| 1 | SUBROUTINE OPTCV(PQMO,NLAY,PLEV,TMID,PMID, & |
|---|
| 2 | DTAUV,TAUV,TAUCUMV,WBARV,COSBV,TAURAY,TAUGSURF,SEASHAZEFACT) |
|---|
| 3 | |
|---|
| 4 | use radinc_h |
|---|
| 5 | use radcommon_h, only: gasv,gasv_recomb,tlimit,Cmk,gzlat_ig, & |
|---|
| 6 | tgasref,pfgasref,wnov,scalep,indv |
|---|
| 7 | use gases_h |
|---|
| 8 | use datafile_mod, only: haze_opt_file |
|---|
| 9 | use comcstfi_mod, only: r |
|---|
| 10 | use callkeys_mod, only: continuum,graybody,callgasvis,corrk_recombin, & |
|---|
| 11 | callclouds,callmufi,seashaze,uncoupl_optic_haze |
|---|
| 12 | use tracer_h, only: nmicro,nice |
|---|
| 13 | |
|---|
| 14 | implicit none |
|---|
| 15 | |
|---|
| 16 | !================================================================== |
|---|
| 17 | ! |
|---|
| 18 | ! Purpose |
|---|
| 19 | ! ------- |
|---|
| 20 | ! Calculates shortwave optical constants at each level. |
|---|
| 21 | ! |
|---|
| 22 | ! Authors |
|---|
| 23 | ! ------- |
|---|
| 24 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
|---|
| 25 | ! Clean and adaptation to Titan by J. Vatant d'Ollone (2016-17) |
|---|
| 26 | ! |
|---|
| 27 | !================================================================== |
|---|
| 28 | ! |
|---|
| 29 | ! THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL |
|---|
| 30 | ! IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL |
|---|
| 31 | ! LAYER: WBAR, DTAU, COSBAR |
|---|
| 32 | ! LEVEL: TAU |
|---|
| 33 | ! |
|---|
| 34 | ! TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code |
|---|
| 35 | ! layer L. NW is spectral wavelength interval, ng the Gauss point index. |
|---|
| 36 | ! |
|---|
| 37 | ! TLEV(L) - Temperature at the layer boundary |
|---|
| 38 | ! PLEV(L) - Pressure at the layer boundary (i.e. level) |
|---|
| 39 | ! GASV(NT,NPS,NW,NG) - Visible k-coefficients |
|---|
| 40 | ! |
|---|
| 41 | !------------------------------------------------------------------- |
|---|
| 42 | |
|---|
| 43 | |
|---|
| 44 | !========================================================== |
|---|
| 45 | ! Input/Output |
|---|
| 46 | !========================================================== |
|---|
| 47 | REAL*8, INTENT(IN) :: PQMO(nlay,nmicro) ! Tracers for microphysics optics (X/m2). |
|---|
| 48 | INTEGER, INTENT(IN) :: NLAY ! Number of pressure layers (for pqmo) |
|---|
| 49 | REAL*8, INTENT(IN) :: PLEV(L_LEVELS) |
|---|
| 50 | REAL*8, INTENT(IN) :: TMID(L_LEVELS), PMID(L_LEVELS) |
|---|
| 51 | REAL*8, INTENT(IN) :: TAURAY(L_NSPECTV) |
|---|
| 52 | REAL*8, INTENT(IN) :: SEASHAZEFACT(L_LEVELS) |
|---|
| 53 | |
|---|
| 54 | REAL*8, INTENT(OUT) :: DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 55 | REAL*8, INTENT(OUT) :: TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 56 | REAL*8, INTENT(OUT) :: TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
|---|
| 57 | REAL*8, INTENT(OUT) :: COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 58 | REAL*8, INTENT(OUT) :: WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 59 | REAL*8, INTENT(OUT) :: TAUGSURF(L_NSPECTV,L_NGAUSS-1) |
|---|
