1 | subroutine optci(PQMO,NLAY,ZLEV,PLEV,TLEV,TMID,PMID, & |
---|
2 | DTAUI,TAUCUMI,COSBI,WBARI,TAUGSURF,SEASHAZEFACT,& |
---|
3 | POPT_HAZE,POPT_CLOUDS,CDCOLUMN) |
---|
4 | |
---|
5 | use radinc_h |
---|
6 | use radcommon_h, only: gasi,gasi_recomb,tlimit,Cmk,gzlat_ig, & |
---|
7 | tgasref,pfgasref,wnoi,scalep,indi |
---|
8 | use gases_h |
---|
9 | use datafile_mod, only: haze_opt_file |
---|
10 | use comcstfi_mod, only: pi,r |
---|
11 | use callkeys_mod, only: continuum,graybody,corrk_recombin, & |
---|
12 | callclouds,callmufi,seashaze,uncoupl_optic_haze,& |
---|
13 | opt4clouds,FHIR |
---|
14 | use tracer_h, only: nmicro,nice,ices_indx |
---|
15 | |
---|
16 | implicit none |
---|
17 | |
---|
18 | !================================================================== |
---|
19 | ! |
---|
20 | ! Purpose |
---|
21 | ! ------- |
---|
22 | ! Calculates longwave optical constants at each level. For each |
---|
23 | ! layer and spectral interval in the IR it calculates WBAR, DTAU |
---|
24 | ! and COSBAR. For each level it calculates TAU. |
---|
25 | ! |
---|
26 | ! TAUCUMI(L,LW) is the cumulative optical depth at level L (or alternatively |
---|
27 | ! at the *bottom* of layer L), LW is the spectral wavelength interval. |
---|
28 | ! |
---|
29 | ! TLEV(L) - Temperature at the layer boundary (i.e., level) |
---|
30 | ! PLEV(L) - Pressure at the layer boundary (i.e., level) |
---|
31 | ! |
---|
32 | ! Authors |
---|
33 | ! ------- |
---|
34 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
35 | ! |
---|
36 | ! Modified |
---|
37 | ! -------- |
---|
38 | ! J. Vatant d'Ollone (2016-17) |
---|
39 | ! --> Clean and adaptation to Titan |
---|
40 | ! B. de Batz de Trenquelléon (2022-2023) |
---|
41 | ! --> Clean and correction to Titan |
---|
42 | ! --> New optics added for Titan's clouds |
---|
43 | ! |
---|
44 | !================================================================== |
---|
45 | |
---|
46 | |
---|
47 | !========================================================== |
---|
48 | ! Input/Output |
---|
49 | !========================================================== |
---|
50 | REAL*8, INTENT(IN) :: PQMO(nlay,nmicro) ! Tracers for microphysics optics (X/m2). |
---|
51 | INTEGER, INTENT(IN) :: NLAY ! Number of pressure layers (for pqmo) |
---|
52 | REAL*8, INTENT(IN) :: ZLEV(NLAY+1) |
---|
53 | REAL*8, INTENT(IN) :: PLEV(L_LEVELS), TLEV(L_LEVELS) |
---|
54 | REAL*8, INTENT(IN) :: TMID(L_LEVELS), PMID(L_LEVELS) |
---|
55 | REAL*8, INTENT(IN) :: SEASHAZEFACT(L_LEVELS) |
---|
56 | INTEGER, INTENT(IN) :: CDCOLUMN |
---|
57 | |
---|
58 | REAL*8, INTENT(OUT) :: DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
59 | REAL*8, INTENT(OUT) :: TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
60 | REAL*8, INTENT(OUT) :: COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
61 | REAL*8, INTENT(OUT) :: WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
62 | REAL*8, INTENT(OUT) :: TAUGSURF(L_NSPECTI,L_NGAUSS-1) |
---|
