[716] | 1 | subroutine optci(PLEV,TLEV,DTAUI,TAUCUMI, & |
---|
| 2 | QXIAER,QSIAER,GIAER,COSBI,WBARI,TAUAERO, & |
---|
[1648] | 3 | TMID,PMID,TAUGSURF,GWEIGHT) |
---|
[135] | 4 | |
---|
[716] | 5 | use radinc_h |
---|
[1648] | 6 | use radcommon_h, only: gasi,tlimit,Cmk,tgasref,pfgasref,wnoi,scalep,indi,glat_ig |
---|
[716] | 7 | use gases_h |
---|
[1648] | 8 | use comcstfi_mod, only: g, r |
---|
[1647] | 9 | use callkeys_mod, only: continuum,graybody |
---|
[716] | 10 | implicit none |
---|
[135] | 11 | |
---|
[716] | 12 | !================================================================== |
---|
| 13 | ! |
---|
| 14 | ! Purpose |
---|
| 15 | ! ------- |
---|
| 16 | ! Calculates longwave optical constants at each level. For each |
---|
| 17 | ! layer and spectral interval in the IR it calculates WBAR, DTAU |
---|
| 18 | ! and COSBAR. For each level it calculates TAU. |
---|
| 19 | ! |
---|
| 20 | ! TAUI(L,LW) is the cumulative optical depth at level L (or alternatively |
---|
| 21 | ! at the *bottom* of layer L), LW is the spectral wavelength interval. |
---|
| 22 | ! |
---|
| 23 | ! TLEV(L) - Temperature at the layer boundary (i.e., level) |
---|
| 24 | ! PLEV(L) - Pressure at the layer boundary (i.e., level) |
---|
| 25 | ! |
---|
| 26 | ! Authors |
---|
| 27 | ! ------- |
---|
| 28 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
| 29 | ! |
---|
| 30 | !================================================================== |
---|
[135] | 31 | |
---|
| 32 | |
---|
[716] | 33 | real*8 DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 34 | real*8 DTAUKI(L_LEVELS+1,L_NSPECTI,L_NGAUSS) |
---|
| 35 | real*8 TAUI(L_NLEVRAD,L_NSPECTI,L_NGAUSS) |
---|
| 36 | real*8 TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
| 37 | real*8 PLEV(L_LEVELS) |
---|
| 38 | real*8 TLEV(L_LEVELS) |
---|
| 39 | real*8 TMID(L_LEVELS), PMID(L_LEVELS) |
---|
| 40 | real*8 COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 41 | real*8 WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
[135] | 42 | |
---|
[716] | 43 | ! for aerosols |
---|
| 44 | real*8 QXIAER(L_LEVELS+1,L_NSPECTI,NAERKIND) |
---|
| 45 | real*8 QSIAER(L_LEVELS+1,L_NSPECTI,NAERKIND) |
---|
| 46 | real*8 GIAER(L_LEVELS+1,L_NSPECTI,NAERKIND) |
---|
| 47 | real*8 TAUAERO(L_LEVELS+1,NAERKIND) |
---|
| 48 | real*8 TAUAEROLK(L_LEVELS+1,L_NSPECTI,NAERKIND) |
---|
| 49 | real*8 TAEROS(L_LEVELS,L_NSPECTI,NAERKIND) |
---|
[135] | 50 | |
---|
[1648] | 51 | ! Titan customisation |
---|
| 52 | ! J. Vatant d'Ollone (2016) |
---|
| 53 | real*8 GWEIGHT(L_NGAUSS) |
---|
| 54 | real*8 DHAZE_T(L_LEVELS+1,L_NSPECTI) |
---|
| 55 | real*8 DHAZES_T(L_LEVELS+1,L_NSPECTI) |
---|
| 56 | real*8 SSA_T(L_LEVELS+1,L_NSPECTI) |
---|
| 57 | real*8 ASF_T(L_LEVELS+1,L_NSPECTI) |
---|
| 58 | real*8 INT_DTAU(L_NLAYRAD,L_NSPECTI) |
---|
| 59 | real*8 K_HAZE(L_NLAYRAD,L_NSPECTI) |
---|
| 60 | |
---|
| 61 | CHARACTER*2 str2 |
---|
| 62 | ! ========================== |
---|
| 63 | |
---|
[716] | 64 | integer L, NW, NG, K, LK, IAER |
