[175] | 1 | SUBROUTINE optcv_1pt(zqaer_1pt,rcdb,xfrb,ioptv,IPRINT) |
---|
[3] | 2 | |
---|
| 3 | |
---|
[102] | 4 | use dimphy |
---|
[3] | 5 | #include "dimensions.h" |
---|
| 6 | #include "microtab.h" |
---|
| 7 | #include "clesphys.h" |
---|
| 8 | |
---|
| 9 | PARAMETER(NLAYER=llm,NLEVEL=NLAYER+1) |
---|
| 10 | PARAMETER (NSPECI=46,NSPC1I=47,NSPECV=24,NSPC1V=25) |
---|
| 11 | |
---|
| 12 | c Arguments: |
---|
| 13 | c --------- |
---|
| 14 | integer IPRINT,ioptv |
---|
| 15 | C ioptv: premier appel, on ne calcule qu'une fois les QM et QF |
---|
| 16 | * nrad dans microtab.h |
---|
[175] | 17 | real zqaer_1pt(NLAYER,2*nrad) |
---|
| 18 | #include "optcv_1pt.h" |
---|
[3] | 19 | c --------- |
---|
| 20 | |
---|
| 21 | COMMON /ATM/ Z(NLEVEL),PRESS(NLEVEL),DEN(NLEVEL),TEMP(NLEVEL) |
---|
| 22 | |
---|
| 23 | COMMON /GASS/ CH4(NLEVEL),XN2(NLEVEL),H2(NLEVEL),AR(NLEVEL) |
---|
| 24 | & ,XMU(NLEVEL),GAS1(NLAYER),COLDEN(NLAYER) |
---|
| 25 | |
---|
| 26 | COMMON /VISGAS/SOLARF(NSPECV),NTERM(NSPECV),PEXPON(NSPECV), |
---|
| 27 | & ATERM(4,NSPECV),BTERM(4,NSPECV) |
---|
| 28 | |
---|
| 29 | COMMON /AERSOL/ RADIUS(NLAYER), XNUMB(NLAYER) |
---|
| 30 | & , REALI(NSPECI), XIMGI(NSPECI), REALV(NSPECV), XIMGV(NSPECV) |
---|
| 31 | |
---|
[175] | 32 | COMMON /CLOUD/ |
---|
| 33 | & RCLDI(NSPECI), XICLDI(NSPECI) |
---|
[3] | 34 | & , RCLDV(NSPECV), XICLDV(NSPECV) |
---|
[175] | 35 | & , RCLDI2(NSPECI), XICLDI2(NSPECI) |
---|
| 36 | & , RCLDV2(NSPECV), XICLDV2(NSPECV) |
---|
[3] | 37 | |
---|
| 38 | COMMON /SPECTV/ BWNV(NSPC1V),WNOV(NSPECV) |
---|
| 39 | & ,DWNV(NSPECV),WLNV(NSPECV) |
---|
| 40 | |
---|
[495] | 41 | COMMON /PLANT/ CSUBP,F0PI |
---|
[3] | 42 | COMMON /ADJUST/ RHCH4,FH2,FHAZE,FHVIS,FHIR,TAUFAC,RCLOUD,FARGON |
---|
| 43 | COMMON /CONST/ RGAS,RHOP,PI,SIGMA |
---|
| 44 | * nrad dans microtab.h |
---|
| 45 | COMMON /part/ v(nrad),rayon(nrad),vrat,dr(nrad),dv(nrad) |
---|
| 46 | |
---|
| 47 | REAL QF1(nrad,NSPECV),QF2(nrad,NSPECV) |
---|
| 48 | REAL QF3(nrad,NSPECV),QF4(nrad,NSPECV) |
---|
| 49 | REAL QM1(nrad,NSPECV),QM2(nrad,NSPECV) |
---|
| 50 | REAL QM3(nrad,NSPECV),QM4(nrad,NSPECV) |
---|
[175] | 51 | REAL QC1(nrad,NSPECV),QC2(nrad,NSPECV) |
---|
| 52 | REAL QC3(nrad,NSPECV),QC4(nrad,NSPECV) |
---|
[3] | 53 | |
---|
[175] | 54 | c---- NUAGES |
