"fluxsurfsw","sw surface flux.","W m-2",2,fluxsurf_sw) |
---|
| 1473 | ! call writediagfi(ngrid,"fluxsurflw","lw back radiation.","W m-2",2,fluxsurf_lw) |
---|
| 1474 | ! call writediagfi(ngrid,"fluxsurfswcs","sw surface flux (cs).","W m-2",2,fluxsurf_sw1) |
---|
| 1475 | ! call writediagfi(ngrid,"fluxsurflwcs","lw back radiation (cs).","W m-2",2,fluxsurf_lw1) |
---|
[1477] | 1476 | |
---|
[1647] | 1477 | |
---|
| 1478 | call writediagfi(ngrid,"GND","heat flux from ground","W m-2",2,fluxgrd) |
---|
[1477] | 1479 | |
---|
| 1480 | call writediagfi(ngrid,"DYN","dynamical heat input","W m-2",2,fluxdyn) |
---|
| 1481 | |
---|
| 1482 | endif ! end of 'callrad' |
---|
[1524] | 1483 | |
---|
[1477] | 1484 | if(enertest) then |
---|
| 1485 | |
---|
[1524] | 1486 | if (calldifv) then |
---|
[1477] | 1487 | |
---|
[1524] | 1488 | call writediagfi(ngrid,"q2","turbulent kinetic energy","J.kg^-1",3,q2) |
---|
[1477] | 1489 | call writediagfi(ngrid,"sensibFlux","sensible heat flux","w.m^-2",2,sensibFlux) |
---|
| 1490 | |
---|
[1524] | 1491 | ! call writediagfi(ngrid,"dEzdiff","turbulent diffusion heating (-sensible flux)","w.m^-2",3,dEzdiff) |
---|
| 1492 | ! call writediagfi(ngrid,"dEdiff","integrated turbulent diffusion heating (-sensible flux)","w.m^-2",2,dEdiff) |
---|
| 1493 | ! call writediagfi(ngrid,"dEdiffs","In TurbDiff (correc rad+latent heat) surf nrj change","w.m^-2",2,dEdiffs) |
---|
| 1494 | |
---|
| 1495 | endif |
---|
[1477] | 1496 | |
---|
[1524] | 1497 | if (corrk) then |
---|
| 1498 | call writediagfi(ngrid,"dEzradsw","radiative heating","w.m^-2",3,dEzradsw) |
---|
| 1499 | call writediagfi(ngrid,"dEzradlw","radiative heating","w.m^-2",3,dEzradlw) |
---|
| 1500 | endif |
---|
[1477] | 1501 | |
---|
| 1502 | endif ! end of 'enertest' |
---|
[253] | 1503 | |
---|
[2133] | 1504 | ! Diagnostics of optical thickness |
---|
[2138] | 1505 | ! Warning this is exp(-tau), I let you postproc with -log to have tau itself - JVO 19 |
---|
[2133] | 1506 | if (diagdtau) then |
---|
| 1507 | do nw=1,L_NSPECTV |
---|
| 1508 | write(str2,'(i2.2)') nw |
---|
[2138] | 1509 | call writediagfi(ngrid,'dtauv'//str2,'Layer optical thickness attenuation in VI band '//str2,'',1,int_dtauv(:,nlayer:1:-1,nw)) |
---|
[2133] | 1510 | enddo |
---|
| 1511 | do nw=1,L_NSPECTI |
---|
| 1512 | write(str2,'(i2.2)') nw |
---|
[2138] | 1513 | call writediagfi(ngrid,'dtaui'//str2,'Layer optical thickness attenuation in IR band '//str2,'',1,int_dtaui(:,nlayer:1:-1,nw)) |
---|
[2133] | 1514 | enddo |
---|
| 1515 | endif |
---|
| 1516 | |
---|
[1663] | 1517 | ! Temporary inclusions for winds diagnostics. |
---|