---|
| 65 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
| 66 | real*8 ANS, TAUGAS |
---|
| 67 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
| 68 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
[135] | 69 | |
---|
[716] | 70 | real*8 taugsurf(L_NSPECTI,L_NGAUSS-1) |
---|
[918] | 71 | real*8 DCONT,DAERO |
---|
[716] | 72 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
---|
| 73 | double precision p_cross |
---|
[135] | 74 | |
---|
[716] | 75 | real*8 KCOEF(4) |
---|
[1648] | 76 | |
---|
[716] | 77 | ! temporary variables for multiple aerosol calculation |
---|
[918] | 78 | real*8 atemp |
---|
| 79 | real*8 btemp(L_NLAYRAD,L_NSPECTI) |
---|
[135] | 80 | |
---|
[716] | 81 | ! variables for k in units m^-1 |
---|
[873] | 82 | real*8 dz(L_LEVELS) |
---|
| 83 | !real*8 rho !! see test below |
---|
[135] | 84 | |
---|
[1648] | 85 | integer igas, jgas, ilay |
---|
[253] | 86 | |
---|
[873] | 87 | integer interm |
---|
| 88 | |
---|
| 89 | !! AS: to save time in computing continuum (see bilinearbig) |
---|
| 90 | IF (.not.ALLOCATED(indi)) THEN |
---|
[878] | 91 | ALLOCATE(indi(L_NSPECTI,ngasmx,ngasmx)) |
---|
[873] | 92 | indi = -9999 ! this initial value means "to be calculated" |
---|
| 93 | ENDIF |
---|
| 94 | |
---|
[716] | 95 | !======================================================================= |
---|
| 96 | ! Determine the total gas opacity throughout the column, for each |
---|
| 97 | ! spectral interval, NW, and each Gauss point, NG. |
---|
[135] | 98 | |
---|
[716] | 99 | taugsurf(:,:) = 0.0 |
---|
| 100 | dpr(:) = 0.0 |
---|
| 101 | lkcoef(:,:) = 0.0 |
---|
[135] | 102 | |
---|
[716] | 103 | do K=2,L_LEVELS |
---|
| 104 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
[135] | 105 | |
---|
[716] | 106 | ! if we have continuum opacities, we need dz |
---|
[1648] | 107 | dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K)) |
---|
| 108 | U(k) = Cmk*DPR(k) ! only Cmk line in optci.F |
---|
| 109 | |
---|
| 110 | call tpindex(PMID(K),TMID(K),pfgasref,tgasref,LCOEF,MT(K),MP(K)) |
---|
[135] | 111 | |
---|
[716] | 112 | do LK=1,4 |
---|
| 113 | LKCOEF(K,LK) = LCOEF(LK) |
---|
| 114 | end do |
---|
[918] | 115 | end do ! levels |
---|
[253] | 116 | |
---|
[135] | 117 | |
---|
[918] | 118 | do iaer=1,naerkind |
---|
[716] | 119 | DO NW=1,L_NSPECTI |
---|
[918] | 120 | do K=2,L_LEVELS |
---|
[716] | 121 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXIAER(K,NW,IAER) |
---|
[918] | 122 | end do ! levels |
---|
[716] | 123 | END DO |
---|
[918] | 124 | end do |
---|
[135] | 125 | |
---|
[918] | 126 | do NW=1,L_NSPECTI |
---|
[135] | 127 | |
---|
[918] | 128 | do K=2,L_LEVELS |
---|
[873] | 129 | |
---|
[1648] | 130 | ilay = k / 2 ! int. arithmetic => gives the gcm layer index |
---|
| 131 | |
---|
[918] | 132 | ! continuum absorption |
---|
[961] | 133 | DCONT = 0.0d0 |
---|
[135] | 134 | |
---|
[873] | 135 | if(continuum.and.(.not.graybody))then |
---|
[716] | 136 | ! include continua if necessary |
---|