---|
| 55 | real TNUABS,TNUSCAT |
---|
| 56 | real rcdb(NLAYER) |
---|
| 57 | real xfrb(NLAYER,4) |
---|
| 58 | |
---|
[3] | 59 | save qf1,qf2,qf3,qf4,qm1,qm2,qm3,qm4 |
---|
| 60 | |
---|
[175] | 61 | integer ilat,jalt |
---|
| 62 | common/toto/ilat,jalt |
---|
| 63 | |
---|
[3] | 64 | C* |
---|
| 65 | C THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISIBLE |
---|
| 66 | C IT CALCUALTES FOR EACH LAYER, FOR EACH SPECRAL INTERVAL IN THE VIS |
---|
| 67 | C LAYER: WBAR, DTAU, COSBAR |
---|
| 68 | C LEVEL: TAU |
---|
| 69 | C |
---|
| 70 | C ZERO THE COLUMN OPTICAL DEPTHS OF EACH TYPE |
---|
| 71 | C ??FLAG? THE OPTICAL DEPTH OF THE TOP OF THE MODEL |
---|
| 72 | C MAY NOT BE ZERO. |
---|
| 73 | |
---|
| 74 | c******* DEBUT DES BOUCLES ************************ |
---|
| 75 | DO 100 K=1,NSPECV !b! BOUCLE SUR LAMBDA |
---|
| 76 | |
---|
| 77 | TAURV_1pt(K)=0. |
---|
| 78 | TAUHV_1pt(K)=0. ! INTEGRATED TAU.......INITIALIZATION. |
---|
| 79 | TAUCV_1pt(K)=0. ! Rayleigh, Haze, Cloud, Gas |
---|
| 80 | TAUGV_1pt(K)=0. ! sca, abs, abs , abs |
---|
| 81 | |
---|
| 82 | DO 100 J=1,NLAYER !a! BOUCLE SUR L"ALTITUDE |
---|
[175] | 83 | jalt=j |
---|
[3] | 84 | C #1: HAZE |
---|
| 85 | c--------------------------- |
---|
| 86 | |
---|
| 87 | c CALL THE MIE CODE TO GIVE THE AEROSOL PROPERTIES |
---|
| 88 | c USE XFRAC FOR FRACTAL AEROSOLS PROPERTIES AT LAMBDA < 2. um |
---|
| 89 | |
---|
| 90 | |
---|
| 91 | |
---|
| 92 | |
---|
| 93 | c /\ |
---|
| 94 | c / \ |
---|
| 95 | c / \ |
---|
| 96 | c / _O \ |
---|
| 97 | c / |/ \ |
---|
| 98 | c / / \ \ |
---|
| 99 | c / |\ \/\ \ |
---|
| 100 | c / || / \ \ |
---|
| 101 | c ---------------- |
---|
| 102 | c | WARNING | |
---|
| 103 | c | SLOW DOWN | |
---|
| 104 | c ---------------- |
---|
| 105 | |
---|
| 106 | |
---|
| 107 | |
---|
| 108 | |
---|
| 109 | c*********** EN TRAVAUX *************************** |
---|
| 110 | |
---|
| 111 | TAEROS=0. |
---|
| 112 | TAEROSCAT=0. |
---|
| 113 | CBAR=0. |
---|
| 114 | |
---|
| 115 | c print*,"rayon=",rayon |
---|
| 116 | c print*,"RF=",RF |
---|
| 117 | |
---|
| 118 | DO inq=1,nrad !BOUCLE SUR LES TAILLE D"AEROSOLS |
---|
| 119 | |
---|
| 120 | |
---|
| 121 | IF (rayon(inq).lt.RF(inq)) THEN ! aerosols spheriques |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | if(ioptv.eq.0.and.J.eq.1) then |
