[175] | 1 | subroutine n_acethylene(ngrid,nq,nbin, |
---|
| 2 | * dt,pl,tl,aerad, |
---|
| 3 | * q,qprime) |
---|
| 4 | |
---|
| 5 | implicit none |
---|
| 6 | #include "dimensions.h" |
---|
| 7 | #include "microtab.h" |
---|
| 8 | #include "varmuphy.h" |
---|
| 9 | |
---|
| 10 | c Arguments |
---|
| 11 | c --------- |
---|
| 12 | |
---|
| 13 | integer ngrid,nq,nbin |
---|
| 14 | |
---|
| 15 | REAL dt ! physical time step (s) |
---|
| 16 | REAL pl(ngrid,nz) ! pressure at each level (mbar) |
---|
| 17 | REAL tl(ngrid,nz) ! temperature at each level (K) |
---|
| 18 | REAL aerad(nbin) ! Radius array |
---|
| 19 | |
---|
| 20 | c Tracers : |
---|
| 21 | REAL q(ngrid,nz,nq) ! tracer (kg/kg) |
---|
| 22 | REAL qprime(ngrid,nz,nbin) ! tracer (kg/kg) |
---|
| 23 | |
---|
| 24 | |
---|
| 25 | c Local variables |
---|
| 26 | c --------------- |
---|
| 27 | |
---|
| 28 | integer ntyp |
---|
| 29 | parameter (ntyp=3) |
---|
| 30 | |
---|
| 31 | real n_aer(nz,nbin,ntyp) |
---|
| 32 | real c2h2vap(nz) |
---|
| 33 | |
---|
| 34 | integer itrac |
---|
| 35 | integer ig,i,j,k,l,n ! Loop integers |
---|
| 36 | integer ilay,iq |
---|
| 37 | |
---|
| 38 | c Treatment |
---|
| 39 | c --------- |
---|
| 40 | |
---|
| 41 | DO ig = 1 , NGRID |
---|
| 42 | |
---|
| 43 | c Set up the aerosol array |
---|
| 44 | do j = 1, ntyp |
---|
| 45 | do k = 1, nbin |
---|
| 46 | itrac = (j-1) * nbin + k |
---|
| 47 | do l = 1, nz |
---|
| 48 | n_aer(l,k,j) = max(q(ig,l,itrac),0.) |
---|
| 49 | enddo |
---|
| 50 | enddo |
---|
| 51 | enddo |
---|
| 52 | |
---|
| 53 | c Set up the methane vapor array |
---|
| 54 | do l = 1, nz |
---|
| 55 | c2h2vap(l) = q(ig,l,nq) |
---|
| 56 | enddo |
---|
| 57 | |
---|
| 58 | call nucleacond3(ngrid,nbin,dt,ig,pl,tl,aerad, |
---|
| 59 | & n_aer,qprime,c2h2vap) |
---|
| 60 | |
---|
| 61 | c Update q arrays |
---|
| 62 | do j = 1, ntyp |
---|
| 63 | do k = 1, nbin |
---|
| 64 | itrac = (j-1) * nbin + k |
---|
| 65 | do l = 1, nz |
---|
| 66 | q(ig,l,itrac) = n_aer(l,k,j) |
---|
| 67 | enddo |
---|
| 68 | enddo |
---|
| 69 | enddo |
---|
| 70 | |
---|
| 71 | c Update methane vapor array |
---|
| 72 | do l = 1, nz |
---|
| 73 | q(ig,l,nq) = c2h2vap(l) |
---|
| 74 | enddo |
---|
| 75 | |
---|
| 76 | ENDDO |
---|
| 77 | |
---|
| 78 | return |
---|
| 79 | END |
---|
| 80 | |
---|
| 81 | **************************************************************** |
---|
| 82 | subroutine nucleacond3(ngrid,nbin,dt,ig, |
---|
| 83 | * pl,tl,aerad,n_aer,qprime,c2h2vap) |
---|
| 84 | * * |
---|
| 85 | * This routine updates species concentrations due * |
---|
| 86 | * to both nucleation and condensation-induced variations. * |
---|
| 87 | * Gain and loss rates associated to each one of these * |