| 137 | wn_cont = dble(wnoi(nw)) |
---|
| 138 | T_cont = dble(TMID(k)) |
---|
| 139 | do igas=1,ngasmx |
---|
[135] | 140 | |
---|
[1648] | 141 | p_cont = dble(PMID(k)*scalep*gfrac(igas,ilay)) |
---|
[253] | 142 | |
---|
[961] | 143 | dtemp=0.0d0 |
---|
[716] | 144 | if(igas.eq.igas_N2)then |
---|
[305] | 145 | |
---|
[878] | 146 | interm = indi(nw,igas,igas) |
---|
| 147 | call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 148 | indi(nw,igas,igas) = interm |
---|
[253] | 149 | |
---|
[716] | 150 | elseif(igas.eq.igas_H2)then |
---|
[253] | 151 | |
---|
[716] | 152 | ! first do self-induced absorption |
---|
[878] | 153 | interm = indi(nw,igas,igas) |
---|
[873] | 154 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
[878] | 155 | indi(nw,igas,igas) = interm |
---|
[253] | 156 | |
---|
[716] | 157 | ! then cross-interactions with other gases |
---|
| 158 | do jgas=1,ngasmx |
---|
[1648] | 159 | p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay)) |
---|
[961] | 160 | dtempc = 0.0d0 |
---|
[716] | 161 | if(jgas.eq.igas_N2)then |
---|
[878] | 162 | interm = indi(nw,igas,jgas) |
---|
| 163 | call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 164 | indi(nw,igas,jgas) = interm |
---|
[716] | 165 | endif |
---|
| 166 | dtemp = dtemp + dtempc |
---|
| 167 | enddo |
---|
[135] | 168 | |
---|
[1648] | 169 | elseif(igas.eq.igas_CH4)then |
---|
| 170 | |
---|
| 171 | ! first do self-induced absorption |
---|
| 172 | interm = indi(nw,igas,igas) |
---|
| 173 | call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 174 | indi(nw,igas,igas) = interm |
---|
| 175 | |
---|
| 176 | ! then cross-interactions with other gases |
---|
| 177 | do jgas=1,ngasmx |
---|
| 178 | p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay)) |
---|
| 179 | dtempc = 0.0d0 |
---|
| 180 | if(jgas.eq.igas_N2)then |
---|
| 181 | interm = indi(nw,igas,jgas) |
---|
| 182 | call interpolateN2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 183 | indi(nw,igas,jgas) = interm |
---|
| 184 | endif |
---|
| 185 | dtemp = dtemp + dtempc |
---|
| 186 | enddo |
---|
| 187 | |
---|
[716] | 188 | endif |
---|
[135] | 189 | |
---|
[716] | 190 | DCONT = DCONT + dtemp |
---|
[135] | 191 | |
---|
[716] | 192 | enddo |
---|
[135] | 193 | |
---|
[716] | 194 | ! Oobleck test |
---|
| 195 | !rho = PMID(k)*scalep / (TMID(k)*286.99) |
---|
| 196 | !if(WNOI(nw).gt.300.0 .and. WNOI(nw).lt.500.0)then |
---|
| 197 | ! DCONT = rho * 0.125 * 4.6e-4 |
---|
| 198 | !elseif(WNOI(nw).gt.500.0 .and. WNOI(nw).lt.700.0)then |
---|
| 199 | ! DCONT = 1000*dpr(k) * 1.0 * 4.6e-4 / g |
---|
| 200 | ! DCONT = rho * 1.0 * 4.6e-4 |
---|
| 201 | !elseif(WNOI(nw).gt.700.0 .and. WNOI(nw).lt.900.0)then |
---|
| 202 | ! DCONT = rho * 0.125 * 4.6e-4 |
---|
| 203 | !endif |
---|
[135] | 204 | |
---|
[716] | 205 | DCONT = DCONT*dz(k) |
---|
[135] | 206 | |
---|
[716] | 207 | endif |
---|
[135] | 208 | |
---|
[918] | 209 | ! aerosol absorption |
---|
| 210 | DAERO=SUM(TAEROS(K,NW,1:naerkind)) |
---|
[253] | 211 | |