---|
| 125 | c CALL XMIE(rayon(inq)*1.e6,REALV(K),XIMGV(K), |
---|
| 126 | c & QEXT,QSCT,QABS,QBAR,WNOV(K)) |
---|
| 127 | |
---|
| 128 | CALL CMIE(1.E-2/WNOV(K),REALV(K),XIMGV(K),rayon(inq), |
---|
| 129 | & QEXT,QSCT,QABS,QBAR) |
---|
| 130 | |
---|
| 131 | c print*,'inq=',inq,' QM1=',QM1(inq,K),' QEXT=',QEXT |
---|
| 132 | |
---|
| 133 | QM1(inq,K)=QEXT |
---|
| 134 | QM2(inq,K)=QSCT |
---|
| 135 | QM3(inq,K)=QABS |
---|
| 136 | QM4(inq,K)=QBAR |
---|
| 137 | endif |
---|
| 138 | |
---|
| 139 | TAEROS=QM1(inq,K)*zqaer_1pt(NLAYER+1-J,inq)*1.e-4+TAEROS |
---|
| 140 | TAEROSCAT=QM2(inq,K)*zqaer_1pt(NLAYER+1-J,inq)*1.e-4+TAEROSCAT |
---|
| 141 | CBAR=CBAR+QM4(inq,K)*QM2(inq,K)*zqaer_1pt(NLAYER+1-J,inq)*1.e-4 |
---|
| 142 | |
---|
| 143 | ELSE ! aerosols fractals |
---|
| 144 | |
---|
| 145 | XMONO=(rayon(inq)/RF(inq))**3. |
---|
| 146 | XRULE=1. |
---|
| 147 | |
---|
| 148 | if(XMONO.gt.16384./1.5) then |
---|
| 149 | XRULE=(XMONO/16384.) |
---|
| 150 | XMONO=16384. |
---|
| 151 | endif |
---|
| 152 | |
---|
| 153 | if(ioptv.eq.0.and.J.eq.1) then |
---|
| 154 | |
---|
[175] | 155 | c CALL OPTFRAC(XMONO,10000./WNOV(K) |
---|
| 156 | c & ,QEXT,QSCT,QABS,QBAR) |
---|
[3] | 157 | |
---|
[175] | 158 | CALL CFFFV11(1.e-2/WNOV(K),REALV(K),XIMGV(K),RF(inq),2. |
---|
| 159 | & ,XMONO,QSCT,QEXT,QABS,QBAR) |
---|
[3] | 160 | |
---|
| 161 | |
---|
| 162 | QF1(inq,K)=QEXT*XRULE |
---|
| 163 | QF2(inq,K)=QSCT*XRULE |
---|
| 164 | QF3(inq,K)=QABS*XRULE |
---|
| 165 | QF4(inq,K)=QBAR |
---|
| 166 | |
---|
| 167 | c print*,'inq=',inq,' QF1=',QF1(inq,K),' QEXT=',QEXT,' XRULE=',XRULE |
---|
| 168 | |
---|
| 169 | endif |
---|
| 170 | |
---|
| 171 | TAEROS=QF1(inq,K)*zqaer_1pt(NLAYER+1-J,inq)+TAEROS |
---|
| 172 | TAEROSCAT=QF2(inq,K)*zqaer_1pt(NLAYER+1-J,inq)+TAEROSCAT |
---|
| 173 | CBAR=CBAR+QF4(inq,K)*QF2(inq,K)*zqaer_1pt(NLAYER+1-J,inq) |
---|
| 174 | |
---|
| 175 | ENDIF |
---|
| 176 | |
---|
| 177 | |
---|
| 178 | ENDDO ! nrad |
---|
| 179 | |
---|
| 180 | |
---|
| 181 | CBAR=CBAR/TAEROSCAT |
---|
| 182 | |
---|
| 183 | DELTAZ=Z(J)-Z(J+1) |
---|
| 184 | |
---|
| 185 | c -------------------------------------------------------------------- |
---|
| 186 | c profil brume Pascal: fit T (sauf tropopause) et albedo |