| 60 | ! ========================================================== |
|---|
| 61 | |
|---|
| 62 | real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
|---|
| 63 | |
|---|
| 64 | ! Titan customisation |
|---|
| 65 | ! J. Vatant d'Ollone (2016) |
|---|
| 66 | real*8 DHAZE_T(L_LEVELS,L_NSPECTI) |
|---|
| 67 | real*8 DHAZES_T(L_LEVELS,L_NSPECTI) |
|---|
| 68 | real*8 SSA_T(L_LEVELS,L_NSPECTI) |
|---|
| 69 | real*8 ASF_T(L_LEVELS,L_NSPECTI) |
|---|
| 70 | ! ========================== |
|---|
| 71 | |
|---|
| 72 | integer L, NW, NG, K, LK, IAER |
|---|
| 73 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
|---|
| 74 | real*8 ANS, TAUGAS |
|---|
| 75 | real*8 TRAY(L_LEVELS,L_NSPECTV) |
|---|
| 76 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
|---|
| 77 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
|---|
| 78 | |
|---|
| 79 | real*8 DCONT |
|---|
| 80 | real*8 DRAYAER |
|---|
| 81 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
|---|
| 82 | double precision p_cross |
|---|
| 83 | |
|---|
| 84 | real*8 KCOEF(4) |
|---|
| 85 | |
|---|
| 86 | ! temporary variable to reduce memory access time to gasv |
|---|
| 87 | real*8 tmpk(2,2) |
|---|
| 88 | |
|---|
| 89 | ! temporary variables for multiple aerosol calculation |
|---|
| 90 | real*8 atemp(L_NLAYRAD,L_NSPECTV) |
|---|
| 91 | real*8 btemp(L_NLAYRAD,L_NSPECTV) |
|---|
| 92 | real*8 ctemp(L_NLAYRAD,L_NSPECTV) |
|---|
| 93 | |
|---|
| 94 | ! variables for k in units m^-1 |
|---|
| 95 | real*8 dz(L_LEVELS) |
|---|
| 96 | |
|---|
| 97 | integer igas, jgas, ilay |
|---|
| 98 | |
|---|
| 99 | integer interm |
|---|
| 100 | |
|---|
| 101 | ! Variables for haze optics |
|---|
| 102 | character(len=200) file_path |
|---|
| 103 | logical file_ok |
|---|
| 104 | integer dumch |
|---|
| 105 | real*8 dumwvl |
|---|
| 106 | |
|---|
| 107 | real*8 m3as,m3af |
|---|
| 108 | real*8 dtauaer_s,dtauaer_f |
|---|
| 109 | real*8,save :: rhoaer_s(L_NSPECTV),ssa_s(L_NSPECTV),asf_s(L_NSPECTV) |
|---|
| 110 | real*8,save :: rhoaer_f(L_NSPECTV),ssa_f(L_NSPECTV),asf_f(L_NSPECTV) |
|---|
| 111 | !$OMP THREADPRIVATE(rhoaer_s,rhoaer_f,ssa_s,ssa_f,asf_s,asf_f) |
|---|
| 112 | |
|---|
| 113 | logical,save :: firstcall=.true. |
|---|
| 114 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 115 | |
|---|
| 116 | |
|---|
| 117 | !! AS: to save time in computing continuum (see bilinearbig) |
|---|
| 118 | IF (.not.ALLOCATED(indv)) THEN |
|---|
| 119 | ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx)) |
|---|
| 120 | indv = -9999 ! this initial value means "to be calculated" |
|---|
| 121 | ENDIF |
|---|
| 122 | |
|---|
| 123 | ! Some initialisation beacause there's a pb with disr_haze at the limits (nw=1) |
|---|
| 124 | ! I should check this - For now we set vars to zero : better than nans - JVO 2017 |
|---|
| 125 | DHAZE_T(:,:) = 0.0 |
|---|
| 126 | SSA_T(:,:) = 0.0 |
|---|
| 127 | ASF_T(:,:) = 0.0 |
|---|
| 128 | |
|---|
| 129 | ! Load tabulated haze optical properties if needed. |
|---|
| 130 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 131 | IF (firstcall .AND. callmufi .AND. (.NOT. uncoupl_optic_haze)) THEN |
