| 1 | subroutine optci(PQO,NLAY,PLEV,TLEV,TMID,PMID, & |
|---|
| 2 | DTAUI,TAUCUMI,COSBI,WBARI,TAUGSURF) |
|---|
| 3 | |
|---|
| 4 | use radinc_h |
|---|
| 5 | use radcommon_h, only: gasi,tlimit,Cmk,tgasref,pfgasref,wnoi,scalep,indi,glat_ig,gweight |
|---|
| 6 | use gases_h |
|---|
| 7 | use comcstfi_mod, only: g, r |
|---|
| 8 | use callkeys_mod, only: continuum,graybody,callclouds,callmufi, uncoupl_optic_haze |
|---|
| 9 | use tracer_h, only : nmicro,nice |
|---|
| 10 | use MMP_OPTICS |
|---|
| 11 | |
|---|
| 12 | implicit none |
|---|
| 13 | |
|---|
| 14 | !================================================================== |
|---|
| 15 | ! |
|---|
| 16 | ! Purpose |
|---|
| 17 | ! ------- |
|---|
| 18 | ! Calculates longwave optical constants at each level. For each |
|---|
| 19 | ! layer and spectral interval in the IR it calculates WBAR, DTAU |
|---|
| 20 | ! and COSBAR. For each level it calculates TAU. |
|---|
| 21 | ! |
|---|
| 22 | ! TAUCUMI(L,LW) is the cumulative optical depth at level L (or alternatively |
|---|
| 23 | ! at the *bottom* of layer L), LW is the spectral wavelength interval. |
|---|
| 24 | ! |
|---|
| 25 | ! TLEV(L) - Temperature at the layer boundary (i.e., level) |
|---|
| 26 | ! PLEV(L) - Pressure at the layer boundary (i.e., level) |
|---|
| 27 | ! |
|---|
| 28 | ! Authors |
|---|
| 29 | ! ------- |
|---|
| 30 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
|---|
| 31 | ! Clean and adaptation to Titan by J. Vatant d'Ollone (2016-17) |
|---|
| 32 | ! |
|---|
| 33 | !================================================================== |
|---|
| 34 | |
|---|
| 35 | |
|---|
| 36 | !========================================================== |
|---|
| 37 | ! Input/Output |
|---|
| 38 | !========================================================== |
|---|
| 39 | REAL*8, INTENT(IN) :: PQO(nlay,nmicro) ! Tracers (X/m2). |
|---|
| 40 | INTEGER, INTENT(IN) :: NLAY ! Number of pressure layers (for pqo) |
|---|
| 41 | REAL*8, INTENT(IN) :: PLEV(L_LEVELS), TLEV(L_LEVELS) |
|---|
| 42 | REAL*8, INTENT(IN) :: TMID(L_LEVELS), PMID(L_LEVELS) |
|---|
| 43 | |
|---|
| 44 | REAL*8, INTENT(OUT) :: DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
|---|
| 45 | REAL*8, INTENT(OUT) :: TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS) |
|---|
| 46 | REAL*8, INTENT(OUT) :: COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
|---|
| 47 | REAL*8, INTENT(OUT) :: WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
|---|
| 48 | REAL*8, INTENT(OUT) :: TAUGSURF(L_NSPECTI,L_NGAUSS-1) |
|---|
| 49 | ! ========================================================== |
|---|
| 50 | |
|---|
| 51 | real*8 DTAUKI(L_LEVELS,L_NSPECTI,L_NGAUSS) |
|---|
| 52 | |
|---|
| 53 | ! Titan customisation |
|---|
| 54 | ! J. Vatant d'Ollone (2016) |
|---|
| 55 | real*8 DHAZE_T(L_LEVELS,L_NSPECTI) |
|---|
| 56 | real*8 DHAZES_T(L_LEVELS,L_NSPECTI) |
|---|
| 57 | real*8 SSA_T(L_LEVELS,L_NSPECTI) |
|---|
| 58 | real*8 ASF_T(L_LEVELS,L_NSPECTI) |
|---|
| 59 | real*8 INT_DTAU(L_NLAYRAD,L_NSPECTI) |
|---|