---|
| 187 | c ------------------- |
---|
| 188 | if( cutoff.eq.1) then |
---|
| 189 | IF(PRESS(J).gt.9.e-3) THEN |
---|
| 190 | TAEROS=TAEROSM1*DELTAZ/DELTAZM1*0.85 |
---|
| 191 | TAEROSCAT=TAEROSCATM1*DELTAZ/DELTAZM1*0.85 |
---|
| 192 | c TAEROS=0. |
---|
| 193 | c TAEROSCAT=0. |
---|
| 194 | ENDIF |
---|
| 195 | |
---|
| 196 | IF(PRESS(J).gt.1.e-1) THEN |
---|
| 197 | TAEROS=TAEROSM1*DELTAZ/DELTAZM1*1.15 |
---|
| 198 | TAEROSCAT=TAEROSCATM1*DELTAZ/DELTAZM1*1.15 |
---|
| 199 | c TAEROS=0. |
---|
| 200 | c TAEROSCAT=0. |
---|
| 201 | ENDIF |
---|
| 202 | endif !cutoff=1 |
---|
| 203 | |
---|
| 204 | c profil brume pour fit T (y compris tropopause), mais ne fit plus albedo... |
---|
| 205 | c ----------------------- |
---|
| 206 | if( cutoff.eq.2) then |
---|
| 207 | IF(PRESS(J).gt.1.e-1) THEN |
---|
| 208 | TAEROS=0. |
---|
| 209 | TAEROSCAT=0. |
---|
| 210 | ENDIF |
---|
| 211 | endif !cutoff=2 |
---|
| 212 | c -------------------------------------------------------------------- |
---|
| 213 | |
---|
| 214 | TAEROSM1=TAEROS |
---|
| 215 | TAEROSCATM1=TAEROSCAT |
---|
| 216 | DELTAZM1=DELTAZ |
---|
| 217 | |
---|
| 218 | |
---|
| 219 | IF (TAEROSCAT.le.0.) CBAR=0. |
---|
| 220 | |
---|
[175] | 221 | c if (IPRINT.eq.1) then |
---|
| 222 | c if (k.eq.NSPECV/2) then |
---|
| 223 | c write(*,1699) '@VI',K,J,TAEROS,TAEROSCAT,CBAR |
---|
| 224 | c write(*,1699) '@ ',K,J,QF1(1,K),QF2(1,K),zqaer_1pt(NLAYER+1-J,1) |
---|
| 225 | c write(*,1699) '@ ',K,J,QF1(3,K),QF2(3,K),zqaer_1pt(NLAYER+1-J,3) |
---|
| 226 | c write(*,1699) '@ ',K,J,QF1(5,K),QF2(5,K),zqaer_1pt(NLAYER+1-J,5) |
---|
| 227 | c write(*,1699) '@ ',K,J,QF1(7,K),QF2(7,K),zqaer_1pt(NLAYER+1-J,7) |
---|
| 228 | c write(*,1699) '@ ',K,J,QF1(9,K),QF2(9,K),zqaer_1pt(NLAYER+1-J,9) |
---|
| 229 | c print* |
---|
| 230 | c endif |
---|
| 231 | c endif |
---|
[3] | 232 | |
---|
[175] | 233 | 1699 FORMAT(a3,2I3,3(ES15.7,1X)) |
---|
[3] | 234 | |
---|
| 235 | c*********** EN TRAVAUX *************************** |
---|
| 236 | |
---|
| 237 | C #2: RAYLEIGH |
---|
| 238 | c------------------------------- |
---|
| 239 | |
---|
| 240 | C RAYLEIGH SCATTERING STRAIGHT FROM HANSEN AND TRAVIS...SEE NOTES |
---|
| 241 | C RATIOED BY THE LAYER COLUMN NUMBER TO THE TOTAL |
---|