63 | REAL*8, INTENT(OUT) :: POPT_HAZE(L_LEVELS,L_NSPECTI,3) |
---|
64 | REAL*8, INTENT(OUT) :: POPT_CLOUDS(L_LEVELS,L_NSPECTI,3) |
---|
65 | ! ========================================================== |
---|
66 | |
---|
67 | real*8 DTAUKI(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
68 | |
---|
69 | ! Titan customisation |
---|
70 | ! J. Vatant d'Ollone (2016) |
---|
71 | real*8 DHAZE_T(L_LEVELS,L_NSPECTI) |
---|
72 | real*8 DHAZES_T(L_LEVELS,L_NSPECTI) |
---|
73 | real*8 SSA_T(L_LEVELS,L_NSPECTI) |
---|
74 | real*8 ASF_T(L_LEVELS,L_NSPECTI) |
---|
75 | ! ========================== |
---|
76 | |
---|
77 | integer L, NW, NG, K, LK, IAER |
---|
78 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
79 | real*8 ANS, TAUGAS |
---|
80 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
81 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
82 | |
---|
83 | real*8 DCONT |
---|
84 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
---|
85 | double precision p_cross |
---|
86 | |
---|
87 | real*8 KCOEF(4) |
---|
88 | |
---|
89 | ! temporary variable to reduce memory access time to gasi |
---|
90 | real*8 tmpk(2,2) |
---|
91 | |
---|
92 | ! temporary variables for multiple aerosol calculation |
---|
93 | real*8 atemp |
---|
94 | real*8 btemp(L_NLAYRAD,L_NSPECTI) |
---|
95 | |
---|
96 | ! variables for k in units m^-1 |
---|
97 | real*8 dz(L_LEVELS) |
---|
98 | |
---|
99 | integer igas, jgas, ilay |
---|
100 | |
---|
101 | integer interm |
---|
102 | |
---|
103 | ! Variables for haze optics |
---|
104 | character(len=200) file_path |
---|
105 | logical file_ok |
---|
106 | integer dumch |
---|
107 | real*8 dumwvl |
---|
108 | |
---|
109 | ! Variables for new optics |
---|
110 | integer iq, iw, FTYPE, CTYPE |
---|
111 | real*8 m0as,m0af,m0ccn,m3as,m3af,m3ccn,m3cld |
---|
112 | real*8 dtauaer_s,dtauaer_f,dtau_ccn,dtau_cld |
---|
113 | real*8,save :: rhoaer_s(L_NSPECTI),ssa_s(L_NSPECTI),asf_s(L_NSPECTI) |
---|
114 | real*8,save :: rhoaer_f(L_NSPECTI),ssa_f(L_NSPECTI),asf_f(L_NSPECTI) |
---|
115 | real*8,save :: ssa_ccn(L_NSPECTI),asf_ccn(L_NSPECTI) |
---|
116 | real*8,save :: ssa_cld(L_NSPECTI),asf_cld(L_NSPECTI) |
---|
117 | !$OMP THREADPRIVATE(rhoaer_s,rhoaer_f,ssa_s,ssa_f,ssa_cld,asf_s,asf_f,asf_cld) |
---|
118 | |
---|
119 | logical,save :: firstcall=.true. |
---|
120 | !$OMP THREADPRIVATE(firstcall) |
---|
121 | |
---|
122 | |
---|
123 | !! AS: to save time in computing continuum (see bilinearbig) |
---|
124 | IF (.not.ALLOCATED(indi)) THEN |
---|
125 | ALLOCATE(indi(L_NSPECTI,ngasmx,ngasmx)) |
---|
126 | indi = -9999 ! this initial value means "to be calculated" |
---|
127 | ENDIF |
---|
128 | |
---|
129 | ! Some initialisation because there's a pb with disr_haze at the limits (nw=1) |
---|
130 | ! I should check this - For now we set vars to zero : better than nans - JVO 2017 |
---|
131 | DHAZE_T(:,:) = 0.0 |
---|
132 | SSA_T(:,:) = 0.0 |
---|
133 | ASF_T(:,:) = 0.0 |
---|
134 | |
---|
135 | ! Load tabulated haze optical properties if needed. |
---|