| 60 | real*8 K_HAZE(L_NLAYRAD,L_NSPECTI) |
|---|
| 61 | |
|---|
| 62 | CHARACTER*2 str2 |
|---|
| 63 | ! ========================== |
|---|
| 64 | |
|---|
| 65 | integer L, NW, NG, K, LK, IAER |
|---|
| 66 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
|---|
| 67 | real*8 ANS, TAUGAS |
|---|
| 68 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
|---|
| 69 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
|---|
| 70 | |
|---|
| 71 | real*8 DCONT |
|---|
| 72 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
|---|
| 73 | double precision p_cross |
|---|
| 74 | |
|---|
| 75 | real*8 KCOEF(4) |
|---|
| 76 | |
|---|
| 77 | ! temporary variable to reduce memory access time to gasi |
|---|
| 78 | real*8 tmpk(2,2) |
|---|
| 79 | |
|---|
| 80 | ! temporary variables for multiple aerosol calculation |
|---|
| 81 | real*8 atemp |
|---|
| 82 | real*8 btemp(L_NLAYRAD,L_NSPECTI) |
|---|
| 83 | |
|---|
| 84 | ! variables for k in units m^-1 |
|---|
| 85 | real*8 dz(L_LEVELS) |
|---|
| 86 | !real*8 rho !! see test below |
|---|
| 87 | |
|---|
| 88 | integer igas, jgas, ilay |
|---|
| 89 | |
|---|
| 90 | integer interm |
|---|
| 91 | |
|---|
| 92 | real*8 m0as,m3as,m0af,m3af |
|---|
| 93 | real*8 ext_s,sca_s,ssa_s,asf_s |
|---|
| 94 | real*8 ext_f,sca_f,ssa_f,asf_f |
|---|
| 95 | logical,save :: firstcall=.true. |
|---|
| 96 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 97 | |
|---|
| 98 | !! AS: to save time in computing continuum (see bilinearbig) |
|---|
| 99 | IF (.not.ALLOCATED(indi)) THEN |
|---|
| 100 | ALLOCATE(indi(L_NSPECTI,ngasmx,ngasmx)) |
|---|
| 101 | indi = -9999 ! this initial value means "to be calculated" |
|---|
| 102 | ENDIF |
|---|
| 103 | |
|---|
| 104 | ! Some initialisation beacause there's a pb with disr_haze at the limits (nw=1) |
|---|
| 105 | ! I should check this - For now we set vars to zero : better than nans - JVO 2017 |
|---|
| 106 | |
|---|
| 107 | dhaze_t(:,:) = 0. |
|---|
| 108 | ssa_t(:,:) = 0. |
|---|
| 109 | asf_t(:,:) = 0. |
|---|
| 110 | |
|---|
| 111 | !======================================================================= |
|---|
| 112 | ! Determine the total gas opacity throughout the column, for each |
|---|
| 113 | ! spectral interval, NW, and each Gauss point, NG. |
|---|
| 114 | |
|---|
| 115 | taugsurf(:,:) = 0.0 |
|---|
| 116 | dpr(:) = 0.0 |
|---|
| 117 | lkcoef(:,:) = 0.0 |
|---|
| 118 | |
|---|
| 119 | do K=2,L_LEVELS |
|---|
| 120 | DPR(k) = PLEV(K)-PLEV(K-1) |
|---|
| 121 | |
|---|
| 122 | ! if we have continuum opacities, we need dz |
|---|
| 123 | dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K)) |
|---|
| 124 | U(k) = Cmk*DPR(k) ! only Cmk line in optci.F |
|---|
| 125 | |
|---|
| 126 | call tpindex(PMID(K),TMID(K),pfgasref,tgasref,LCOEF,MT(K),MP(K)) |
|---|
| 127 | |
|---|
| 128 | do LK=1,4 |
|---|
| 129 | LKCOEF(K,LK) = LCOEF(LK) |
|---|
| 130 | end do |
|---|
| 131 | end do ! levels |
|---|
| 132 | |
|---|
| 133 | do NW=1,L_NSPECTI |
|---|
| 134 | |
|---|
| 135 | do K=2,L_LEVELS |
|---|
| 136 | |
|---|
| 137 | ilay = k / 2 ! int. arithmetic => gives the gcm layer index |