| 242 | C COLUMN NUMBER ON EARTH. CM-2 |
---|
| 243 | C THIS IS THE SCATTERING BY THE ATMOSPHERE |
---|
| 244 | |
---|
| 245 | TAURAY=(COLDEN(J)*28.9/(XMU(J)*1013.25))* |
---|
| 246 | &(.008569/WLNV(K)**4)*(1.+.0113/WLNV(K)**2+.00013/WLNV(K)**4) |
---|
| 247 | |
---|
| 248 | c PRINT*,WLNV(K) |
---|
| 249 | c COLX=0. |
---|
| 250 | c COLP=0. |
---|
| 251 | c COLT=0. |
---|
| 252 | c DO IU=1,NLAYER |
---|
| 253 | c COLP=COLDEN(IU)*1.e+1*1.35+COLP |
---|
| 254 | c TAURAY=(COLDEN(IU)*28.9/(XMU(IU)*1013.25))* |
---|
| 255 | c & (.008569/WLNV(K)**4)*(1.+.0113/WLNV(K)**2 |
---|
| 256 | c & +.00013/WLNV(K)**4) |
---|
| 257 | c COLT=COLT+TAURAY |
---|
| 258 | c COLX=COLDEN(IU)*1.e+1/(1.E5*28./22.4E3)*1.e-1*0.0933e-1+COLX |
---|
| 259 | c | |
---|
| 260 | c | |
---|
| 261 | c g/cm2->kg/m2 | m2/kg |
---|
| 262 | c Print*,IU, tauray, |
---|
| 263 | c & COLDEN(IU)*1.e+1/(1.E5*28./22.4E3)*1.e-1*0.543e-1 |
---|
| 264 | c ENDDO |
---|
| 265 | c PRINT*,COLP,' PRESSURE AT GROUND;' |
---|
| 266 | c PRINT*,COLX,' TAU_GAS AT GROUND;' |
---|
| 267 | c print*,colt,colx,' COLT, COLX' |
---|
| 268 | c STOP |
---|
| 269 | |
---|
| 270 | c DZ=Z(J)-Z(J+1) |
---|
| 271 | c PRINT*, Z(J),WLNV(K), |
---|
| 272 | c &(28.9/(XMU(J)*1013.25))*(.008569/WLNV(K)**4)* |
---|
| 273 | c &(1.+.0113/WLNV(K)**2+.00013/WLNV(K)**4) |
---|
| 274 | c & ,COLDEN(J)/DZ/100000., |
---|
| 275 | c &(28.9/(XMU(J)*1013.25))*(.008569/WLNV(K)**4)* |
---|
| 276 | c &(1.+.0113/WLNV(K)**2+.00013/WLNV(K)**4) |
---|
| 277 | c & *COLDEN(J)/DZ/100000. |
---|
| 278 | |
---|
| 279 | |
---|
| 280 | |
---|
| 281 | C #3: CLOUD |
---|
| 282 | c---------------------------- |
---|
| 283 | |
---|
| 284 | C NEXT COMPUTE TAU CLOUD |
---|
| 285 | |
---|
[175] | 286 | IF (clouds.eq.0) THEN |
---|
| 287 | CNBAR=0. |
---|
| 288 | TNUSCAT=0. |
---|
| 289 | TNUABS=0. |
---|
| 290 | TBNUABS=0. |
---|
| 291 | ELSE |
---|
| 292 | CNBAR=0. |
---|
| 293 | TNUSCAT=0. |
---|
| 294 | TNUABS=0. |
---|
| 295 | TBNUABS=0. |
---|
| 296 | QEXTC=0. |
---|
| 297 | QSCTC=0. |
---|
| 298 | QABSC=0. |
---|
| 299 | CBARC=0. |
---|
[3] | 300 | |
---|
[175] | 301 | do inq=1,nrad |
---|
| 302 | QC1(INQ,k)=0. |
---|
| 303 | QC2(INQ,k)=0. |
---|
| 304 | QC3(INQ,k)=0. |
---|
| 305 | QC4(INQ,k)=0. |
---|
| 306 | enddo |
---|
[3] | 307 | |