136 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
137 | IF (firstcall .AND. callmufi .AND. (.NOT. uncoupl_optic_haze)) THEN |
---|
138 | OPEN(12,file=TRIM(haze_opt_file),form='formatted') ! The file has been inquired in physiq_mod firstcall |
---|
139 | READ(12,*) ! dummy header |
---|
140 | DO NW=1,L_NSPECTI |
---|
141 | READ(12,*) dumch, dumwvl, rhoaer_f(nw), ssa_f(nw), asf_f(nw), rhoaer_s(nw), ssa_s(nw), asf_s(nw) |
---|
142 | ENDDO |
---|
143 | CLOSE(12) |
---|
144 | ENDIF |
---|
145 | |
---|
146 | !======================================================================= |
---|
147 | ! Determine the total gas opacity throughout the column, for each |
---|
148 | ! spectral interval, NW, and each Gauss point, NG. |
---|
149 | |
---|
150 | taugsurf(:,:) = 0.0 |
---|
151 | dpr(:) = 0.0 |
---|
152 | lkcoef(:,:) = 0.0 |
---|
153 | |
---|
154 | do K=2,L_LEVELS |
---|
155 | ilay = L_NLAYRAD+1 - k/2 ! int. arithmetic => gives the gcm layer index (reversed) |
---|
156 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
157 | |
---|
158 | ! if we have continuum opacities, we need dz |
---|
159 | dz(k) = dpr(k)*R*TMID(K)/(gzlat_ig(ilay)*PMID(K)) |
---|
160 | U(k) = Cmk(ilay)*DPR(k) ! only Cmk line in optci.F |
---|
161 | |
---|
162 | call tpindex(PMID(K),TMID(K),pfgasref,tgasref,LCOEF,MT(K),MP(K)) |
---|
163 | |
---|
164 | do LK=1,4 |
---|
165 | LKCOEF(K,LK) = LCOEF(LK) |
---|
166 | end do |
---|
167 | end do ! L_LEVELS |
---|
168 | |
---|
169 | do NW=1,L_NSPECTI |
---|
170 | ! We ignore K=1... |
---|
171 | do K=2,L_LEVELS |
---|
172 | ! int. arithmetic => gives the gcm layer index (reversed) |
---|
173 | ilay = L_NLAYRAD+1 - k/2 |
---|
174 | |
---|
175 | ! Optics coupled with the microphysics : |
---|
176 | IF (callmufi .AND. (.NOT. uncoupl_optic_haze)) THEN |
---|
177 | |
---|
178 | !========================================================================================== |
---|
179 | ! Old optics (must have callclouds = .false.): |
---|
180 | !========================================================================================== |
---|
181 | IF (.NOT. opt4clouds) THEN |
---|
182 | m3as = pqmo(ilay,2) / 2.0 |
---|
183 | m3af = pqmo(ilay,4) / 2.0 |
---|
184 | ! Cut-off (here for p = 2.7e3Pa / alt = 70km) |
---|
185 | IF (ilay .lt. 23) THEN |
---|
186 | m3as = pqmo(23,2) / 2.0 * (zlev(ilay+1)-zlev(ilay)) / (zlev(24)-zlev(23)) |
---|
187 | m3af = pqmo(23,4) / 2.0 * (zlev(ilay+1)-zlev(ilay)) / (zlev(24)-zlev(23)) |
---|
188 | ENDIF |
---|
189 | |
---|
190 | dtauaer_s = m3as*rhoaer_s(nw) |
---|
191 | dtauaer_f = m3af*rhoaer_f(nw) |
---|
192 | |
---|
193 | !========================================================================================== |
---|
194 | ! New optics : |
---|
195 | !========================================================================================== |
---|
196 | ELSE |
---|
197 | iw = (L_NSPECTI + 1) - NW + L_NSPECTV ! Visible first and return |
---|
198 | !----------------------------- |
---|
199 | ! HAZE (Spherical + Fractal) : |