| 1518 | call writediagfi(ngrid,"zdudif","Turbdiff tend. zon. wind","m s-2",3,zdudif) |
---|
[1897] | 1519 | call writediagfi(ngrid,"zdudyn","Dyn. tend. zon. wind","m s-2",3,zdudyn) |
---|
[1477] | 1520 | |
---|
| 1521 | ! Temporary inclusions for heating diagnostics. |
---|
[1663] | 1522 | call writediagfi(ngrid,"zdtsw","SW heating","T s-1",3,zdtsw) |
---|
| 1523 | call writediagfi(ngrid,"zdtlw","LW heating","T s-1",3,zdtlw) |
---|
| 1524 | call writediagfi(ngrid,"dtrad","radiative heating","K s-1",3,dtrad) |
---|
| 1525 | call writediagfi(ngrid,"zdtdyn","Dyn. heating","T s-1",3,zdtdyn) |
---|
[1477] | 1526 | |
---|
| 1527 | ! For Debugging. |
---|
[1663] | 1528 | call writediagfi(ngrid,'pphi','Geopotential',' ',3,pphi) |
---|
[1477] | 1529 | |
---|
[253] | 1530 | |
---|
[1477] | 1531 | ! Output tracers. |
---|
| 1532 | if (tracer) then |
---|
[1808] | 1533 | |
---|
[1926] | 1534 | if (callmufi) then |
---|
| 1535 | ! Microphysical tracers are expressed in unit/m3. |
---|
[1947] | 1536 | ! convert X.kg-1 --> X.m-3 (whereas for optics was -> X.m-2) |
---|
| 1537 | i2e(:,:) = ( pplev(:,1:nlayer)-pplev(:,2:nlayer+1) ) / gzlat(:,1:nlayer) /(zzlev(:,2:nlayer+1)-zzlev(:,1:nlayer)) |
---|
[1926] | 1538 | |
---|
[1897] | 1539 | #ifdef USE_QTEST |
---|
| 1540 | ! Microphysical tracers passed through dyn+phys(except mufi) |
---|
[1947] | 1541 | call writediagfi(ngrid,"mu_m0as_dp","Dynphys only spherical mode 0th order moment",'m-3',3,zq(:,:,micro_indx(1))*i2e) |
---|
| 1542 | call writediagfi(ngrid,"mu_m3as_dp","Dynphys only spherical mode 3rd order moment",'m3/m3',3,zq(:,:,micro_indx(2))*i2e) |
---|
| 1543 | call writediagfi(ngrid,"mu_m0af_dp","Dynphys only fractal mode 0th order moment",'m-3',3,zq(:,:,micro_indx(3))*i2e) |
---|
| 1544 | call writediagfi(ngrid,"mu_m3af_dp","Dynphys only fractal mode 3rd order moment",'m3/m3',3,zq(:,:,micro_indx(4))*i2e) |
---|
[1897] | 1545 | ! Microphysical tracers passed through mufi only |
---|
[1947] | 1546 | call writediagfi(ngrid,"mu_m0as_mo","Mufi only spherical mode 0th order moment",'m-3',3,tpq(:,:,micro_indx(1))*i2e) |
---|
| 1547 | call writediagfi(ngrid,"mu_m3as_mo","Mufi only spherical mode 3rd order moment",'m3/m3',3,tpq(:,:,micro_indx(2))*i2e) |
---|
| 1548 | call writediagfi(ngrid,"mu_m0af_mo","Mufi only fractal mode 0th order moment",'m-3',3,tpq(:,:,micro_indx(3))*i2e) |
---|
| 1549 | call writediagfi(ngrid,"mu_m3af_mo","Mufi only fractal mode 3rd order moment",'m3/m3',3,tpq(:,:,micro_indx(4))*i2e) |
---|
[1897] | 1550 | #else |
---|
[1947] | 1551 | call writediagfi(ngrid,"mu_m0as","Spherical mode 0th order moment",'m-3',3,zq(:,:,micro_indx(1))*i2e) |
---|
