1 | subroutine n_methane(ngrid,nq,nbin, |
---|
2 | * dt,pl,tl,aerad, |
---|
3 | * q,qprime) |
---|
4 | |
---|
5 | implicit none |
---|
6 | #include "dimensions.h" |
---|
7 | #include "microtab.h" |
---|
8 | #include "varmuphy.h" |
---|
9 | |
---|
10 | c Arguments |
---|
11 | c --------- |
---|
12 | |
---|
13 | integer ngrid,nq,nbin |
---|
14 | |
---|
15 | REAL dt ! physical time step (s) |
---|
16 | REAL pl(ngrid,nz) ! pressure at each level (mbar) |
---|
17 | REAL tl(ngrid,nz) ! temperature at each level (K) |
---|
18 | REAL aerad(nbin) ! Radius array |
---|
19 | |
---|
20 | c Tracers : |
---|
21 | REAL q(ngrid,nz,nq) ! tracer (kg/kg) |
---|
22 | REAL qprime(ngrid,nz,nbin) ! tracer (kg/kg) |
---|
23 | |
---|
24 | |
---|
25 | c Local variables |
---|
26 | c --------------- |
---|
27 | |
---|
28 | integer ntyp |
---|
29 | parameter (ntyp=3) ! 3 = 1 aerosol + 1 noyau + 1 glace |
---|
30 | |
---|
31 | real n_aer(nz,nbin,ntyp) |
---|
32 | real ch4vap(nz) |
---|
33 | |
---|
34 | integer itrac |
---|
35 | integer ig,i,j,k,l,n ! Loop integers |
---|
36 | integer ilay,iq |
---|
37 | |
---|
38 | c Treatment |
---|
39 | c --------- |
---|
40 | |
---|
41 | DO ig = 1 , NGRID |
---|
42 | |
---|
43 | c Set up the aerosol array |
---|
44 | do j = 1, ntyp |
---|
45 | do k = 1, nbin |
---|
46 | itrac = (j-1) * nbin + k |
---|
47 | do l = 1, nz |
---|
48 | n_aer(l,k,j) = max(q(ig,l,itrac),0.) |
---|
49 | enddo |
---|
50 | enddo |
---|
51 | enddo |
---|
52 | |
---|
53 | c Set up the methane vapor array |
---|
54 | do l = 1, nz |
---|
55 | ch4vap(l) = q(ig,l,nq) |
---|
56 | enddo |
---|
57 | |
---|
58 | |
---|
59 | |
---|
60 | call nucleacond(ngrid,nbin,dt,ig,pl,tl,aerad, |
---|
61 | & n_aer,qprime,ch4vap) |
---|
62 | |
---|
63 | |
---|
64 | c Update q arrays |
---|
65 | do j = 1, ntyp |
---|
66 | do k = 1, nbin |
---|
67 | itrac = (j-1) * nbin + k |
---|
68 | do l = 1, nz |
---|
69 | q(ig,l,itrac) = n_aer(l,k,j) |
---|
70 | enddo |
---|
71 | enddo |
---|
72 | enddo |
---|
73 | |
---|
74 | c Update methane vapor array |
---|
75 | do l = 1, nz |
---|
76 | q(ig,l,nq) = ch4vap(l) |
---|
77 | enddo |
---|
78 | |
---|
79 | ENDDO |
---|
80 | |
---|
81 | return |
---|
82 | END |
---|
83 | |
---|
84 | **************************************************************** |
---|
85 | subroutine nucleacond(ngrid,nbin,dt,ig, |
---|
86 | & pl,tl,aerad,n_aer,qprime,ch4vap) |
---|
87 | * * |
---|
88 | * This routine updates species concentrations due * |
---|
89 | * to both nucleation and condensation-induced variations. * |
---|
90 | * Gain and loss rates associated to each one of these * |
---|
91 | * processes are computed separately in other routines. * |
---|
92 | * * |
---|
93 | **************************************************************** |
---|
94 | |
---|
95 | implicit none |
---|
96 | #include "dimensions.h" |
---|
97 | #include "microtab.h" |
---|
98 | #include "varmuphy.h" |