|---|
| 138 | |
|---|
| 139 | ! Optical coupling of YAMMS is plugged but inactivated for now |
|---|
| 140 | ! as long as the microphysics only isn't fully debugged -- JVO 01/18 |
|---|
| 141 | IF (callmufi .AND. (.NOT. uncoupl_optic_haze)) THEN |
|---|
| 142 | m0as = pqo(ilay,1) |
|---|
| 143 | m3as = pqo(ilay,2) |
|---|
| 144 | m0af = pqo(ilay,3) |
|---|
| 145 | m3af = pqo(ilay,4) |
|---|
| 146 | |
|---|
| 147 | IF (.NOT.mmp_sph_optics_ir(m0as,m3as,nw,ext_s,sca_s,ssa_s,asf_s)) & |
|---|
| 148 | CALL abort_gcm("optcv", "Fatal error in mmp_sph_optics_ir", 12) |
|---|
| 149 | IF (.NOT.mmp_fra_optics_ir(m0af,m3af,nw,ext_f,sca_f,ssa_f,asf_f)) & |
|---|
| 150 | CALL abort_gcm("optcv", "Fatal error in mmp_fra_optics_ir", 12) |
|---|
| 151 | dhaze_T(k,nw) = ext_s+ext_f |
|---|
| 152 | SSA_T(k,nw) = (sca_s+sca_f)/dhaze_T(k,nw) |
|---|
| 153 | ASF_T(k,nw) = (asf_s*sca_s + asf_f*sca_f) /(sca_s+sca_f) |
|---|
| 154 | IF (callclouds.and.firstcall) & |
|---|
| 155 | WRITE(*,*) 'WARNING: In optci, optical properties & |
|---|
| 156 | &calculations are not implemented yet' |
|---|
| 157 | ELSE |
|---|
| 158 | ! Call fixed vertical haze profile of extinction - same for all columns |
|---|
| 159 | call disr_haze(dz(k),plev(k),wnoi(nw),dhaze_T(k,nw),SSA_T(k,nw),ASF_T(k,nw)) |
|---|
| 160 | ENDIF |
|---|
| 161 | |
|---|
| 162 | DCONT = 0.0d0 ! continuum absorption |
|---|
| 163 | |
|---|
| 164 | if(continuum.and.(.not.graybody))then |
|---|
| 165 | ! include continua if necessary |
|---|
| 166 | wn_cont = dble(wnoi(nw)) |
|---|
| 167 | T_cont = dble(TMID(k)) |
|---|
| 168 | do igas=1,ngasmx |
|---|
| 169 | |
|---|
| 170 | p_cont = dble(PMID(k)*scalep*gfrac(igas,ilay)) |
|---|
| 171 | |
|---|
| 172 | dtemp=0.0d0 |
|---|
| 173 | if(igas.eq.igas_N2)then |
|---|
| 174 | |
|---|
| 175 | interm = indi(nw,igas,igas) |
|---|
| 176 | call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
|---|
| 177 | indi(nw,igas,igas) = interm |
|---|
| 178 | |
|---|
| 179 | elseif(igas.eq.igas_H2)then |
|---|
| 180 | |
|---|
| 181 | ! first do self-induced absorption |
|---|
| 182 | interm = indi(nw,igas,igas) |
|---|
| 183 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
|---|
| 184 | indi(nw,igas,igas) = interm |
|---|
| 185 | |
|---|
| 186 | ! then cross-interactions with other gases |
|---|
| 187 | do jgas=1,ngasmx |
|---|
| 188 | p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay)) |
|---|
| 189 | dtempc = 0.0d0 |
|---|
| 190 | if(jgas.eq.igas_N2)then |
|---|
| 191 | interm = indi(nw,igas,jgas) |
|---|
| 192 | call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
|---|
| 193 | indi(nw,igas,jgas) = interm |
|---|
| 194 | endif |
|---|
| 195 | dtemp = dtemp + dtempc |
|---|
| 196 | enddo |
|---|
| 197 | |
|---|
| 198 | elseif(igas.eq.igas_CH4)then |
|---|
| 199 | |
|---|
| 200 | ! first do self-induced absorption |
|---|
| 201 | interm = indi(nw,igas,igas) |
|---|
| 202 | call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
|---|
| 203 | indi(nw,igas,igas) = interm |
|---|
| 204 | |
|---|