---|
200 | !----------------------------- |
---|
201 | FTYPE = 1 |
---|
202 | |
---|
203 | ! Spherical aerosols : |
---|
204 | !--------------------- |
---|
205 | CTYPE = 5 |
---|
206 | m0as = pqmo(ilay,1) / 2.0 |
---|
207 | m3as = pqmo(ilay,2) / 2.0 |
---|
208 | ! If not callclouds : must have a cut-off (here for p = 2.7e3Pa / alt = 70km) |
---|
209 | IF (.NOT. callclouds) THEN |
---|
210 | IF (ilay .lt. 23) THEN |
---|
211 | m0as = pqmo(23,1) / 2.0 * (zlev(ilay+1)-zlev(ilay)) / (zlev(24)-zlev(23)) |
---|
212 | m3as = pqmo(23,2) / 2.0 * (zlev(ilay+1)-zlev(ilay)) / (zlev(24)-zlev(23)) |
---|
213 | ENDIF |
---|
214 | ENDIF |
---|
215 | call get_haze_and_cloud_opacity(FTYPE,CTYPE,m0as,m3as,iw,dtauaer_s,ssa_s(nw),asf_s(nw)) |
---|
216 | |
---|
217 | ! Fractal aerosols : |
---|
218 | !------------------- |
---|
219 | CTYPE = FTYPE |
---|
220 | m0af = pqmo(ilay,3) / 2.0 |
---|
221 | m3af = pqmo(ilay,4) / 2.0 |
---|
222 | ! If not callclouds : must have a cut-off (here for p = 2.7e3Pa / alt = 70km) |
---|
223 | IF (.NOT. callclouds) THEN |
---|
224 | IF (ilay .lt. 23) THEN |
---|
225 | m0af = pqmo(23,3) / 2.0 * (zlev(ilay+1)-zlev(ilay)) / (zlev(24)-zlev(23)) |
---|
226 | m3af = pqmo(23,4) / 2.0 * (zlev(ilay+1)-zlev(ilay)) / (zlev(24)-zlev(23)) |
---|
227 | ENDIF |
---|
228 | ENDIF |
---|
229 | call get_haze_and_cloud_opacity(FTYPE,CTYPE,m0af,m3af,iw,dtauaer_f,ssa_f(nw),asf_f(nw)) |
---|
230 | ENDIF |
---|
231 | |
---|
232 | ! Total of Haze opacity (dtau), SSA (w) and ASF (COS) : |
---|
233 | DHAZE_T(k,nw) = dtauaer_s + dtauaer_f |
---|
234 | IF (dtauaer_s + dtauaer_f .GT. 1.D-30) THEN |
---|
235 | SSA_T(k,nw) = ( dtauaer_s*ssa_s(nw) + dtauaer_f*ssa_f(nw) ) / ( dtauaer_s+dtauaer_f ) |
---|
236 | ASF_T(k,nw) = ( dtauaer_s*ssa_s(nw)*asf_s(nw) + dtauaer_f*ssa_f(nw)*asf_f(nw) ) & |
---|
237 | / ( ssa_s(nw)*dtauaer_s + ssa_f(nw)*dtauaer_f ) |
---|
238 | ELSE |
---|
239 | DHAZE_T(k,nw) = 0.D0 |
---|
240 | SSA_T(k,nw) = 1.0 |
---|
241 | ASF_T(k,nw) = 1.0 |
---|
242 | ENDIF |
---|
243 | ! Diagnostics for the haze : |
---|
244 | POPT_HAZE(k,nw,1) = DHAZE_T(k,nw) ! dtau |
---|
245 | POPT_HAZE(k,nw,2) = SSA_T(k,nw) ! wbar |
---|
246 | POPT_HAZE(k,nw,3) = ASF_T(k,nw) ! gbar |
---|
247 | |
---|
248 | !--------------------- |
---|
249 | ! CLOUDS (Spherical) : |
---|
250 | !--------------------- |
---|
251 | IF (callclouds) THEN |
---|
252 | CTYPE = 0 |
---|
253 | m0ccn = pqmo(ilay,5) / 2.0 |
---|
254 | m3ccn = pqmo(ilay,6) / 2.0 |
---|
255 | m3cld = 0.0d0 |
---|
256 | |
---|
257 | ! Clear / Dark column method : |
---|
258 | !----------------------------- |
---|
259 | |
---|
260 | ! CCN's SSA : |
---|
261 | call get_haze_and_cloud_opacity(FTYPE,FTYPE,m0ccn,m3ccn,iw,dtau_ccn,ssa_ccn(nw),asf_ccn(nw)) |
---|
262 | |
---|
263 | ! Clear column (CCN, C2H2, C2H6, HCN) : |
---|
264 | IF (CDCOLUMN == 0) THEN |
---|
265 | DO iq = 2, nice |
---|
266 | m3cld = m3cld + (pqmo(ilay,ices_indx(iq)) / 2.0) |
---|
267 | ENDDO |
---|