|---|
| 132 | OPEN(12,file=TRIM(haze_opt_file),form='formatted') ! The file has been inquired in physiq_mod firstcall |
|---|
| 133 | READ(12,*) ! dummy header |
|---|
| 134 | DO NW=1,L_NSPECTI |
|---|
| 135 | READ(12,*) ! there's IR 1st |
|---|
| 136 | ENDDO |
|---|
| 137 | DO NW=1,L_NSPECTV |
|---|
| 138 | READ(12,*) dumch, dumwvl, rhoaer_f(nw), ssa_f(nw), asf_f(nw), rhoaer_s(nw), ssa_s(nw), asf_s(nw) |
|---|
| 139 | ENDDO |
|---|
| 140 | CLOSE(12) |
|---|
| 141 | ENDIF |
|---|
| 142 | |
|---|
| 143 | !======================================================================= |
|---|
| 144 | ! Determine the total gas opacity throughout the column, for each |
|---|
| 145 | ! spectral interval, NW, and each Gauss point, NG. |
|---|
| 146 | ! Calculate the continuum opacities, i.e., those that do not depend on |
|---|
| 147 | ! NG, the Gauss index. |
|---|
| 148 | |
|---|
| 149 | taugsurf(:,:) = 0.0 |
|---|
| 150 | dpr(:) = 0.0 |
|---|
| 151 | lkcoef(:,:) = 0.0 |
|---|
| 152 | |
|---|
| 153 | do K=2,L_LEVELS |
|---|
| 154 | |
|---|
| 155 | ilay = L_NLAYRAD+1 - k/2 ! int. arithmetic => gives the gcm layer index (reversed) |
|---|
| 156 | |
|---|
| 157 | DPR(k) = PLEV(K)-PLEV(K-1) |
|---|
| 158 | |
|---|
| 159 | ! if we have continuum opacities, we need dz |
|---|
| 160 | |
|---|
| 161 | dz(k) = dpr(k)*R*TMID(K)/(gzlat_ig(ilay)*PMID(K)) |
|---|
| 162 | U(k) = Cmk(ilay)*DPR(k) ! only Cmk line in optcv.F |
|---|
| 163 | |
|---|
| 164 | call tpindex(PMID(K),TMID(K),pfgasref,tgasref,LCOEF,MT(K),MP(K)) |
|---|
| 165 | |
|---|
| 166 | do LK=1,4 |
|---|
| 167 | LKCOEF(K,LK) = LCOEF(LK) |
|---|
| 168 | end do |
|---|
| 169 | end do ! levels |
|---|
| 170 | |
|---|
| 171 | ! Rayleigh scattering |
|---|
| 172 | do NW=1,L_NSPECTV |
|---|
| 173 | TRAY(1:4,NW) = 1.d-30 |
|---|
| 174 | do K=5,L_LEVELS |
|---|
| 175 | TRAY(K,NW) = TAURAY(NW) * DPR(K) |
|---|
| 176 | end do ! levels |
|---|
| 177 | end do |
|---|
| 178 | |
|---|
| 179 | ! we ignore K=1... |
|---|
| 180 | do K=2,L_LEVELS |
|---|
| 181 | |
|---|
| 182 | ilay = L_NLAYRAD+1 - k/2 ! int. arithmetic => gives the gcm layer index (reversed) |
|---|
| 183 | |
|---|
| 184 | do NW=1,L_NSPECTV |
|---|
| 185 | |
|---|
| 186 | IF (callmufi .AND. (.NOT. uncoupl_optic_haze)) THEN |
|---|
| 187 | m3as = pqmo(ilay,2) / 2.0 |
|---|
| 188 | m3af = pqmo(ilay,4) / 2.0 |
|---|
| 189 | |
|---|
| 190 | IF ( ilay .lt. 18 ) THEN |
|---|
| 191 | m3as = pqmo(18,2) / 2.0 * dz(k) / dz(18) |
|---|
| 192 | m3af = pqmo(18,4) / 2.0 * dz(k) / dz(18) |
|---|
| 193 | ENDIF |
|---|
| 194 | |
|---|
| 195 | dtauaer_s = m3as*rhoaer_s(nw) |
|---|
| 196 | dtauaer_f = m3af*rhoaer_f(nw) |
|---|
| 197 | DHAZE_T(k,nw) = dtauaer_s + dtauaer_f |
|---|
| 198 | |
|---|
| 199 | IF ( dtauaer_s + dtauaer_f .GT. 1.D-30 ) THEN |
|---|
| 200 | SSA_T(k,nw) = ( dtauaer_s*ssa_s(nw) + dtauaer_f*ssa_f(nw) ) / ( dtauaer_s+dtauaer_f ) |
|---|
| 201 | ASF_T(k,nw) = ( dtauaer_s*ssa_s(nw)*asf_s(nw) + dtauaer_f*ssa_f(nw)*asf_f(nw) ) & |
|---|
| 202 | / ( ssa_s(nw)*dtauaer_s + ssa_f(nw)*dtauaer_f ) |