| 205 | ! then cross-interactions with other gases |
|---|
| 206 | do jgas=1,ngasmx |
|---|
| 207 | p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay)) |
|---|
| 208 | dtempc = 0.0d0 |
|---|
| 209 | if(jgas.eq.igas_N2)then |
|---|
| 210 | interm = indi(nw,igas,jgas) |
|---|
| 211 | call interpolateN2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
|---|
| 212 | indi(nw,igas,jgas) = interm |
|---|
| 213 | endif |
|---|
| 214 | dtemp = dtemp + dtempc |
|---|
| 215 | enddo |
|---|
| 216 | |
|---|
| 217 | endif |
|---|
| 218 | |
|---|
| 219 | DCONT = DCONT + dtemp |
|---|
| 220 | |
|---|
| 221 | enddo |
|---|
| 222 | |
|---|
| 223 | ! Oobleck test |
|---|
| 224 | !rho = PMID(k)*scalep / (TMID(k)*286.99) |
|---|
| 225 | !if(WNOI(nw).gt.300.0 .and. WNOI(nw).lt.500.0)then |
|---|
| 226 | ! DCONT = rho * 0.125 * 4.6e-4 |
|---|
| 227 | !elseif(WNOI(nw).gt.500.0 .and. WNOI(nw).lt.700.0)then |
|---|
| 228 | ! DCONT = 1000*dpr(k) * 1.0 * 4.6e-4 / g |
|---|
| 229 | ! DCONT = rho * 1.0 * 4.6e-4 |
|---|
| 230 | !elseif(WNOI(nw).gt.700.0 .and. WNOI(nw).lt.900.0)then |
|---|
| 231 | ! DCONT = rho * 0.125 * 4.6e-4 |
|---|
| 232 | !endif |
|---|
| 233 | |
|---|
| 234 | DCONT = DCONT*dz(k) |
|---|
| 235 | |
|---|
| 236 | endif |
|---|
| 237 | |
|---|
| 238 | do ng=1,L_NGAUSS-1 |
|---|
| 239 | |
|---|
| 240 | ! Now compute TAUGAS |
|---|
| 241 | |
|---|
| 242 | ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically |
|---|
| 243 | ! the execution time of optci/v -> ~ factor 2 on the whole radiative |
|---|
| 244 | ! transfer on the tested simulations ! |
|---|
| 245 | |
|---|
| 246 | tmpk = GASI(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) |
|---|
| 247 | |
|---|
| 248 | KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASI(MT(K),MP(K),1,NW,NG) |
|---|
| 249 | KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASI(MT(K),MP(K)+1,1,NW,NG) |
|---|
| 250 | KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASI(MT(K)+1,MP(K)+1,1,NW,NG) |
|---|
| 251 | KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASI(MT(K)+1,MP(K),1,NW,NG) |
|---|
| 252 | |
|---|
| 253 | |
|---|
| 254 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
|---|
| 255 | |
|---|
| 256 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
|---|
| 257 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
|---|
| 258 | |
|---|
| 259 | TAUGAS = U(k)*ANS |
|---|
| 260 | |
|---|
| 261 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
|---|
| 262 | DTAUKI(K,nw,ng) = TAUGAS & |
|---|
| 263 | + DCONT & ! For parameterized continuum absorption |
|---|
| 264 | + DHAZE_T(K,NW) ! For Titan haze |
|---|
| 265 | |
|---|
| 266 | end do |
|---|
| 267 | |
|---|
| 268 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
|---|
| 269 | ! which holds continuum opacity only |
|---|
| 270 | |
|---|
| 271 | NG = L_NGAUSS |
|---|
| 272 | DTAUKI(K,nw,ng) = 0.d0 & |
|---|
| 273 | + DCONT & ! For parameterized continuum absorption |
|---|
| 274 | + DHAZE_T(K,NW) ! For Titan Haze |
|---|
| 275 | |
|---|
| 276 | end do |
|---|
| 277 | end do |
|---|