---|
99 | |
---|
100 | integer ng,nalt |
---|
101 | parameter(ng=1,nalt=llm) |
---|
102 | |
---|
103 | real lv |
---|
104 | common/lheat/lv |
---|
105 | |
---|
106 | c Arguments |
---|
107 | c --------- |
---|
108 | |
---|
109 | integer ngrid,nbin |
---|
110 | integer ig |
---|
111 | integer ntyp |
---|
112 | parameter (ntyp=3) |
---|
113 | |
---|
114 | real dt ! Global time step |
---|
115 | real pl(ngrid,nz),tl(ngrid,nz) |
---|
116 | real aerad(nbin) |
---|
117 | real ch4vap(nz) ! Methane vapor mass mixing ratio (kg/m3) |
---|
118 | real ch4vap_old |
---|
119 | real n_aer(nz,nbin,ntyp) ! number concentrations of particle/each size bin |
---|
120 | real qprime(ngrid,nz,nbin) ! tracer (kg/kg) |
---|
121 | REAL total1(nz),total11(nz),total2(nz),total22(nz) |
---|
122 | REAL dmsm,mtot |
---|
123 | |
---|
124 | |
---|
125 | c Local |
---|
126 | c ----- |
---|
127 | |
---|
128 | integer i,j,k,l,n,iindice,iselec |
---|
129 | |
---|
130 | real dQc ! Amount of condensed methane (kg/m3) during timestep |
---|
131 | real*8 sat_ratio ! Methane saturation ratio over liquid |
---|
132 | real*8 sat_ratmix ! Methane saturation ratio over liquid |
---|
133 | real*8 pch4 ! Methane partial pressure (Pa) |
---|
134 | real qsat ! Methane mass mixing ratio at saturation (kg/kg of air) |
---|
135 | real qsatmix ! Methane mass mixing ratio at saturation (kg/kg of air) |
---|
136 | real*8 rate(nbin) ! Heterogeneous Nucleation rate (s-1) |
---|
137 | real*8 elim |
---|
138 | |
---|
139 | real nsav(nbin,ntyp) |
---|
140 | real dn(nbin,ntyp) |
---|
141 | real rad(nbin) ! Radius of droplets in each size bin |
---|
142 | real*8 gr(nbin) ! Growth rate in each bin |
---|
143 | real radius ! Radius of droplets after growth |
---|
144 | real Qs ! Mass of condensate required to reach saturation |
---|
145 | real newsat |
---|
146 | real vol(nbin) |
---|
147 | |
---|
148 | real press |
---|
149 | real sig,temp,seq(nbin) |
---|
150 | real Ctot,up,dwn,newvap,gltot |
---|
151 | |
---|
152 | real rho_a,cap |
---|
153 | real tempref |
---|
154 | real frac |
---|
155 | real xtime,xtime_prime |
---|
156 | real dQc2 |
---|
157 | |
---|
158 | c Variables for latent heat release |
---|
159 | real lw,cpp |
---|
160 | data lw / 510.e+3/ |
---|
161 | c data cpp/1044./ |
---|
162 | data cpp/1050./ ! pour etre cohérent avec le reste... |
---|
163 | save lw,cpp |
---|
164 | |
---|
165 | |
---|
166 | c Treatment |
---|
167 | c --------- |
---|
168 | |
---|
169 | c Treatment |
---|
170 | c --------- |
---|
171 | do i = 1, nbin |
---|
172 | vol(i) = 4./3. * pi * aerad(i)**3. |
---|
173 | enddo |
---|
174 | |
---|
175 | do l = 1, nz |
---|
176 | total1(l)=0. !solide |
---|
177 | do k = 1, nbin |
---|
178 | total1(l)=total1(l)+n_aer(l,k,2)*rhoi_ch4 |
---|
179 | enddo |
---|
180 | total2(l)=ch4vap(l) |
---|
181 | enddo |
---|
182 | |
---|
183 | c Start loop over heights |
---|
184 | DO 100 l = 1, nz |