---|
| 88 | * processes are computed separately in other routines. * |
---|
| 89 | * * |
---|
| 90 | **************************************************************** |
---|
| 91 | |
---|
| 92 | implicit none |
---|
| 93 | #include "dimensions.h" |
---|
| 94 | #include "microtab.h" |
---|
| 95 | #include "varmuphy.h" |
---|
| 96 | |
---|
| 97 | integer ng,nalt |
---|
| 98 | parameter(ng=1,nalt=llm) |
---|
| 99 | |
---|
| 100 | |
---|
| 101 | real lv |
---|
| 102 | |
---|
| 103 | common/lheat/lv |
---|
| 104 | |
---|
| 105 | |
---|
| 106 | |
---|
| 107 | c Arguments |
---|
| 108 | c --------- |
---|
| 109 | |
---|
| 110 | integer ngrid,nbin |
---|
| 111 | integer ig |
---|
| 112 | integer ntyp |
---|
| 113 | parameter (ntyp=3) |
---|
| 114 | |
---|
| 115 | real dt ! Global time step |
---|
| 116 | real pl(ngrid,nz),tl(ngrid,nz) |
---|
| 117 | real aerad(nbin) |
---|
| 118 | real c2h2vap(nz) ! Methane vapor mass mixing ratio (kg/m3) |
---|
| 119 | real c2h2vap_old |
---|
| 120 | real n_aer(nz,nbin,ntyp) ! number concentrations of particle/each size bin |
---|
| 121 | real qprime(ngrid,nz,nbin) ! tracer (kg/kg) |
---|
| 122 | REAL total1(nz),total11(nz),total2(nz),total22(nz) |
---|
| 123 | REAL dmsm,mtot |
---|
| 124 | |
---|
| 125 | |
---|
| 126 | |
---|
| 127 | |
---|
| 128 | |
---|
| 129 | c Local |
---|
| 130 | c ----- |
---|
| 131 | |
---|
| 132 | integer i,j,k,l,n,iindice,iselec |
---|
| 133 | |
---|
| 134 | real dQc ! Amount of condensed methane (kg/m3) during timestep |
---|
| 135 | real*8 sat_ratio ! Methane saturation ratio over liquid |
---|
| 136 | real*8 sat_ratmix ! Methane saturation ratio over liquid |
---|
| 137 | real*8 pc2h2 ! Methane partial pressure (Pa) |
---|
| 138 | real qsat ! Methane mass mixing ratio at saturation (kg/kg of air) |
---|
| 139 | real qsatmix ! Methane mass mixing ratio at saturation (kg/kg of air) |
---|
| 140 | real*8 rate(nbin) ! Heterogeneous Nucleation rate (s-1) |
---|
| 141 | real*8 elim |
---|
| 142 | |
---|
| 143 | real nsav(nbin,ntyp) |
---|
| 144 | real dn(nbin,ntyp) |
---|
| 145 | real rad(nbin) ! Radius of droplets in each size bin |
---|
| 146 | real*8 gr(nbin) ! Growth rate in each bin |
---|
| 147 | real radius ! Radius of droplets after growth |
---|
| 148 | real Qs ! Mass of condensate required to reach saturation |
---|
| 149 | real newsat |
---|
| 150 | real vol(nbin) |
---|
| 151 | |
---|
| 152 | real press |
---|
| 153 | real sig3,temp,seq(nbin) |
---|
| 154 | real Ctot,up,dwn,newvap,gltot |
---|
| 155 | |
---|
| 156 | real temp0,temp1,temp2,last_temp |
---|
| 157 | real qsat1,sat_ratio1,tempf(0:10),sat_ratiof(0:10) |
---|
| 158 | real rho_a,cap |
---|