| 278 | |
|---|
| 279 | !======================================================================= |
|---|
| 280 | ! Now the full treatment for the layers, where besides the opacity |
|---|
| 281 | ! we need to calculate the scattering albedo and asymmetry factors |
|---|
| 282 | ! ====================================================================== |
|---|
| 283 | |
|---|
| 284 | ! Haze scattering |
|---|
| 285 | DO NW=1,L_NSPECTI |
|---|
| 286 | DO K=2,L_LEVELS |
|---|
| 287 | DHAZES_T(K,NW) = DHAZE_T(K,NW) * SSA_T(K,NW) |
|---|
| 288 | ENDDO |
|---|
| 289 | ENDDO |
|---|
| 290 | |
|---|
| 291 | DO NW=1,L_NSPECTI |
|---|
| 292 | DO L=1,L_NLAYRAD-1 |
|---|
| 293 | K = 2*L+1 |
|---|
| 294 | btemp(L,NW) = DHAZES_T(K,NW) + DHAZES_T(K+1,NW) |
|---|
| 295 | END DO ! L vertical loop |
|---|
| 296 | |
|---|
| 297 | ! Last level |
|---|
| 298 | L = L_NLAYRAD |
|---|
| 299 | K = 2*L+1 |
|---|
| 300 | btemp(L,NW) = DHAZES_T(K,NW) |
|---|
| 301 | |
|---|
| 302 | END DO ! NW spectral loop |
|---|
| 303 | |
|---|
| 304 | |
|---|
| 305 | DO NW=1,L_NSPECTI |
|---|
| 306 | NG = L_NGAUSS |
|---|
| 307 | DO L=1,L_NLAYRAD-1 |
|---|
| 308 | |
|---|
| 309 | K = 2*L+1 |
|---|
| 310 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) + DTAUKI(K+1,NW,NG)! + 1.e-50 |
|---|
| 311 | |
|---|
| 312 | atemp = 0. |
|---|
| 313 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
|---|
| 314 | atemp = atemp + & |
|---|
| 315 | ASF_T(K,NW)*DHAZES_T(K,NW) + & |
|---|
| 316 | ASF_T(K+1,NW)*DHAZES_T(K+1,NW) |
|---|
| 317 | |
|---|
| 318 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
|---|
| 319 | else |
|---|
| 320 | WBARI(L,nw,ng) = 0.0D0 |
|---|
| 321 | DTAUI(L,NW,NG) = 1.0D-9 |
|---|
| 322 | endif |
|---|
| 323 | |
|---|
| 324 | if(btemp(L,nw) .GT. 0.0d0) then |
|---|
| 325 | cosbi(L,NW,NG) = atemp/btemp(L,nw) |
|---|
| 326 | else |
|---|
| 327 | cosbi(L,NW,NG) = 0.0D0 |
|---|
| 328 | end if |
|---|
| 329 | |
|---|
| 330 | END DO ! L vertical loop |
|---|
| 331 | |
|---|
| 332 | ! Last level |
|---|
| 333 | |
|---|
| 334 | L = L_NLAYRAD |
|---|
| 335 | K = 2*L+1 |
|---|
| 336 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) ! + 1.e-50 |
|---|
| 337 | |
|---|
| 338 | atemp = 0. |
|---|
| 339 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
|---|
| 340 | atemp = atemp + ASF_T(K,NW)*DHAZES_T(K,NW) |
|---|
| 341 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
|---|
| 342 | else |
|---|
| 343 | WBARI(L,nw,ng) = 0.0D0 |
|---|
| 344 | DTAUI(L,NW,NG) = 1.0D-9 |
|---|
| 345 | endif |
|---|
| 346 | |
|---|
| 347 | if(btemp(L,nw) .GT. 0.0d0) then |
|---|
| 348 | cosbi(L,NW,NG) = atemp/btemp(L,nw) |
|---|
| 349 | else |
|---|
| 350 | cosbi(L,NW,NG) = 0.0D0 |
|---|
| 351 | end if |
|---|
| 352 | |
|---|
| 353 | |
|---|
| 354 | ! Now the other Gauss points, if needed. |
|---|
| 355 | |
|---|
| 356 | DO NG=1,L_NGAUSS-1 |
|---|
| 357 | IF(TAUGSURF(NW,NG) .gt. TLIMIT) THEN |
|---|
| 358 | |
|---|
| 359 | DO L=1,L_NLAYRAD-1 |
|---|
| 360 | K = 2*L+1 |
|---|
| 361 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)+DTAUKI(K+1,NW,NG)! + 1.e-50 |