---|
185 | |
---|
186 | iindice=0 ! mettre l'indice à 0 |
---|
187 | |
---|
188 | temp = tl(ig,l) |
---|
189 | press = pl(ig,l) |
---|
190 | tempref=temp |
---|
191 | |
---|
192 | c Save the values of the particle arrays before condensation |
---|
193 | do j = 1, ntyp |
---|
194 | do i = 1, nbin |
---|
195 | nsav(i,j) = n_aer(l,i,j) |
---|
196 | enddo |
---|
197 | enddo |
---|
198 | |
---|
199 | |
---|
200 | 99 continue ! DEBUT DE LA BOUCLE CONDITONNELLE |
---|
201 | |
---|
202 | call ch4sat(temp,press,qsat) |
---|
203 | qsat=qsat*0.85 |
---|
204 | qsatmix=qsat*0.85 |
---|
205 | |
---|
206 | c Get the partial presure of methane vapor and its saturation ratio |
---|
207 | pch4 = ch4vap(l) * (Mn2/Mch4) * press |
---|
208 | sat_ratio = ch4vap(l) / qsat |
---|
209 | sat_ratmix = ch4vap(l) / qsatmix |
---|
210 | |
---|
211 | c Get the rates of nucleation |
---|
212 | call nuclea(nbin,aerad,pch4,temp,sat_ratio,rate) |
---|
213 | |
---|
214 | c Get the growth rates of condensation/sublimation |
---|
215 | up = ch4vap(l) |
---|
216 | dwn = 1. |
---|
217 | Ctot = ch4vap(l) |
---|
218 | DO i = 1, nbin |
---|
219 | |
---|
220 | if (n_aer(l,i,3).eq.0) then |
---|
221 | rad(i) = aerad(i) |
---|
222 | else |
---|
223 | rad(i) = ((n_aer(l,i,2)/n_aer(l,i,3) + |
---|
224 | & qprime(ig,l,i)/n_aer(l,i,3) |
---|
225 | & +vol(i))*0.75/pi)**(1./3.) |
---|
226 | endif |
---|
227 | |
---|
228 | |
---|
229 | * Equilibrium saturation ratio (due to curvature effect) |
---|
230 | seq(i) = exp( 2.*sig(temp)*Mch4 / (rhoi_ch4*rgp*temp*rad(i)) ) |
---|
231 | |
---|
232 | call growthrate(dt,temp,press,pch4, |
---|
233 | & sat_ratmix,seq(i),rad(i),gr(i)) |
---|
234 | up = up + dt * gr(i) * 4. * pi * rhoi_ch4 * rad(i) * seq(i) |
---|
235 | * * nsav(i,3) |
---|
236 | dwn= dwn+ dt * gr(i) * 4. * pi * rhoi_ch4 * rad(i) / qsat |
---|
237 | * * nsav(i,3) |
---|
238 | Ctot= Ctot + rhoi_ch4 * nsav(i,2) |
---|
239 | |
---|
240 | ENDDO |
---|
241 | |
---|
242 | newvap = min(up/dwn,Ctot) |
---|
243 | newvap = max(newvap,0.) |
---|
244 | |
---|
245 | gltot=0. |
---|
246 | DO i = 1, nbin |
---|
247 | gr(i) = gr(i) * ( newvap/qsat - seq(i) ) |
---|
248 | if(nsav(i,2).le.0. .and. gr(i).le.0.) then |
---|
249 | n_aer(l,i,2) = 0. |
---|
250 | else |
---|
251 | n_aer(l,i,2) = nsav(i,2) + dt * gr(i) * 4. * pi * rad(i) |
---|
252 | * * n_aer(l,i,3) |
---|
253 | if (n_aer(l,i,2).le.0.) then |
---|
254 | n_aer(l,i,1) = n_aer(l,i,1) + n_aer(l,i,3) |
---|
255 | n_aer(l,i,2) = 0. |
---|
256 | n_aer(l,i,3) = 0. |
---|
257 | endif |
---|
258 | gltot=n_aer(l,i,2)*rhoi_ch4+gltot |
---|
259 | endif |
---|
260 | |
---|
261 | ENDDO |
---|
262 | |
---|
263 | c Determine the mass of exchanged methane |
---|
264 | |
---|
265 | dQc = 0. |
---|
266 | DO i = 1, nbin |
---|
267 | dQc = dQc - rhoi_ch4 * ( n_aer(l,i,2) - nsav(i,2) ) |
---|
268 | ENDDO |
---|
269 | |
---|
270 | |
---|
271 | c Arrays resetted to their initial value before condensation |