| 1552 | call writediagfi(ngrid,"mu_m3as","Spherical mode 3rd order moment",'m3/m3',3,zq(:,:,micro_indx(2))*i2e) |
---|
| 1553 | call writediagfi(ngrid,"mu_m0af","Fractal mode 0th order moment",'m-3',3,zq(:,:,micro_indx(3))*i2e) |
---|
| 1554 | call writediagfi(ngrid,"mu_m3af","Fractal mode 3rd order moment",'m3/m3',3,zq(:,:,micro_indx(4))*i2e) |
---|
[1897] | 1555 | #endif |
---|
[1926] | 1556 | |
---|
| 1557 | ! Microphysical diagnostics |
---|
| 1558 | call writediagfi(ngrid,"mmd_aer_prec","Total aerosols precipitations",'m',2,mmd_aer_prec) |
---|
| 1559 | call writediagfi(ngrid,"mmd_aer_s_flux","Spherical aerosols sedimentation flux",'kg.m-2.s-1',3,mmd_aer_s_flux) |
---|
| 1560 | call writediagfi(ngrid,"mmd_aer_f_flux","Fractal aerosols sedimentation flux",'kg.m-2.s-1',3,mmd_aer_f_flux) |
---|
| 1561 | call writediagfi(ngrid,"mmd_rc_sph","Spherical mode caracteristic radius",'m',3,mmd_rc_sph) |
---|
| 1562 | call writediagfi(ngrid,"mmd_rc_fra","Fractal mode caracteristic radius",'m',3,mmd_rc_fra) |
---|
| 1563 | |
---|
[1795] | 1564 | endif ! end of 'callmufi' |
---|
[253] | 1565 | |
---|
[1926] | 1566 | ! Chemical tracers |
---|
| 1567 | if (callchim) then |
---|
| 1568 | do iq=1,nkim |
---|
| 1569 | call writediagfi(ngrid,cnames(iq),cnames(iq),'mol/mol',3,zq(:,:,iq+nmicro)/rat_mmol(iq+nmicro)) |
---|
| 1570 | enddo |
---|
[1960] | 1571 | call writediagfi(ngrid,"evapCH4","Surface CH4 pseudo-evaporation rate",'mol/mol/s',2,dycevapCH4) |
---|
[1926] | 1572 | endif |
---|
[1808] | 1573 | |
---|
[1477] | 1574 | endif ! end of 'tracer' |
---|
[253] | 1575 | |
---|
[1622] | 1576 | ! XIOS outputs |
---|
| 1577 | #ifdef CPP_XIOS |
---|
| 1578 | ! Send fields to XIOS: (NB these fields must also be defined as |
---|
| 1579 | ! <field id="..." /> in context_lmdz_physics.xml to be correctly used) |
---|
[1915] | 1580 | CALL send_xios_field("ls",zls*180./pi) |
---|
| 1581 | CALL send_xios_field("lss",zlss*180./pi) |
---|
| 1582 | CALL send_xios_field("RA",right_ascen*180./pi) |
---|
| 1583 | CALL send_xios_field("Declin",declin*180./pi) |
---|
[1626] | 1584 | |
---|
[1915] | 1585 | ! Total energy balance diagnostics |
---|
| 1586 | if (callrad.and.(.not.newtonian)) then |
---|
| 1587 | CALL send_xios_field("ISR_TOA",fluxtop_dn) |
---|
| 1588 | CALL send_xios_field("OLR_TOA",fluxtop_lw) |
---|
| 1589 | endif |
---|
| 1590 | |
---|
| 1591 | CALL send_xios_field("area",cell_area) |
---|
| 1592 | CALL send_xios_field("pphi",pphi) |
---|
[1957] | 1593 | CALL send_xios_field("pphis",phisfi) |
---|
[1915] | 1594 | |
---|
[1622] | 1595 | CALL send_xios_field("ps",ps) |
---|
[1915] | 1596 | CALL send_xios_field("tsurf",tsurf) |