| 159 | real tempref |
---|
| 160 | real xtime,xtime_prime |
---|
| 161 | |
---|
| 162 | |
---|
| 163 | c Variables for latent heat release |
---|
[1056] | 164 | real lw |
---|
[175] | 165 | data lw / 581.e+3/ |
---|
[1056] | 166 | save lw |
---|
[175] | 167 | |
---|
| 168 | |
---|
| 169 | c Treatment |
---|
| 170 | c --------- |
---|
| 171 | do i = 1, nbin |
---|
| 172 | vol(i) = 4./3. * pi * aerad(i)**3. |
---|
| 173 | enddo |
---|
| 174 | |
---|
| 175 | do l = 1, nz |
---|
| 176 | total1(l)=0. !solide |
---|
| 177 | do k = 1, nbin |
---|
| 178 | total1(l)=total1(l)+n_aer(l,k,2)*rhoi_c2h2 |
---|
| 179 | enddo |
---|
| 180 | total2(l)=c2h2vap(l) |
---|
| 181 | enddo |
---|
| 182 | |
---|
| 183 | |
---|
| 184 | c Start loop over heights |
---|
| 185 | DO 100 l = 1, nz |
---|
| 186 | |
---|
| 187 | iindice=0 ! mettre l'indice à 0 |
---|
| 188 | |
---|
| 189 | temp = tl(ig,l) |
---|
| 190 | press = pl(ig,l) |
---|
| 191 | tempref=temp |
---|
| 192 | |
---|
| 193 | c Save the values of the particle arrays before condensation |
---|
| 194 | do j = 1, ntyp |
---|
| 195 | do i = 1, nbin |
---|
| 196 | nsav(i,j) = n_aer(l,i,j) |
---|
| 197 | enddo |
---|
| 198 | enddo |
---|
| 199 | |
---|
| 200 | |
---|
| 201 | 99 continue |
---|
| 202 | |
---|
| 203 | |
---|
| 204 | call c2h2sat(temp,press,qsat) |
---|
| 205 | qsatmix=qsat |
---|
| 206 | |
---|
| 207 | c quantité pmixc2h2(l) déjà calculé dans cnuages.F et passé dans un common |
---|
| 208 | |
---|
| 209 | c Get the partial presure of methane vapor and its saturation ratio |
---|
| 210 | pc2h2 = c2h2vap(l) * (Mn2/Mc2h2) * press |
---|
| 211 | sat_ratio = c2h2vap(l) / qsat |
---|
| 212 | sat_ratmix = c2h2vap(l) / qsatmix |
---|
| 213 | |
---|
| 214 | c Get the rates of nucleation |
---|
| 215 | call nuclea3(nbin,aerad,pc2h2,temp,sat_ratio,rate) |
---|
| 216 | |
---|
| 217 | c Get the growth rates of condensation/sublimation |
---|
| 218 | up = c2h2vap(l) |
---|
| 219 | dwn = 1. |
---|
| 220 | Ctot = c2h2vap(l) |
---|
| 221 | DO i = 1, nbin |
---|
| 222 | |
---|
| 223 | if (n_aer(l,i,3).eq.0) then |
---|
| 224 | rad(i) = aerad(i) |
---|
| 225 | else |
---|
| 226 | rad(i) = ((n_aer(l,i,2)/n_aer(l,i,3) + |
---|
| 227 | & qprime(ig,l,i)/n_aer(l,i,3) |
---|
| 228 | & +vol(i))*0.75/pi)**(1./3.) |
---|
| 229 | endif |
---|
| 230 | |
---|
| 231 | |
---|
| 232 | * Equilibrium saturation ratio (due to curvature effect) |
---|
| 233 | seq(i) = exp( 2.*sig3(temp)*Mc2h2 /(rhoi_c2h2*rgp*temp*rad(i))) |
---|
| 234 | |
---|
| 235 | call growthrate3(dt,temp,press,pc2h2, |
---|
| 236 | & sat_ratmix,seq(i),rad(i),gr(i)) |
---|
| 237 | |
---|
| 238 | up = up + dt * gr(i) * 4. * pi * rhoi_c2h2 * rad(i) * seq(i) |
---|