---|
272 | |
---|
273 | do j = 1, ntyp |
---|
274 | do i = 1, nbin |
---|
275 | dn(i,j) = n_aer(l,i,j) - nsav(i,j) |
---|
276 | n_aer(l,i,j) = nsav(i,j) |
---|
277 | enddo |
---|
278 | enddo |
---|
279 | |
---|
280 | |
---|
281 | c Update the c arrays. |
---|
282 | c nucleation & cond/eva tendencies added together. |
---|
283 | |
---|
284 | do i=1,nbin |
---|
285 | elim = dt * rate(i) |
---|
286 | n_aer(l,i,1) = n_aer(l,i,1) / (1.+elim) |
---|
287 | n_aer(l,i,3) = n_aer(l,i,3) + elim * n_aer(l,i,1) + dn(i,3) |
---|
288 | n_aer(l,i,1) = n_aer(l,i,1) + dn(i,1) |
---|
289 | n_aer(l,i,2) = n_aer(l,i,2) + dn(i,2) |
---|
290 | if(n_aer(l,i,2).lt.0.) n_aer(l,i,2)=0. |
---|
291 | |
---|
292 | enddo |
---|
293 | |
---|
294 | dQc = 0. |
---|
295 | DO i = 1, nbin ! dQc <0 si glace produite !! |
---|
296 | dQc = dQc - rhoi_ch4 * ( n_aer(l,i,2) - nsav(i,2) ) |
---|
297 | ENDDO |
---|
298 | |
---|
299 | |
---|
300 | ch4vap(l) = ch4vap(l) + dQc |
---|
301 | |
---|
302 | 100 CONTINUE |
---|
303 | |
---|
304 | do l = 1, nz |
---|
305 | total11(l)=0. |
---|
306 | do k = 1, nbin |
---|
307 | total11(l)=total11(l)+n_aer(l,k,2)*rhoi_ch4 |
---|
308 | enddo |
---|
309 | total22(l)=ch4vap(l) |
---|
310 | enddo |
---|
311 | |
---|
312 | |
---|
313 | return |
---|
314 | end |
---|
315 | |
---|
316 | |
---|
317 | ******************************************************* |
---|
318 | * * |
---|
319 | subroutine nuclea(nbin,aerad,pch4,temp,sat,nucrate) |
---|
320 | * This subroutine computes the nucleation rate * |
---|
321 | * as given in Pruppacher & Klett (1978) in the * |
---|
322 | * case of water ice forming on a solid substrate. * |
---|
323 | * Definition refined by Keese (jgr,1989) * |
---|
324 | * * |
---|
325 | ******************************************************* |
---|
326 | |
---|
327 | implicit none |
---|
328 | #include "dimensions.h" |
---|
329 | #include "microtab.h" |
---|
330 | #include "varmuphy.h" |
---|
331 | |
---|
332 | integer nbin |
---|
333 | real aerad(nbin) |
---|
334 | |
---|
335 | real*8 nucrate(nbin) |
---|
336 | real*8 pch4 |
---|
337 | real temp |
---|
338 | real*8 sat |
---|
339 | |
---|
340 | integer l,i |
---|
341 | real*8 nch4 |
---|
342 | real sig ! Water-ice/air surface tension (N.m) |
---|
343 | real*8 rstar ! Radius of the critical germ (m) |
---|
344 | real*8 gstar ! # of molecules forming a critical embryo |
---|
345 | real*8 x ! Ratio rstar/radius of the nucleating dust particle |
---|
346 | real fistar ! Activation energy required to form a critical embryo (J) |
---|
347 | real*8 zeldov ! Zeldovitch factor (no dim) |
---|
348 | real*8 fshape ! function defined at the end of the file |
---|
349 | real*8 deltaf |
---|
350 | |
---|
351 | real nus |
---|
352 | data nus/1.e+13/ ! Jump frequency of a molecule (s-1) |
---|
353 | real m0 |
---|
354 | data m0/2.6578e-26/ ! Weight of a methane molecule (kg) |