---|
[1648] | 212 | !================= Titan customisation ======================================== |
---|
| 213 | call disr_haze(dz(k),plev(k),wnoi(nw),dhaze_T(k,nw),SSA_T(k,nw),ASF_T(k,nw)) |
---|
| 214 | ! ============================================================================= |
---|
| 215 | |
---|
| 216 | |
---|
[716] | 217 | do ng=1,L_NGAUSS-1 |
---|
[135] | 218 | |
---|
[716] | 219 | ! Now compute TAUGAS |
---|
[135] | 220 | |
---|
[1648] | 221 | KCOEF(1) = GASI(MT(K),MP(K),1,NW,NG) |
---|
| 222 | KCOEF(2) = GASI(MT(K),MP(K)+1,1,NW,NG) |
---|
| 223 | KCOEF(3) = GASI(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
| 224 | KCOEF(4) = GASI(MT(K)+1,MP(K),1,NW,NG) |
---|
[253] | 225 | |
---|
[716] | 226 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
[135] | 227 | |
---|
[716] | 228 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
---|
| 229 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
[135] | 230 | |
---|
[716] | 231 | TAUGAS = U(k)*ANS |
---|
[135] | 232 | |
---|
[716] | 233 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
---|
[918] | 234 | DTAUKI(K,nw,ng) = TAUGAS & |
---|
| 235 | + DCONT & ! For parameterized continuum absorption |
---|
[1648] | 236 | + DAERO & ! For aerosol absorption |
---|
| 237 | + DHAZE_T(K,NW) ! For Titan haze |
---|
[135] | 238 | |
---|
[716] | 239 | end do |
---|
[135] | 240 | |
---|
[716] | 241 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
| 242 | ! which holds continuum opacity only |
---|
[135] | 243 | |
---|
[716] | 244 | NG = L_NGAUSS |
---|
[918] | 245 | DTAUKI(K,nw,ng) = 0.d0 & |
---|
| 246 | + DCONT & ! For parameterized continuum absorption |
---|
[1648] | 247 | + DAERO & ! For aerosol absorption |
---|
| 248 | + DHAZE_T(K,NW) ! For Titan Haze |
---|
[135] | 249 | |
---|
[716] | 250 | end do |
---|
| 251 | end do |
---|
[135] | 252 | |
---|
[961] | 253 | DTAUKI(L_LEVELS+1,1:L_NSPECTI,1:L_NGAUSS)=0.d0 |
---|
[1648] | 254 | |
---|
| 255 | |
---|
[716] | 256 | !======================================================================= |
---|
| 257 | ! Now the full treatment for the layers, where besides the opacity |
---|
| 258 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
[1648] | 259 | ! ====================================================================== |
---|
[135] | 260 | |
---|
[873] | 261 | do iaer=1,naerkind |
---|
[918] | 262 | DO NW=1,L_NSPECTI |
---|
[716] | 263 | DO K=2,L_LEVELS+1 |
---|
| 264 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER)*QSIAER(K,NW,IAER) |
---|
| 265 | ENDDO |
---|
[918] | 266 | ENDDO |
---|
[873] | 267 | end do |
---|
[918] | 268 | |
---|
[1648] | 269 | ! Haze scattering |
---|
[918] | 270 | DO NW=1,L_NSPECTI |
---|
[1648] | 271 | DO K=2,L_LEVELS+1 |
---|
| 272 | DHAZES_T(K,NW) = DHAZE_T(K,NW) * SSA_T(K,NW) |
---|
| 273 | ENDDO |
---|
| 274 | ENDDO |
---|
| 275 | |
---|
| 276 | DO NW=1,L_NSPECTI |
---|
| 277 | DO L=1,L_NLAYRAD-1 |
---|
[918] | 278 | K = 2*L+1 |
---|
[1648] | 279 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) & |