---|
[1622] | 1597 | |
---|
[1957] | 1598 | if(enertest) then |
---|
| 1599 | if (calldifv) then |
---|
| 1600 | CALL send_xios_field("sensibFlux",sensibFlux) |
---|
| 1601 | endif |
---|
| 1602 | endif |
---|
| 1603 | |
---|
[1915] | 1604 | CALL send_xios_field("temp",zt) |
---|
| 1605 | CALL send_xios_field("teta",zh) |
---|
[1622] | 1606 | CALL send_xios_field("u",zu) |
---|
| 1607 | CALL send_xios_field("v",zv) |
---|
[1915] | 1608 | CALL send_xios_field("w",pw) |
---|
| 1609 | CALL send_xios_field("p",pplay) |
---|
| 1610 | |
---|
| 1611 | ! Winds diagnostics. |
---|
| 1612 | CALL send_xios_field("dudif",zdudif) |
---|
| 1613 | CALL send_xios_field("dudyn",zdudyn) |
---|
[1896] | 1614 | |
---|
[2002] | 1615 | CALL send_xios_field("horizwind",zhorizwind) |
---|
| 1616 | |
---|
[1915] | 1617 | ! Heating diagnostics. |
---|
| 1618 | CALL send_xios_field("dtsw",zdtsw) |
---|
| 1619 | CALL send_xios_field("dtlw",zdtlw) |
---|
| 1620 | CALL send_xios_field("dtrad",dtrad) |
---|
| 1621 | CALL send_xios_field("dtdyn",zdtdyn) |
---|
[2097] | 1622 | CALL send_xios_field("dtdif",zdtdif) |
---|
[1926] | 1623 | |
---|
| 1624 | ! Chemical tracers |
---|
| 1625 | if (callchim) then |
---|
[1943] | 1626 | |
---|
| 1627 | ! Advected fields |
---|
[1926] | 1628 | do iq=1,nkim |
---|
[1943] | 1629 | CALL send_xios_field(trim(cnames(iq)),zq(:,:,iq+nmicro)/rat_mmol(iq+nmicro)) ! kg/kg -> mol/mol |
---|
[1926] | 1630 | enddo |
---|
[1943] | 1631 | |
---|
| 1632 | ! Upper chemistry fields |
---|
| 1633 | do iq=1,nkim |
---|
| 1634 | CALL send_xios_field(trim(cnames(iq))//"_up",ykim_up(iq,:,:)) ! mol/mol |
---|
| 1635 | enddo |
---|
| 1636 | |
---|
| 1637 | ! Append fields in ykim_tot for output on the total vertical grid (0->1300km) |
---|
| 1638 | do iq=1,nkim |
---|
| 1639 | |
---|
| 1640 | ! GCM levels |
---|
| 1641 | do l=1,nlayer |
---|
| 1642 | ykim_tot(iq,:,l) = zq(:,l,iq+nmicro)/rat_mmol(iq+nmicro) |
---|
| 1643 | enddo |
---|
| 1644 | ! Upper levels |
---|
| 1645 | do l=1,nlaykim_up |
---|
| 1646 | ykim_tot(iq,:,nlayer+l) = ykim_up(iq,:,l) |
---|
| 1647 | enddo |
---|
| 1648 | |
---|
| 1649 | CALL send_xios_field(trim(cnames(iq))//"_tot",ykim_tot(iq,:,:)) ! mol/mol |
---|
| 1650 | |
---|
| 1651 | enddo |
---|
[1947] | 1652 | |
---|
| 1653 | ! Condensation tendencies ( mol/mol/s ) |
---|
[1958] | 1654 | CALL send_xios_field("dqcond_CH4",dyccond(:,:,7+nmicro)) |
---|
| 1655 | CALL send_xios_field("dqcond_C2H2",dyccond(:,:,10+nmicro)) |
---|
| 1656 | CALL send_xios_field("dqcond_C2H4",dyccond(:,:,12+nmicro)) |
---|
| 1657 | CALL send_xios_field("dqcond_C2H6",dyccond(:,:,14+nmicro)) |
---|