---|
355 | real vo1 |
---|
356 | c data vo1/6.254e-29/ ! Volume of a methane molecule (m3) |
---|
357 | data vo1/3.7649e-5/ ! Volume of a methane molecule (m3) |
---|
358 | |
---|
359 | real desorp |
---|
360 | data desorp/0.288e-19/ ! Activation energy for desorption of water on a dust-like substrate (J/molecule) |
---|
361 | real surfdif |
---|
362 | data surfdif/0.288e-20/! Estimated activation energy for surface diffusion of water molecules (J/molecule) |
---|
363 | |
---|
364 | IF (sat .GT. 1.) THEN ! minimum condition to activate nucleation |
---|
365 | |
---|
366 | nch4 = pch4 / kbz / temp |
---|
367 | rstar = 2. * sig(temp) * vo1 / (rgp*temp*log(sat)) |
---|
368 | gstar = 4. * nav * pi * (rstar**3) / (3.*vo1) |
---|
369 | c Loop over size bins |
---|
370 | do i=1,nbin |
---|
371 | x = aerad(i) / rstar |
---|
372 | x = aerad(imono) / rstar ! attention r(5)=monomeres |
---|
373 | |
---|
374 | fistar = (4./3.*pi) * sig(temp) * (rstar**2.) * |
---|
375 | & fshape(mtetach4,x) |
---|
376 | deltaf = min( max((2.*desorp-surfdif-fistar)/(kbz*temp) |
---|
377 | & , -100.), 100.) |
---|
378 | if (deltaf.eq.-100.) then |
---|
379 | nucrate(i) = 0. |
---|
380 | else |
---|
381 | zeldov = sqrt ( fistar / (3.*pi*kbz*temp*(gstar**2.)) ) |
---|
382 | nucrate(i) = zeldov * kbz* temp * rstar**2. |
---|
383 | & * 4. * pi * ( nch4*aerad(i) )**2. |
---|
384 | & / ( fshape(mtetach4,x) * nus * m0 ) |
---|
385 | & * dexp(deltaf) |
---|
386 | |
---|
387 | if(i.gt.imono) nucrate(i)= zeldov * kbz* temp * rstar**2. |
---|
388 | & * 4. * pi * vrat_e**(i-imono)*(nch4*aerad(imono) )**2. |
---|
389 | & / (fshape(mtetach4,x) * nus * m0 ) |
---|
390 | & * dexp(deltaf) |
---|
391 | |
---|
392 | |
---|
393 | endif |
---|
394 | enddo |
---|
395 | ELSE |
---|
396 | do i=1,nbin |
---|
397 | nucrate(i) = 0. |
---|
398 | enddo |
---|
399 | |
---|
400 | ENDIF |
---|
401 | |
---|
402 | return |
---|
403 | end |
---|
404 | |
---|
405 | ****************************************************************** |
---|
406 | subroutine ch4sat(t,p,qsat) |
---|
407 | * cette fonction calcule la pression de vapeur saturante du * |
---|
408 | * methane a une altitude donnee z par l'equation de Thek-Stiel * |
---|
409 | ****************************************************************** |
---|
410 | |
---|
411 | real rgp |
---|
412 | data rgp/8.3143/ |
---|
413 | |
---|
414 | * declaration des variables internes |
---|
415 | * ---------------------------------- |
---|
416 | real p,tc,pc,tr,tb,tbr,phib,ac,hbr,hvb,avb,a,b |
---|
417 | real qsat |
---|
418 | |
---|
419 | tc = 190.53 |
---|
420 | pc = 45.96 * 0.986923 |
---|
421 | tr = t / tc |
---|
422 | tb = 111.63 |
---|
423 | tbr= tb / tc |
---|
424 | phib = -35. + 36./tbr + 42.*log(tbr)-tbr**6 |
---|
425 | ac = (0.315*phib + log(pc))/(0.0838*phib-log(tbr)) |
---|
426 | hbr = tbr * log(pc) / (1.-tbr) |
---|
427 | hvb = rgp*tb*(0.4343*log(pc)-0.68859+0.89584*tbr)/(0.37691- |