---|
[175] | 308 | IF (rcdb(nlayer+1-J).gt.1.1e-10) THEN |
---|
[3] | 309 | |
---|
[175] | 310 | ** OPTICAL CONSTANT : MIXING RULES |
---|
| 311 | |
---|
| 312 | XNR=xfrb(nlayer+1-J,1)*REALV(K) ! |
---|
| 313 | & +xfrb(nlayer+1-J,2)*RCLDV(K) ! |
---|
| 314 | & +xfrb(nlayer+1-J,3)*RCLDV2(K) ! |
---|
| 315 | & +xfrb(nlayer+1-J,4)*RCLDV2(K) ! |
---|
| 316 | |
---|
| 317 | XNI=xfrb(nlayer+1-J,1)*XIMGV(K) |
---|
| 318 | & +xfrb(nlayer+1-J,2)*XICLDV(K) |
---|
| 319 | & +xfrb(nlayer+1-J,3)*XICLDV2(K) |
---|
| 320 | & +xfrb(nlayer+1-J,4)*XICLDV2(K) |
---|
| 321 | |
---|
| 322 | ** OPTICAL CONSTANT : LIQUID DROP = THOLIN |
---|
| 323 | IF(xfrb(nlayer+1-J,1).ge.0.01) THEN |
---|
| 324 | XNI=XIMGV(K) |
---|
| 325 | XNR=REALV(K) |
---|
| 326 | ENDIF |
---|
| 327 | |
---|
| 328 | IF (XNI.gt.1.e-10 .and. XNR.gt.1.00) THEN |
---|
| 329 | CALL CMIE(1.E-2/WNOV(K),XNR,XNI, |
---|
| 330 | & rcdb(nlayer+1-J), |
---|
| 331 | & QEXTC,QSCTC,QABSC,CBARC) |
---|
| 332 | ELSE |
---|
| 333 | PRINT*,' WARNING XNR/XNI in optcv: ',XNR,XNI |
---|
| 334 | QEXTC=0. |
---|
| 335 | QSCTC=0. |
---|
| 336 | QABSC=0. |
---|
| 337 | CBARC=0. |
---|
| 338 | STOP |
---|
| 339 | ENDIF |
---|
| 340 | ELSE |
---|
| 341 | QEXTC=0. |
---|
| 342 | QSCTC=0. |
---|
| 343 | QABSC=0. |
---|
| 344 | CBARC=0. |
---|
| 345 | ENDIF |
---|
| 346 | |
---|
| 347 | DO inq=1,nrad |
---|
| 348 | |
---|
| 349 | QC1(INQ,k)=QEXTC/xnuf |
---|
| 350 | QC2(INQ,k)=QSCTC/xnuf |
---|
| 351 | QC3(INQ,k)=QABSC/xnuf |
---|
| 352 | QC4(INQ,k)=CBARC |
---|
| 353 | |
---|
| 354 | TNUABS=QC1(inq,K)*zqaer_1pt(NLAYER+1-J,inq+nrad)*1.e-4 |
---|
| 355 | & +TNUABS |
---|
| 356 | |
---|
| 357 | TNUSCAT=QC2(inq,K)*zqaer_1pt(NLAYER+1-J,inq+nrad)*1.e-4 |
---|
| 358 | & +TNUSCAT |
---|
| 359 | |
---|
| 360 | CNBAR=QC4(inq,K)*QC2(inq,K)* |
---|
| 361 | & zqaer_1pt(NLAYER+1-J,inq+nrad)*1.e-4 + CNBAR |
---|
| 362 | |
---|
| 363 | ENDDO |
---|
| 364 | |
---|
| 365 | IF(TNUSCAT.EQ.0) CNBAR=0. |
---|
| 366 | IF(TNUSCAT.NE.0.) CNBAR=CNBAR/TNUSCAT |
---|
| 367 | |
---|
| 368 | |
---|
| 369 | ENDIF ! Cond. CLD |
---|
| 370 | |
---|
| 371 | TAURV_1pt(K)=TAURV_1pt(K)+TAURAY |
---|
| 372 | TAUGVD_1pt(J,K)=TAURV_1pt(K) |
---|
| 373 | |
---|
| 374 | TAUHV_1pt(K)=TAUHV_1pt(K)+TAEROS ! INTEGRATED Quant. |
---|
| 375 | TAUHVD_1pt(J,K)=TAUHV_1pt(K) |