268 | call get_haze_and_cloud_opacity(FTYPE,CTYPE,m0ccn,m3cld,iw,dtau_cld,ssa_cld(nw),asf_cld(nw)) |
---|
269 | |
---|
270 | ! Dark column (CCN, CH4, C2H2, C2H6, HCN) : |
---|
271 | ELSEIF (CDCOLUMN == 1) THEN |
---|
272 | DO iq = 1, nice |
---|
273 | m3cld = m3cld + (pqmo(ilay,ices_indx(iq)) / 2.0) |
---|
274 | ENDDO |
---|
275 | call get_haze_and_cloud_opacity(FTYPE,CTYPE,m0ccn,m3cld,iw,dtau_cld,ssa_cld(nw),asf_cld(nw)) |
---|
276 | |
---|
277 | ELSE |
---|
278 | WRITE(*,*) 'WARNING OPTCI.F90 : CDCOLUMN MUST BE 0 OR 1' |
---|
279 | WRITE(*,*) 'WE USE DARK COLUMN ...' |
---|
280 | DO iq = 1, nice |
---|
281 | m3cld = m3cld + (pqmo(ilay,ices_indx(iq)) / 2.0) |
---|
282 | ENDDO |
---|
283 | call get_haze_and_cloud_opacity(FTYPE,CTYPE,m0ccn,m3cld,iw,dtau_cld,ssa_cld(nw),asf_cld(nw)) |
---|
284 | ENDIF |
---|
285 | |
---|
286 | ! For small dropplets, opacity of nucleus dominates... |
---|
287 | ssa_cld(nw) = (ssa_ccn(nw)*m3ccn + ssa_cld(nw)*m3cld) / (m3ccn + m3cld) |
---|
288 | |
---|
289 | ! Total of Haze + Clouds opacity (dtau), SSA (w) and ASF (COS) : |
---|
290 | DHAZE_T(k,nw) = dtauaer_s + dtauaer_f + dtau_cld |
---|
291 | IF (DHAZE_T(k,nw) .GT. 1.D-30) THEN |
---|
292 | SSA_T(k,nw) = ( dtauaer_s*ssa_s(nw) + dtauaer_f*ssa_f(nw) + dtau_cld*ssa_cld(nw) ) / ( dtauaer_s+dtauaer_f+dtau_cld ) |
---|
293 | ASF_T(k,nw) = ( dtauaer_s*ssa_s(nw)*asf_s(nw) + dtauaer_f*ssa_f(nw)*asf_f(nw) + dtau_cld*ssa_cld(nw)*asf_cld(nw) ) & |
---|
294 | / ( ssa_s(nw)*dtauaer_s + ssa_f(nw)*dtauaer_f + ssa_cld(nw)*dtau_cld ) |
---|
295 | ELSE |
---|
296 | DHAZE_T(k,nw) = 0.D0 |
---|
297 | SSA_T(k,nw) = 1.0 |
---|
298 | ASF_T(k,nw) = 1.0 |
---|
299 | ENDIF |
---|
300 | |
---|
301 | ! Tuning of optical properties (now useless...) : |
---|
302 | DHAZE_T(k,nw) = DHAZE_T(k,nw) * (FHIR * (1-SSA_T(k,nw)) + SSA_T(k,nw)) |
---|
303 | SSA_T(k,nw) = SSA_T(k,nw) / (FHIR * (1-SSA_T(k,nw)) + SSA_T(k,nw)) |
---|
304 | |
---|
305 | ! Diagnostics for clouds : |
---|
306 | POPT_CLOUDS(k,nw,1) = DHAZE_T(k,nw) ! dtau |
---|
307 | POPT_CLOUDS(k,nw,2) = SSA_T(k,nw) ! wbar |
---|
308 | POPT_CLOUDS(k,nw,3) = ASF_T(k,nw) ! gbar |
---|
309 | |
---|
310 | ELSE |
---|
311 | ! Diagnostics for clouds : |
---|
312 | POPT_CLOUDS(k,nw,1) = 0.D0 ! dtau |
---|
313 | POPT_CLOUDS(k,nw,2) = 1.0 ! wbar |
---|
314 | POPT_CLOUDS(k,nw,3) = 1.0 ! gbar |
---|
315 | ENDIF |
---|
316 | |
---|
317 | ! Optics and microphysics no coupled : |
---|
318 | ELSE |
---|
319 | ! Call fixed vertical haze profile of extinction - same for all columns |
---|
320 | call disr_haze(dz(k),plev(k),wnoi(nw),DHAZE_T(k,nw),SSA_T(k,nw),ASF_T(k,nw)) |
---|
321 | if (seashaze) DHAZE_T(k,nw) = DHAZE_T(k,nw)*seashazefact(k) |
---|
322 | ! Diagnostics for the haze : |
---|
323 | POPT_HAZE(k,nw,1) = DHAZE_T(k,nw) ! dtau |
---|
324 | POPT_HAZE(k,nw,2) = SSA_T(k,nw) ! wbar |
---|
325 | POPT_HAZE(k,nw,3) = ASF_T(k,nw) ! gbar |
---|
326 | ! Diagnostics for clouds : |
---|
327 | POPT_CLOUDS(k,nw,1) = 0.D0 ! dtau |
---|
328 | POPT_CLOUDS(k,nw,2) = 1.0 ! wbar |
---|