---|
| 280 | + DHAZES_T(K,NW) + DHAZES_T(K+1,NW) |
---|
[918] | 281 | END DO ! L vertical loop |
---|
[1648] | 282 | |
---|
| 283 | !last level |
---|
| 284 | L = L_NLAYRAD |
---|
| 285 | K = 2*L+1 |
---|
| 286 | |
---|
| 287 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + DHAZES_T(K,NW) |
---|
| 288 | |
---|
[918] | 289 | END DO ! NW spectral loop |
---|
| 290 | |
---|
[1648] | 291 | ! ====================================================================== |
---|
[135] | 292 | |
---|
[716] | 293 | DO NW=1,L_NSPECTI |
---|
| 294 | NG = L_NGAUSS |
---|
[1648] | 295 | DO L=1,L_NLAYRAD-1 |
---|
[135] | 296 | |
---|
[716] | 297 | K = 2*L+1 |
---|
[1648] | 298 | |
---|
[716] | 299 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) + DTAUKI(K+1,NW,NG)! + 1.e-50 |
---|
[135] | 300 | |
---|
[716] | 301 | atemp = 0. |
---|
[961] | 302 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
[716] | 303 | do iaer=1,naerkind |
---|
| 304 | atemp = atemp + & |
---|
| 305 | GIAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) + & |
---|
| 306 | GIAER(K+1,NW,IAER) * TAUAEROLK(K+1,NW,IAER) |
---|
| 307 | end do |
---|
[1648] | 308 | atemp = atemp + ASF_T(K,NW)*DHAZES_T(K,NW) |
---|
[918] | 309 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
[716] | 310 | else |
---|
| 311 | WBARI(L,nw,ng) = 0.0D0 |
---|
[961] | 312 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
[716] | 313 | endif |
---|
[135] | 314 | |
---|
[961] | 315 | if(btemp(L,nw) .GT. 0.0d0) then |
---|
[918] | 316 | cosbi(L,NW,NG) = atemp/btemp(L,nw) |
---|
[716] | 317 | else |
---|
| 318 | cosbi(L,NW,NG) = 0.0D0 |
---|
| 319 | end if |
---|
[135] | 320 | |
---|
[716] | 321 | END DO ! L vertical loop |
---|
[1648] | 322 | |
---|
| 323 | ! No vertical averaging on bottom layer |
---|
[135] | 324 | |
---|
[1648] | 325 | L = L_NLAYRAD |
---|
| 326 | K = 2*L+1 |
---|
| 327 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) |
---|
| 328 | |
---|
| 329 | atemp = 0. |
---|
| 330 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
| 331 | do iaer=1,naerkind |
---|
| 332 | atemp = atemp + & |
---|
| 333 | GIAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) |
---|
| 334 | end do |
---|
| 335 | atemp = atemp + ASF_T(K,NW)*DHAZES_T(K,NW) |
---|
| 336 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
| 337 | else |
---|
| 338 | WBARI(L,nw,ng) = 0.0D0 |
---|
| 339 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
| 340 | endif |
---|
| 341 | |
---|
| 342 | if(btemp(L,nw) .GT. 0.0d0) then |
---|
| 343 | cosbi(L,NW,NG) = atemp/btemp(L,nw) |
---|
| 344 | else |
---|
| 345 | cosbi(L,NW,NG) = 0.0D0 |
---|
| 346 | end if |
---|
| 347 | |
---|
[716] | 348 | ! Now the other Gauss points, if needed. |
---|
[135] | 349 | |
---|
[716] | 350 | DO NG=1,L_NGAUSS-1 |
---|
[1648] | 351 | |
---|
[716] | 352 | IF(TAUGSURF(NW,NG) .gt. TLIMIT) THEN |
---|
[135] | 353 | |
---|
[1648] | 354 | DO L=1,L_NLAYRAD-1 |
---|
[716] | 355 | K = 2*L+1 |
---|