---|
| 376 | |
---|
| 377 | TAUCV_1pt(K)=TAUCV_1pt(K)+TNUABS |
---|
| 378 | TAUCVD_1pt(J,K)=TAUCV_1pt(K) |
---|
| 379 | |
---|
| 380 | |
---|
[3] | 381 | C #4: TAUGAS |
---|
| 382 | C---------------------------- |
---|
| 383 | |
---|
| 384 | C LOOP OVER THE NTERMS |
---|
| 385 | C THIS IS THE ABSORPTION BY THE ATMOSPHERE (METHANE) |
---|
| 386 | |
---|
| 387 | |
---|
| 388 | DO 909 NT=1,NTERM(K) |
---|
| 389 | TAUGAS=COLDEN(J)*GAS1(J)*BTERM(NT,K)* |
---|
| 390 | & ( (PRESS(J+1) + PRESS(J))*.5 )**PEXPON(K) |
---|
| 391 | |
---|
| 392 | |
---|
[175] | 393 | * COSBV ET COSBVP |
---|
| 394 | *----------------- |
---|
[3] | 395 | |
---|
[175] | 396 | IF(TAEROSCAT+TNUSCAT+TAURAY .ne. 0.) THEN |
---|
| 397 | COSBV_1pt(J,K,NT)=(CBAR*TAEROSCAT + CNBAR*TNUSCAT) |
---|
| 398 | & /(TAEROSCAT+TNUSCAT+TAURAY) !CBAR_RAY=0. |
---|
| 399 | ELSE |
---|
| 400 | COSBV_1pt(J,K,NT)=0. |
---|
| 401 | ENDIF |
---|
[3] | 402 | |
---|
[175] | 403 | IF(TAEROSCAT+TAURAY .ne. 0.) THEN |
---|
| 404 | COSBVP_1pt(J,K,NT)=(CBAR*TAEROSCAT) |
---|
| 405 | & /(TAEROSCAT+TAURAY) !CBAR_RAY=0. |
---|
| 406 | ELSE |
---|
| 407 | COSBVP_1pt(J,K,NT)=0. |
---|
| 408 | ENDIF |
---|
[3] | 409 | |
---|
[175] | 410 | * DTAUV ET DTAUVP |
---|
| 411 | *----------------- |
---|
[3] | 412 | |
---|
[175] | 413 | DTAUV_1pt(J,K,NT) =TAUGAS+TAEROS+TAURAY+TNUABS !TAU_ABS_METH |
---|
| 414 | DTAUVP_1pt(J,K,NT)=TAUGAS+TAEROS+TAURAY !TAU_ABS_METH |
---|
[3] | 415 | |
---|
[175] | 416 | TAUGV_1pt(K)=TAUGV_1pt(K)+TAUGAS*ATERM(NT,K) !INTEG. |
---|
[3] | 417 | |
---|
[175] | 418 | * WBARV ET WBARVP |
---|
| 419 | *----------------- |
---|
[3] | 420 | |
---|
[175] | 421 | IF(TAUGAS+TAEROS+TAURAY+TNUABS .ne. 0.) THEN |
---|
| 422 | WBARV_1pt(J,K,NT)=(TAEROSCAT+TAURAY*0.9999999 + TNUSCAT) |
---|
| 423 | & /(TAUGAS+TAEROS+TAURAY+TNUABS) |
---|
| 424 | ELSE |
---|
| 425 | WBARV_1pt(J,K,NT)=0. |
---|
| 426 | ENDIF |
---|
| 427 | |
---|
| 428 | IF(TAUGAS+TAEROS+TAURAY .ne. 0.) THEN |
---|
| 429 | WBARVP_1pt(J,K,NT)=(TAEROSCAT+TAURAY*0.9999999 ) |
---|
| 430 | & /(TAUGAS+TAEROS+TAURAY) |
---|
| 431 | ELSE |
---|
| 432 | WBARVP_1pt(J,K,NT)=0. |
---|
| 433 | ENDIF |
---|
| 434 | |
---|
[3] | 435 | 909 CONTINUE |
---|
| 436 | TAUGVD_1pt(J,K)=TAUGVD_1pt(J,K)+TAUGV_1pt(K) |
---|