329 | POPT_CLOUDS(k,nw,3) = 1.0 ! gbar |
---|
330 | ENDIF ! ENDIF callmufi |
---|
331 | |
---|
332 | DCONT = 0.0d0 ! continuum absorption |
---|
333 | |
---|
334 | if(continuum.and.(.not.graybody))then |
---|
335 | ! include continua if necessary |
---|
336 | wn_cont = dble(wnoi(nw)) |
---|
337 | T_cont = dble(TMID(k)) |
---|
338 | do igas=1,ngasmx |
---|
339 | |
---|
340 | p_cont = dble(PMID(k)*scalep*gfrac(igas,ilay)) |
---|
341 | |
---|
342 | dtemp=0.0d0 |
---|
343 | if(igas.eq.igas_N2)then |
---|
344 | |
---|
345 | interm = indi(nw,igas,igas) |
---|
346 | call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
347 | indi(nw,igas,igas) = interm |
---|
348 | |
---|
349 | elseif(igas.eq.igas_H2)then |
---|
350 | |
---|
351 | ! first do self-induced absorption |
---|
352 | interm = indi(nw,igas,igas) |
---|
353 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
354 | indi(nw,igas,igas) = interm |
---|
355 | |
---|
356 | ! then cross-interactions with other gases |
---|
357 | do jgas=1,ngasmx |
---|
358 | p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay)) |
---|
359 | dtempc = 0.0d0 |
---|
360 | if(jgas.eq.igas_N2)then |
---|
361 | interm = indi(nw,igas,jgas) |
---|
362 | call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
363 | indi(nw,igas,jgas) = interm |
---|
364 | endif |
---|
365 | dtemp = dtemp + dtempc |
---|
366 | enddo |
---|
367 | |
---|
368 | elseif(igas.eq.igas_CH4)then |
---|
369 | |
---|
370 | ! first do self-induced absorption |
---|
371 | interm = indi(nw,igas,igas) |
---|
372 | call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
373 | indi(nw,igas,igas) = interm |
---|
374 | |
---|
375 | ! then cross-interactions with other gases |
---|
376 | do jgas=1,ngasmx |
---|
377 | p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay)) |
---|
378 | dtempc = 0.0d0 |
---|
379 | if(jgas.eq.igas_N2)then |
---|
380 | interm = indi(nw,igas,jgas) |
---|
381 | call interpolateN2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
382 | indi(nw,igas,jgas) = interm |
---|
383 | endif |
---|
384 | dtemp = dtemp + dtempc |
---|
385 | enddo |
---|
386 | |
---|
387 | endif |
---|
388 | |
---|
389 | DCONT = DCONT + dtemp |
---|
390 | |
---|
391 | enddo |
---|
392 | |
---|
393 | DCONT = DCONT*dz(k) |
---|
394 | |
---|
395 | endif |
---|
396 | |
---|
397 | do ng=1,L_NGAUSS-1 |
---|
398 | |
---|
399 | ! Now compute TAUGAS |
---|
400 | |
---|
401 | ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically |
---|
402 | ! the execution time of optci/v -> ~ factor 2 on the whole radiative |
---|
403 | ! transfer on the tested simulations ! |
---|
404 | |
---|
405 | if (corrk_recombin) then |
---|
406 | tmpk = GASI_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NW,NG) |
---|
407 | else |
---|
408 | tmpk = GASI(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) |
---|
409 | endif |
---|
410 | |
---|
411 | KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASI(MT(K),MP(K),1,NW,NG) |
---|
412 | KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASI(MT(K),MP(K)+1,1,NW,NG) |