---|
428 | s 0.37306*tbr+0.14878/(pc*tbr**2)) |
---|
429 | avb = hvb / (rgp*tc*(1.-tbr)**(0.375)) |
---|
430 | a = 5.2691 + 2.0753*avb - 3.1738*hbr |
---|
431 | b = 1.042 * ac - 0.46284 * avb |
---|
432 | |
---|
433 | qsat=pc*exp(avb*(1.14893-1./tr-0.11719*tr-0.03174*tr**2 |
---|
434 | s -0.375*log(tr))+b*((tr**a-1.)/a+0.04*(1./tr-1.))) |
---|
435 | qsat=qsat*1e+5/0.986923 |
---|
436 | ! ---> qsat en Pa |
---|
437 | |
---|
438 | qsat=qsat* 16.0 / (28.0*p) ! kg/kg |
---|
439 | |
---|
440 | |
---|
441 | |
---|
442 | return |
---|
443 | end |
---|
444 | |
---|
445 | c======================================================================= |
---|
446 | subroutine growthrate(timestep,temp,press,pch4,sat,seq,r,Cste) |
---|
447 | c |
---|
448 | c Determination of the droplet growth rate |
---|
449 | c |
---|
450 | c======================================================================= |
---|
451 | |
---|
452 | IMPLICIT NONE |
---|
453 | #include "dimensions.h" |
---|
454 | #include "microtab.h" |
---|
455 | #include "varmuphy.h" |
---|
456 | |
---|
457 | c----------------------------------------------------------------------- |
---|
458 | c declarations: |
---|
459 | c ------------- |
---|
460 | |
---|
461 | common/lheat/Lv |
---|
462 | |
---|
463 | c |
---|
464 | c arguments: |
---|
465 | c ---------- |
---|
466 | |
---|
467 | REAL timestep |
---|
468 | REAL temp ! temperature in the middle of the layer (K) |
---|
469 | REAL press ! pressure in the middle of the layer (K) |
---|
470 | REAL*8 pch4 ! Methane vapor partial pressure (Pa) |
---|
471 | REAL*8 sat ! saturation ratio |
---|
472 | REAL r ! crystal radius before condensation (m) |
---|
473 | REAL seq ! Equilibrium saturation ratio |
---|
474 | |
---|
475 | c local: |
---|
476 | c ------ |
---|
477 | |
---|
478 | REAL psat |
---|
479 | REAL moln2,molch4 |
---|
480 | REAL To,wch4,tch4,ftm |
---|
481 | |
---|
482 | c Effective gas molecular radius (m) |
---|
483 | data moln2/1.75e-10/ ! N2 |
---|
484 | c Effective gas molecular radius (m) |
---|
485 | data molch4/2.e-10/ ! CH4 |
---|
486 | |
---|
487 | data tch4/190.4/ |
---|
488 | data wch4/1.1e-2/ ! Reid et al (Eq 7-9.4 + Appendix Compound [116]) |
---|
489 | |
---|
490 | REAL k,Lv |
---|
491 | REAL knudsen ! Knudsen number (gas mean free path/particle radius) |
---|
492 | REAL a,Dv,lambda,Rk,Rd ! Intermediate computations for growth rate |
---|
493 | REAL*8 Cste |
---|
494 | |
---|
495 | c----------------------------------------------------------------------- |
---|
496 | c Ice particle growth rate by diffusion/impegement of molecules |
---|
497 | c r.dr/dt = (S-Seq) / (Seq*Rk+Rd) |
---|
498 | c with r the crystal radius, Rk and Rd the resistances due to |
---|
499 | c latent heat release and to vapor diffusion respectively |
---|
500 | c----------------------------------------------------------------------- |
---|
501 | |
---|