| 437 | 100 CONTINUE |
---|
| 438 | ioptv=1 |
---|
| 439 | |
---|
| 440 | c HERE END OF THE LOOPS ******* |
---|
| 441 | c****************************** |
---|
| 442 | |
---|
| 443 | C TOTAL EXTINCTION OPTICAL DEPTHS |
---|
| 444 | DO 119 K=1,NSPECV |
---|
| 445 | C LOOP OVER NTERMS |
---|
| 446 | DO 119 NT=1,NTERM(K) |
---|
| 447 | TAUV_1pt(1,K,NT)=0.0 |
---|
[175] | 448 | TAUVP_1pt(1,K,NT)=0.0 |
---|
[3] | 449 | DO 119 J=1,NLAYER |
---|
| 450 | TAUV_1pt(J+1,K,NT)=TAUV_1pt(J,K,NT)+DTAUV_1pt(J,K,NT) |
---|
[175] | 451 | TAUVP_1pt(J+1,K,NT)=TAUVP_1pt(J,K,NT)+DTAUVP_1pt(J,K,NT) |
---|
[3] | 452 | 119 CONTINUE |
---|
| 453 | |
---|
| 454 | c print*,'SETUP' |
---|
| 455 | c do i=1,NSPECV |
---|
| 456 | c print*,WLNV(i) |
---|
| 457 | c do j=1,NLAYER+1 |
---|
| 458 | c print*,Z(j),TAUV(1,j,i,1),WBARV(1,j,i,1),COSBV(1,j,i,1) |
---|
| 459 | c enddo |
---|
| 460 | c enddo |
---|
| 461 | c |
---|
| 462 | c IF (IPRINT .GT. 1) THEN |
---|
| 463 | c NT=1 |
---|
| 464 | c IF (2 .GT. 1) THEN |
---|
| 465 | c WRITE (6,120) |
---|
| 466 | c 120 FORMAT(///' OPTICAL CONSTANTS IN THE VISIBLE (@EQUATOR) ') |
---|
| 467 | c WRITE(6,*) 'latitude:',ig |
---|
| 468 | c DO 200 K=1,NSPECV |
---|
| 469 | c WRITE (6,190) |
---|
| 470 | c WRITE (6,210)K,WLNV(K),WNOV(K),BWNV(K) |
---|
| 471 | c & ,BWNV(K)+DWNV(K),DWNV(K) |
---|
| 472 | c WRITE (6,230)REALV(K),XIMGV(K) |
---|
| 473 | c DO 195 J=1,NLAYER,NLAYER |
---|
| 474 | C RECALCULATE FOR PRINT OUT ONLY, ONLY FIRST NTERM AT ig=12 (EQUATOR) |
---|
| 475 | c WRITE (6,220)XNUMB(J), WBARV_1pt(J,K,NT),COSBV_1pt(J,K,NT) |
---|
| 476 | c & ,DTAUV_1pt(J,K,NT),TAUV_1pt(J,K,NT) |
---|
| 477 | c 195 CONTINUE |
---|
| 478 | c WRITE (6,240) TAUV_1pt(NLEVEL,K,NT) |
---|
| 479 | c 200 CONTINUE |
---|
| 480 | c END IF |
---|
| 481 | |
---|
| 482 | c 210 FORMAT(1X,I3,F10.3,F10.2,F10.2,'-',F8.2,F10.3) |
---|
| 483 | c 190 FORMAT(1X//' SNUM MICRONS WAVENU INTERVAL DELTA-WN') |
---|
| 484 | c 230 FORMAT(1X,'NREAL(LAYER)= ',1PE10.3,' NIMG(LAYER)= ',E10.3/ |
---|
| 485 | c &' #AEROSOLS WBAR COSBAR DTAU TAU' |
---|
| 486 | c & ,9X,'RAY GAS AEROSOL') |
---|
| 487 | c 220 FORMAT(8(1X,F9.3)) |
---|
| 488 | c 240 FORMAT(41X,F9.3) |
---|
| 489 | |
---|
| 490 | if (IPRINT.eq.1) stop |
---|
| 491 | |
---|
| 492 | RETURN |
---|
| 493 | END |
---|