| 1658 | CALL send_xios_field("dqcond_C3H6",dyccond(:,:,17+nmicro)) |
---|
| 1659 | CALL send_xios_field("dqcond_C4H4",dyccond(:,:,21+nmicro)) |
---|
[2242] | 1660 | CALL send_xios_field("dqcond_CH3CCH",dyccond(:,:,23+nmicro)) |
---|
| 1661 | CALL send_xios_field("dqcond_C3H8",dyccond(:,:,24+nmicro)) |
---|
| 1662 | CALL send_xios_field("dqcond_C4H2",dyccond(:,:,25+nmicro)) |
---|
| 1663 | CALL send_xios_field("dqcond_C4H6",dyccond(:,:,26+nmicro)) |
---|
| 1664 | CALL send_xios_field("dqcond_C4H10",dyccond(:,:,27+nmicro)) |
---|
| 1665 | CALL send_xios_field("dqcond_AC6H6",dyccond(:,:,28+nmicro)) |
---|
| 1666 | CALL send_xios_field("dqcond_HCN",dyccond(:,:,35+nmicro)) |
---|
| 1667 | CALL send_xios_field("dqcond_CH3CN",dyccond(:,:,39+nmicro)) |
---|
| 1668 | CALL send_xios_field("dqcond_HC3N",dyccond(:,:,41+nmicro)) |
---|
| 1669 | CALL send_xios_field("dqcond_NCCN",dyccond(:,:,42+nmicro)) |
---|
| 1670 | CALL send_xios_field("dqcond_C4N2",dyccond(:,:,43+nmicro)) |
---|
[1947] | 1671 | |
---|
[1958] | 1672 | ! Pseudo-evaporation flux (mol/mol/s) |
---|
[1960] | 1673 | CALL send_xios_field("evapCH4",dycevapCH4(:)) |
---|
[1958] | 1674 | |
---|
[1943] | 1675 | endif ! of 'if callchim' |
---|
[1926] | 1676 | |
---|
| 1677 | ! Microphysical tracers |
---|
| 1678 | if (callmufi) then |
---|
[1947] | 1679 | CALL send_xios_field("mu_m0as",zq(:,:,micro_indx(1))*i2e) |
---|
| 1680 | CALL send_xios_field("mu_m3as",zq(:,:,micro_indx(2))*i2e) |
---|
| 1681 | CALL send_xios_field("mu_m0af",zq(:,:,micro_indx(3))*i2e) |
---|
| 1682 | CALL send_xios_field("mu_m3af",zq(:,:,micro_indx(4))*i2e) |
---|
[1926] | 1683 | endif |
---|
| 1684 | |
---|
[1896] | 1685 | if (lastcall.and.is_omp_master) then |
---|
| 1686 | write(*,*) "physiq: call xios_context_finalize" |
---|
| 1687 | call xios_context_finalize |
---|
| 1688 | endif |
---|
[1622] | 1689 | #endif |
---|
[2291] | 1690 | #else |
---|
| 1691 | !MESOSCALE outputs |
---|
| 1692 | comm_HR_SW(1:ngrid,1:nlayer) = zdtsw(1:ngrid,1:nlayer) |
---|
| 1693 | comm_HR_LW(1:ngrid,1:nlayer) = zdtlw(1:ngrid,1:nlayer) |
---|
| 1694 | comm_FLUXTOP_DN(1:ngrid)=fluxtop_dn(1:ngrid) |
---|
| 1695 | comm_FLUXABS_SW(1:ngrid)=fluxabs_sw(1:ngrid) |
---|
| 1696 | comm_FLUXTOP_LW(1:ngrid)=fluxtop_lw(1:ngrid) |
---|
| 1697 | comm_FLUXSURF_SW(1:ngrid)=fluxsurf_sw(1:ngrid) |
---|
| 1698 | comm_FLUXSURF_LW(1:ngrid)=fluxsurf_lw(1:ngrid) |
---|
| 1699 | comm_FLXGRD(1:ngrid)=fluxgrd(1:ngrid) |
---|
| 1700 | #endif |
---|
[1622] | 1701 | |
---|
[253] | 1702 | icount=icount+1 |
---|
| 1703 | |
---|
[751] | 1704 | end subroutine physiq |
---|
[1549] | 1705 | |
---|
| 1706 | end module physiq_mod |
---|