---|
413 | KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASI(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
414 | KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASI(MT(K)+1,MP(K),1,NW,NG) |
---|
415 | |
---|
416 | |
---|
417 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
418 | |
---|
419 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
---|
420 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
421 | |
---|
422 | TAUGAS = U(k)*ANS |
---|
423 | |
---|
424 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
---|
425 | DTAUKI(K,nw,ng) = TAUGAS & |
---|
426 | + DCONT & ! For parameterized continuum absorption |
---|
427 | + DHAZE_T(K,NW) ! For Titan haze |
---|
428 | |
---|
429 | end do |
---|
430 | |
---|
431 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
432 | ! which holds continuum opacity only |
---|
433 | |
---|
434 | NG = L_NGAUSS |
---|
435 | DTAUKI(K,nw,ng) = 0.d0 & |
---|
436 | + DCONT & ! For parameterized continuum absorption |
---|
437 | + DHAZE_T(K,NW) ! For Titan Haze |
---|
438 | |
---|
439 | end do ! k = L_LEVELS |
---|
440 | end do ! nw = L_NSPECTI |
---|
441 | |
---|
442 | !======================================================================= |
---|
443 | ! Now the full treatment for the layers, where besides the opacity |
---|
444 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
445 | ! ====================================================================== |
---|
446 | |
---|
447 | ! Haze scattering |
---|
448 | DO NW=1,L_NSPECTI |
---|
449 | DO K=2,L_LEVELS |
---|
450 | DHAZES_T(K,NW) = DHAZE_T(K,NW) * SSA_T(K,NW) |
---|
451 | ENDDO |
---|
452 | ENDDO |
---|
453 | |
---|
454 | DO NW=1,L_NSPECTI |
---|
455 | DO L=1,L_NLAYRAD-1 |
---|
456 | K = 2*L+1 |
---|
457 | btemp(L,NW) = DHAZES_T(K,NW) + DHAZES_T(K+1,NW) |
---|
458 | END DO ! L vertical loop |
---|
459 | |
---|
460 | ! Last level |
---|
461 | L = L_NLAYRAD |
---|
462 | K = 2*L+1 |
---|
463 | btemp(L,NW) = DHAZES_T(K,NW) |
---|
464 | |
---|
465 | END DO ! NW spectral loop |
---|
466 | |
---|
467 | |
---|
468 | DO NW=1,L_NSPECTI |
---|
469 | NG = L_NGAUSS |
---|
470 | DO L=1,L_NLAYRAD-1 |
---|
471 | |
---|
472 | K = 2*L+1 |
---|
473 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) + DTAUKI(K+1,NW,NG)! + 1.e-50 |
---|
474 | |
---|
475 | atemp = 0. |
---|
476 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
477 | atemp = atemp + & |
---|
478 | ASF_T(K,NW)*DHAZES_T(K,NW) + & |
---|
479 | ASF_T(K+1,NW)*DHAZES_T(K+1,NW) |
---|
480 | |
---|
481 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
482 | else |
---|
483 | WBARI(L,nw,ng) = 0.0D0 |
---|
484 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
485 | endif |
---|
486 | |
---|
487 | if(btemp(L,nw) .GT. 0.0d0) then |
---|
488 | cosbi(L,NW,NG) = atemp/btemp(L,nw) |
---|
489 | else |
---|
490 | cosbi(L,NW,NG) = 0.0D0 |
---|
491 | end if |
---|
492 | |
---|
493 | END DO ! L vertical loop |
---|
494 | |
---|