|---|
| 362 | |
|---|
| 363 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
|---|
| 364 | |
|---|
| 365 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
|---|
| 366 | |
|---|
| 367 | else |
|---|
| 368 | WBARI(L,nw,ng) = 0.0D0 |
|---|
| 369 | DTAUI(L,NW,NG) = 1.0D-9 |
|---|
| 370 | endif |
|---|
| 371 | |
|---|
| 372 | cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) |
|---|
| 373 | END DO ! L vertical loop |
|---|
| 374 | |
|---|
| 375 | ! Last level |
|---|
| 376 | L = L_NLAYRAD |
|---|
| 377 | K = 2*L+1 |
|---|
| 378 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)! + 1.e-50 |
|---|
| 379 | |
|---|
| 380 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
|---|
| 381 | |
|---|
| 382 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
|---|
| 383 | |
|---|
| 384 | else |
|---|
| 385 | WBARI(L,nw,ng) = 0.0D0 |
|---|
| 386 | DTAUI(L,NW,NG) = 1.0D-9 |
|---|
| 387 | endif |
|---|
| 388 | |
|---|
| 389 | cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) |
|---|
| 390 | |
|---|
| 391 | END IF |
|---|
| 392 | |
|---|
| 393 | END DO ! NG Gauss loop |
|---|
| 394 | END DO ! NW spectral loop |
|---|
| 395 | |
|---|
| 396 | ! Total extinction optical depths |
|---|
| 397 | |
|---|
| 398 | DO NG=1,L_NGAUSS ! full gauss loop |
|---|
| 399 | DO NW=1,L_NSPECTI |
|---|
| 400 | TAUCUMI(1,NW,NG)=0.0D0 |
|---|
| 401 | DO K=2,L_LEVELS |
|---|
| 402 | TAUCUMI(K,NW,NG)=TAUCUMI(K-1,NW,NG)+DTAUKI(K,NW,NG) |
|---|
| 403 | END DO |
|---|
| 404 | END DO ! end full gauss loop |
|---|
| 405 | END DO |
|---|
| 406 | |
|---|
| 407 | ! be aware when comparing with textbook results |
|---|
| 408 | ! (e.g. Pierrehumbert p. 218) that |
|---|
| 409 | ! taucumi does not take the <cos theta>=0.5 factor into |
|---|
| 410 | ! account. It is the optical depth for a vertically |
|---|
| 411 | ! ascending ray with angle theta = 0. |
|---|
| 412 | |
|---|
| 413 | |
|---|
| 414 | ! Titan's outputs (J.V.O, 2016)=============================================== |
|---|
| 415 | ! do l=1,L_NLAYRAD |
|---|
| 416 | ! do nw=1,L_NSPECTI |
|---|
| 417 | ! INT_DTAU(L,NW) = 0.0d+0 |
|---|
| 418 | ! DO NG=1,L_NGAUSS |
|---|
| 419 | ! INT_DTAU(L,NW)= INT_DTAU(L,NW) + dtaui(L,nw,ng)*gweight(NG) |
|---|
| 420 | ! enddo |
|---|
| 421 | ! enddo |
|---|
| 422 | ! enddo |
|---|
| 423 | |
|---|
| 424 | ! do nw=1,L_NSPECTI |
|---|
| 425 | ! write(str2,'(i2.2)') nw |
|---|
| 426 | ! call writediagfi(1,'kgi'//str2,'Gaz extinction coefficient IR band '//str2,'m-1',1,int_dtau(L_NLAYRAD:1:-1,nw)/dz_lay(L_NLAYRAD:1:-1)) |
|---|
| 427 | ! call writediagfi(1,'khi'//str2,'Haze extinction coefficient IR band '//str2,'m-1',1,k_haze(L_NLAYRAD:1:-1,nw)/dz_lay(L_NLAYRAD:1:-1)) |
|---|
| 428 | ! enddo |
|---|
| 429 | |
|---|
| 430 | ! ============================================================================== |
|---|
| 431 | |
|---|
| 432 | if(firstcall) firstcall = .false. |
|---|
| 433 | |
|---|
| 434 | return |
|---|
| 435 | |
|---|
| 436 | |
|---|
| 437 | end subroutine optci |
|---|
| 438 | |
|---|
| 439 | |
|---|
| 440 | |
|---|