502 | psat = pch4 / sat |
---|
503 | |
---|
504 | c - Thermal conductibility of N2 |
---|
505 | k = ( 2.857e-2 * temp - 0.5428 ) * 4.184e-3 |
---|
506 | c - Latent heat of ch4 (J.kg-1) |
---|
507 | Lv = 510.e+3 |
---|
508 | ftm=1.-temp/tch4 |
---|
509 | if (ftm.le.1.e-3) ftm=1.e-3 |
---|
510 | Lv=8.314*tch4*(7.08*ftm**0.354+10.95*wch4*ftm**0.456)/16.e-3 |
---|
511 | |
---|
512 | |
---|
513 | c - Constant to compute gas mean free path |
---|
514 | c l= (T/P)*a, with a = ( 0.707*8.31/(4*pi*molrad**2 * avogadro)) |
---|
515 | |
---|
516 | a = 0.707*rgp/(4 * pi* (moln2*1.e10)**2 * (nav*1.e-20)) |
---|
517 | |
---|
518 | c - Compute Dv, methane vapor diffusion coefficient |
---|
519 | c accounting for both kinetic and continuum regime of diffusion, |
---|
520 | c the nature of which depending on the Knudsen number. |
---|
521 | |
---|
522 | Dv = 1./3. * sqrt( 8*rgp*temp/(pi*Mch4) )* (kbz*1.e20) * temp / |
---|
523 | & (pi*press*(moln2*1.e10+molch4*1.e10)**2 * sqrt(1.+Mch4/Mn2) ) |
---|
524 | |
---|
525 | knudsen = temp / press * a / r |
---|
526 | lambda = (1.333+0.71/knudsen) / (1.+1./knudsen) |
---|
527 | Dv = Dv / (1. + lambda * knudsen) |
---|
528 | |
---|
529 | c - Compute Rk |
---|
530 | Rk = Lv**2 * rhoi_ch4 * Mch4 / (k*rgp*temp**2.) |
---|
531 | c - Compute Rd |
---|
532 | Rd = rgp * temp *rhoi_ch4 / (Dv*psat*Mch4) |
---|
533 | |
---|
534 | c - Compute: rdr/dt = Cste * (S-Seq) |
---|
535 | Cste = 1. / (seq*Rk+Rd) |
---|
536 | |
---|
537 | RETURN |
---|
538 | END |
---|
539 | |
---|
540 | |
---|
541 | ********************************************************* |
---|
542 | real function sig(t) |
---|
543 | * this function computes the surface tension (N.m) * |
---|
544 | * between methane and air as a function of temp. * |
---|
545 | ********************************************************* |
---|
546 | |
---|
547 | real t |
---|
548 | |
---|
549 | sig = ( t/4. + 41.) * 1e-3 |
---|
550 | |
---|
551 | return |
---|
552 | end |
---|
553 | |
---|
554 | ********************************************************* |
---|
555 | real*8 function fshape(cost,rap) |
---|
556 | * function computing the f(m,x) factor * |
---|
557 | * related to energy required to form a critical embryo * |
---|
558 | ********************************************************* |
---|
559 | |
---|
560 | implicit none |
---|
561 | |
---|
562 | real cost |
---|
563 | real*8 rap |
---|
564 | real*8 phi |
---|
565 | real*8 a,b,c |
---|
566 | |
---|
567 | phi = sqrt( 1. - 2.*cost*rap + rap**2 ) |
---|
568 | |
---|
569 | a = 1. + ( (1.-cost*rap)/phi )**3 |
---|
570 | b = (rap**3) * (2.-3.*(rap-cost)/phi+((rap-cost)/phi)**3) |
---|
571 | c = 3. * cost * (rap**2) * ((rap-cost)/phi-1.) |
---|
572 | |
---|
573 | fshape = 0.5*(a+b+c) |
---|
574 | |
---|
575 | if (rap.gt.3000.) fshape = ((2.+cost)*(1.-cost)**2)/4. |
---|
576 | |
---|
577 | |
---|
578 | return |
---|
579 | end |
---|
580 | |
---|