495 | ! Last level |
---|
496 | |
---|
497 | L = L_NLAYRAD |
---|
498 | K = 2*L+1 |
---|
499 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) ! + 1.e-50 |
---|
500 | |
---|
501 | atemp = 0. |
---|
502 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
503 | atemp = atemp + ASF_T(K,NW)*DHAZES_T(K,NW) |
---|
504 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
505 | else |
---|
506 | WBARI(L,nw,ng) = 0.0D0 |
---|
507 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
508 | endif |
---|
509 | |
---|
510 | if(btemp(L,nw) .GT. 0.0d0) then |
---|
511 | cosbi(L,NW,NG) = atemp/btemp(L,nw) |
---|
512 | else |
---|
513 | cosbi(L,NW,NG) = 0.0D0 |
---|
514 | end if |
---|
515 | |
---|
516 | |
---|
517 | ! Now the other Gauss points, if needed. |
---|
518 | |
---|
519 | DO NG=1,L_NGAUSS-1 |
---|
520 | IF(TAUGSURF(NW,NG) .gt. TLIMIT) THEN |
---|
521 | |
---|
522 | DO L=1,L_NLAYRAD-1 |
---|
523 | K = 2*L+1 |
---|
524 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)+DTAUKI(K+1,NW,NG)! + 1.e-50 |
---|
525 | |
---|
526 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
527 | |
---|
528 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
529 | |
---|
530 | else |
---|
531 | WBARI(L,nw,ng) = 0.0D0 |
---|
532 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
533 | endif |
---|
534 | |
---|
535 | cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) |
---|
536 | END DO ! L vertical loop |
---|
537 | |
---|
538 | ! Last level |
---|
539 | L = L_NLAYRAD |
---|
540 | K = 2*L+1 |
---|
541 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)! + 1.e-50 |
---|
542 | |
---|
543 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
544 | |
---|
545 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
546 | |
---|
547 | else |
---|
548 | WBARI(L,nw,ng) = 0.0D0 |
---|
549 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
550 | endif |
---|
551 | |
---|
552 | cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) |
---|
553 | |
---|
554 | END IF |
---|
555 | |
---|
556 | END DO ! NG Gauss loop |
---|
557 | END DO ! NW spectral loop |
---|
558 | |
---|
559 | ! Total extinction optical depths |
---|
560 | !DO NG=1,L_NGAUSS ! full gauss loop |
---|
561 | ! DO NW=1,L_NSPECTI |
---|
562 | ! TAUCUMI(1,NW,NG)=0.0D0 |
---|
563 | ! DO K=2,L_LEVELS |
---|
564 | ! TAUCUMI(K,NW,NG)=TAUCUMI(K-1,NW,NG)+DTAUKI(K,NW,NG) |
---|
565 | ! END DO |
---|
566 | ! END DO ! end full gauss loop |
---|
567 | !END DO |
---|
568 | |
---|
569 | TAUCUMI(:,:,:) = DTAUKI(:,:,:) |
---|
570 | |
---|
571 | ! be aware when comparing with textbook results |
---|
572 | ! (e.g. Pierrehumbert p. 218) that |
---|
573 | ! taucumi does not take the <cos theta>=0.5 factor into |
---|
574 | ! account. It is the optical depth for a vertically |
---|
575 | ! ascending ray with angle theta = 0. |
---|
576 | |
---|
577 | if(firstcall) firstcall = .false. |
---|
578 | |
---|
579 | return |
---|
580 | |
---|
581 | |
---|
582 | end subroutine optci |
---|
583 | |
---|
584 | |
---|
585 | |
---|