|---|
| 203 | ELSE |
|---|
| 204 | DHAZE_T(k,nw) = 0.D0 |
|---|
| 205 | SSA_T(k,nw) = 1.0 |
|---|
| 206 | ASF_T(k,nw) = 1.0 |
|---|
| 207 | ENDIF |
|---|
| 208 | |
|---|
| 209 | IF (callclouds.and.firstcall) & |
|---|
| 210 | WRITE(*,*) 'WARNING: In optcv, optical properties & |
|---|
| 211 | &calculations are not implemented yet' |
|---|
| 212 | ELSE |
|---|
| 213 | ! Call fixed vertical haze profile of extinction - same for all columns |
|---|
| 214 | call disr_haze(dz(k),plev(k),wnov(nw),DHAZE_T(k,nw),SSA_T(k,nw),ASF_T(k,nw)) |
|---|
| 215 | if (seashaze) DHAZE_T(k,nw) = DHAZE_T(k,nw)*seashazefact(k) |
|---|
| 216 | ENDIF |
|---|
| 217 | |
|---|
| 218 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
|---|
| 219 | ! but visible does not handle very well diffusion in first layer. |
|---|
| 220 | ! The tauaero and tauray are thus set to 0 (a small value for rayleigh because the code crashes otherwise) |
|---|
| 221 | ! in the 4 first semilayers in optcv, but not optci. |
|---|
| 222 | ! This solves random variations of the sw heating at the model top. |
|---|
| 223 | if (k<5) DHAZE_T(K,:) = 0.0 |
|---|
| 224 | |
|---|
| 225 | DRAYAER = TRAY(K,NW) |
|---|
| 226 | ! DRAYAER is Tau RAYleigh scattering, plus AERosol opacity |
|---|
| 227 | DRAYAER = DRAYAER + DHAZE_T(K,NW) ! Titan's aerosol |
|---|
| 228 | |
|---|
| 229 | DCONT = 0.0 ! continuum absorption |
|---|
| 230 | |
|---|
| 231 | if(continuum.and.(.not.graybody).and.callgasvis)then |
|---|
| 232 | ! include continua if necessary |
|---|
| 233 | wn_cont = dble(wnov(nw)) |
|---|
| 234 | T_cont = dble(TMID(k)) |
|---|
| 235 | do igas=1,ngasmx |
|---|
| 236 | |
|---|
| 237 | p_cont = dble(PMID(k)*scalep*gfrac(igas,ilay)) |
|---|
| 238 | |
|---|
| 239 | dtemp=0.0 |
|---|
| 240 | if(igas.eq.igas_N2)then |
|---|
| 241 | |
|---|
| 242 | interm = indv(nw,igas,igas) |
|---|
| 243 | ! call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
|---|
| 244 | indv(nw,igas,igas) = interm |
|---|
| 245 | ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible |
|---|
| 246 | |
|---|
| 247 | elseif(igas.eq.igas_H2)then |
|---|
| 248 | |
|---|
| 249 | ! first do self-induced absorption |
|---|
| 250 | interm = indv(nw,igas,igas) |
|---|
| 251 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
|---|
| 252 | indv(nw,igas,igas) = interm |
|---|
| 253 | |
|---|
| 254 | ! then cross-interactions with other gases |
|---|
| 255 | do jgas=1,ngasmx |
|---|
| 256 | p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay)) |
|---|
| 257 | dtempc = 0.0 |
|---|
| 258 | if(jgas.eq.igas_N2)then |
|---|
| 259 | interm = indv(nw,igas,jgas) |
|---|
| 260 | call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
|---|
| 261 | indv(nw,igas,jgas) = interm |
|---|
| 262 | ! should be irrelevant in the visible |
|---|
| 263 | endif |
|---|
| 264 | dtemp = dtemp + dtempc |
|---|
| 265 | enddo |
|---|
| 266 | |
|---|
| 267 | elseif(igas.eq.igas_CH4)then |
|---|
| 268 | |
|---|
| 269 | ! first do self-induced absorption |
|---|
| 270 | interm = indv(nw,igas,igas) |
|---|