| 356 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)+DTAUKI(K+1,NW,NG)! + 1.e-50 |
---|
| 357 | |
---|
[961] | 358 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
[1648] | 359 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
[716] | 360 | else |
---|
| 361 | WBARI(L,nw,ng) = 0.0D0 |
---|
[961] | 362 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
[716] | 363 | endif |
---|
| 364 | |
---|
| 365 | cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) |
---|
| 366 | END DO ! L vertical loop |
---|
[1648] | 367 | |
---|
| 368 | ! No vertical averaging on bottom layer |
---|
| 369 | |
---|
| 370 | L = L_NLAYRAD |
---|
| 371 | K = 2*L+1 |
---|
| 372 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) |
---|
| 373 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
| 374 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
| 375 | else |
---|
| 376 | WBARI(L,nw,ng) = 0.0D0 |
---|
| 377 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
| 378 | endif |
---|
| 379 | cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) |
---|
| 380 | |
---|
[716] | 381 | END IF |
---|
| 382 | |
---|
| 383 | END DO ! NG Gauss loop |
---|
| 384 | END DO ! NW spectral loop |
---|
| 385 | |
---|
| 386 | ! Total extinction optical depths |
---|
| 387 | |
---|
[918] | 388 | DO NG=1,L_NGAUSS ! full gauss loop |
---|
| 389 | DO NW=1,L_NSPECTI |
---|
[716] | 390 | TAUCUMI(1,NW,NG)=0.0D0 |
---|
| 391 | DO K=2,L_LEVELS |
---|
| 392 | TAUCUMI(K,NW,NG)=TAUCUMI(K-1,NW,NG)+DTAUKI(K,NW,NG) |
---|
| 393 | END DO |
---|
| 394 | END DO ! end full gauss loop |
---|
| 395 | END DO |
---|
| 396 | |
---|
| 397 | ! be aware when comparing with textbook results |
---|
| 398 | ! (e.g. Pierrehumbert p. 218) that |
---|
| 399 | ! taucumi does not take the <cos theta>=0.5 factor into |
---|
| 400 | ! account. It is the optical depth for a vertically |
---|
| 401 | ! ascending ray with angle theta = 0. |
---|
| 402 | |
---|
[1648] | 403 | |
---|
| 404 | ! Titan's outputs (J.V.O, 2016)=============================================== |
---|
| 405 | ! do l=1,L_NLAYRAD |
---|
| 406 | ! do nw=1,L_NSPECTI |
---|
| 407 | ! INT_DTAU(L,NW) = 0.0d+0 |
---|
| 408 | ! DO NG=1,L_NGAUSS |
---|
| 409 | ! INT_DTAU(L,NW)= INT_DTAU(L,NW) + dtaui(L,nw,ng)*gweight(NG) |
---|
| 410 | ! enddo |
---|
| 411 | ! enddo |
---|
| 412 | ! enddo |
---|
| 413 | |
---|
| 414 | ! do nw=1,L_NSPECTI |
---|
| 415 | ! write(str2,'(i2.2)') nw |
---|
| 416 | ! call writediagfi(1,'kgi'//str2,'Gaz extinction coefficient IR band '//str2,'m-1',1,int_dtau(L_NLAYRAD:1:-1,nw)/dz_lay(L_NLAYRAD:1:-1)) |
---|
| 417 | ! call writediagfi(1,'khi'//str2,'Haze extinction coefficient IR band '//str2,'m-1',1,k_haze(L_NLAYRAD:1:-1,nw)/dz_lay(L_NLAYRAD:1:-1)) |
---|
| 418 | ! enddo |
---|
[918] | 419 | |
---|
[1648] | 420 | ! ============================================================================== |
---|
[716] | 421 | |
---|
| 422 | return |
---|
| 423 | |
---|
| 424 | |
---|
| 425 | end subroutine optci |
---|
| 426 | |
---|
| 427 | |
---|
| 428 | |
---|