| 271 | call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
|---|
| 272 | indv(nw,igas,igas) = interm |
|---|
| 273 | |
|---|
| 274 | ! then cross-interactions with other gases |
|---|
| 275 | do jgas=1,ngasmx |
|---|
| 276 | p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay)) |
|---|
| 277 | dtempc = 0.0 |
|---|
| 278 | if(jgas.eq.igas_N2)then |
|---|
| 279 | interm = indv(nw,igas,jgas) |
|---|
| 280 | call interpolateN2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
|---|
| 281 | indv(nw,igas,jgas) = interm |
|---|
| 282 | endif |
|---|
| 283 | dtemp = dtemp + dtempc |
|---|
| 284 | enddo |
|---|
| 285 | |
|---|
| 286 | endif |
|---|
| 287 | |
|---|
| 288 | DCONT = DCONT + dtemp |
|---|
| 289 | |
|---|
| 290 | enddo |
|---|
| 291 | |
|---|
| 292 | DCONT = DCONT*dz(k) |
|---|
| 293 | |
|---|
| 294 | endif |
|---|
| 295 | |
|---|
| 296 | do ng=1,L_NGAUSS-1 |
|---|
| 297 | |
|---|
| 298 | ! Now compute TAUGAS |
|---|
| 299 | |
|---|
| 300 | ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically |
|---|
| 301 | ! the execution time of optci/v -> ~ factor 2 on the whole radiative |
|---|
| 302 | ! transfer on the tested simulations ! |
|---|
| 303 | |
|---|
| 304 | if (corrk_recombin) then |
|---|
| 305 | tmpk = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NW,NG) |
|---|
| 306 | else |
|---|
| 307 | tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) |
|---|
| 308 | endif |
|---|
| 309 | |
|---|
| 310 | KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG) |
|---|
| 311 | KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG) |
|---|
| 312 | KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG) |
|---|
| 313 | KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG) |
|---|
| 314 | |
|---|
| 315 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
|---|
| 316 | |
|---|
| 317 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
|---|
| 318 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
|---|
| 319 | |
|---|
| 320 | |
|---|
| 321 | TAUGAS = U(k)*ANS |
|---|
| 322 | |
|---|
| 323 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
|---|
| 324 | DTAUKV(K,nw,ng) = TAUGAS & |
|---|
| 325 | + DRAYAER & ! DRAYAER includes all scattering contributions |
|---|
| 326 | + DCONT ! For parameterized continuum aborption |
|---|
| 327 | |
|---|
| 328 | end do |
|---|
| 329 | |
|---|
| 330 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
|---|
| 331 | ! which holds continuum opacity only |
|---|
| 332 | |
|---|
| 333 | NG = L_NGAUSS |
|---|
| 334 | DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption, including Titan's haze |
|---|
| 335 | |
|---|
| 336 | end do |
|---|
| 337 | end do |
|---|
| 338 | |
|---|
| 339 | |
|---|
| 340 | !======================================================================= |
|---|
| 341 | ! Now the full treatment for the layers, where besides the opacity |
|---|
| 342 | ! we need to calculate the scattering albedo and asymmetry factors |
|---|
| 343 | ! ====================================================================== |
|---|
| 344 | |
|---|
| 345 | ! Haze scattering |
|---|
| 346 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
|---|
| 347 | ! but not in the visible |
|---|
| 348 | ! The dhaze_s is thus set to 0 in the 4 first semilayers in optcv, but not optci. |
|---|
| 349 | ! This solves random variations of the sw heating at the model top. |
|---|
| 350 | DO NW=1,L_NSPECTV |
|---|
| 351 | DHAZES_T(1:4,NW) = 0.d0 |
|---|
| 352 | DO K=5,L_LEVELS |
|---|
| 353 | DHAZES_T(K,NW) = DHAZE_T(K,NW) * SSA_T(K,NW) ! effect of scattering albedo on haze |
|---|
| 354 | ENDDO |
|---|
| 355 | ENDDO |
|---|
| 356 | |
|---|
| 357 | |
|---|
| 358 | DO NW=1,L_NSPECTV |
|---|
| 359 | DO L=1,L_NLAYRAD-1 |
|---|
| 360 | K = 2*L+1 |
|---|
| 361 | atemp(L,NW) = ASF_T(K,NW)*DHAZES_T(K,NW) + ASF_T(K+1,NW)*DHAZES_T(K+1,NW) |
|---|
| 362 | btemp(L,NW) = DHAZES_T(K,NW) + DHAZES_T(K+1,NW) |
|---|
| 363 | ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ? |
|---|
| 364 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW) |
|---|
| 365 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
|---|
| 366 | END DO ! L vertical loop |
|---|
| 367 | |
|---|
| 368 | ! Last level |
|---|
| 369 | L = L_NLAYRAD |
|---|
| 370 | K = 2*L+1 |
|---|
| 371 | atemp(L,NW) = ASF_T(K,NW)*DHAZES_T(K,NW) |
|---|
| 372 | btemp(L,NW) = DHAZES_T(K,NW) |
|---|
| 373 | ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ? |
|---|
| 374 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) |
|---|
| 375 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
|---|
| 376 | |
|---|
| 377 | |
|---|
| 378 | END DO ! NW spectral loop |
|---|
| 379 | |
|---|
| 380 | DO NG=1,L_NGAUSS |
|---|
| 381 | DO NW=1,L_NSPECTV |
|---|
| 382 | DO L=1,L_NLAYRAD-1 |
|---|
| 383 | |
|---|
| 384 | K = 2*L+1 |
|---|
| 385 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG) |
|---|
| 386 | WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng) |
|---|
| 387 | |
|---|
| 388 | END DO ! L vertical loop |
|---|
| 389 | |
|---|
| 390 | ! Last level |
|---|
| 391 | |
|---|
| 392 | L = L_NLAYRAD |
|---|
| 393 | K = 2*L+1 |
|---|
| 394 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) |
|---|
| 395 | |
|---|
| 396 | WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG) |
|---|
| 397 | |
|---|
| 398 | END DO ! NW spectral loop |
|---|
| 399 | END DO ! NG Gauss loop |
|---|
| 400 | |
|---|
| 401 | ! Total extinction optical depths |
|---|
| 402 | |
|---|
| 403 | DO NG=1,L_NGAUSS ! full gauss loop |
|---|
| 404 | DO NW=1,L_NSPECTV |
|---|
| 405 | TAUCUMV(1,NW,NG)=0.0D0 |
|---|
| 406 | DO K=2,L_LEVELS |
|---|
| 407 | TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG) |
|---|
| 408 | END DO |
|---|
| 409 | |
|---|
| 410 | DO L=1,L_NLAYRAD |
|---|
| 411 | TAUV(L,NW,NG)=TAUCUMV(2*L,NW,NG) |
|---|
| 412 | END DO |
|---|
| 413 | TAUV(L,NW,NG)=TAUCUMV(2*L_NLAYRAD+1,NW,NG) |
|---|
| 414 | END DO |
|---|
| 415 | END DO ! end full gauss loop |
|---|
| 416 | |
|---|
| 417 | if(firstcall) firstcall = .false. |
|---|
| 418 | |
|---|
| 419 | return |
|---|
| 420 | |
|---|
| 421 | |
|---|
| 422 | end subroutine optcv |
|---|