| 239 | * * nsav(i,3) |
---|
| 240 | dwn= dwn+ dt * gr(i) * 4. * pi * rhoi_c2h2 * rad(i) / qsat |
---|
| 241 | * * nsav(i,3) |
---|
| 242 | Ctot= Ctot + rhoi_c2h2 * nsav(i,2) |
---|
| 243 | |
---|
| 244 | ENDDO |
---|
| 245 | |
---|
| 246 | newvap = min(up/dwn,Ctot) |
---|
| 247 | newvap = max(newvap,0.) |
---|
| 248 | |
---|
| 249 | gltot = 0. |
---|
| 250 | DO i = 1, nbin |
---|
| 251 | gr(i) = gr(i) * ( newvap/qsat - seq(i) ) |
---|
| 252 | if(nsav(i,2).le.0. .and. gr(i).le.0.) then |
---|
| 253 | n_aer(l,i,2) = 0. |
---|
| 254 | else |
---|
| 255 | n_aer(l,i,2) = nsav(i,2) + dt * gr(i) * 4. * pi * rad(i) |
---|
| 256 | * * n_aer(l,i,3) |
---|
| 257 | if (n_aer(l,i,2).le.0.) then |
---|
| 258 | n_aer(l,i,1) = n_aer(l,i,1) + n_aer(l,i,3) |
---|
| 259 | n_aer(l,i,2) = 0. |
---|
| 260 | n_aer(l,i,3) = 0. |
---|
| 261 | endif |
---|
| 262 | gltot=n_aer(l,i,2)*rhoi_c2h2+gltot |
---|
| 263 | endif |
---|
| 264 | |
---|
| 265 | ENDDO |
---|
| 266 | |
---|
| 267 | c Determine the mass of exchanged methane |
---|
| 268 | |
---|
| 269 | dQc = 0. |
---|
| 270 | DO i = 1, nbin |
---|
| 271 | dQc = dQc - rhoi_c2h2 * ( n_aer(l,i,2) - nsav(i,2) ) |
---|
| 272 | ENDDO |
---|
| 273 | |
---|
| 274 | c Update the methane vapor mixing ratio implied by |
---|
| 275 | c the cond/eva processes. |
---|
| 276 | |
---|
| 277 | |
---|
| 278 | c Arrays resetted to their initial value before condensation |
---|
| 279 | do j = 1, ntyp |
---|
| 280 | do i = 1, nbin |
---|
| 281 | dn(i,j) = n_aer(l,i,j) - nsav(i,j) |
---|
| 282 | n_aer(l,i,j) = nsav(i,j) |
---|
| 283 | enddo |
---|
| 284 | enddo |
---|
| 285 | |
---|
| 286 | c Update the c arrays. |
---|
| 287 | c nucleation & cond/eva tendencies added together. |
---|
| 288 | |
---|
| 289 | do i=1,nbin |
---|
| 290 | elim = dt * rate(i) |
---|
| 291 | n_aer(l,i,1) = n_aer(l,i,1) / (1.+elim) |
---|
| 292 | n_aer(l,i,3) = n_aer(l,i,3) + elim * n_aer(l,i,1) + dn(i,3) |
---|
| 293 | n_aer(l,i,1) = n_aer(l,i,1) + dn(i,1) |
---|
| 294 | n_aer(l,i,2) = n_aer(l,i,2) + dn(i,2) |
---|
| 295 | if(n_aer(l,i,2).lt.0.) n_aer(l,i,2)=0. |
---|
| 296 | enddo |
---|
| 297 | |
---|
| 298 | dQc = 0. |
---|
| 299 | DO i = 1, nbin |
---|
| 300 | dQc = dQc - rhoi_c2h2 * ( n_aer(l,i,2) - nsav(i,2) ) |
---|
| 301 | ENDDO |
---|
| 302 | |
---|
| 303 | |
---|
| 304 | c2h2vap(l) = c2h2vap(l) + dQc |
---|
| 305 | |
---|
| 306 | 100 CONTINUE |
---|
| 307 | |
---|
| 308 | do l = 1, nz |
---|
| 309 | total11(l)=0. |
---|
| 310 | do k = 1, nbin |
---|
| 311 | total11(l)=total11(l)+n_aer(l,k,2)*rhoi_c2h2 |
---|
| 312 | enddo |
---|
| 313 | total22(l)=c2h2vap(l) |
---|
| 314 | enddo |
---|
| 315 | |
---|
| 316 | return |
---|
| 317 | end |
---|
| 318 | |
---|
| 319 | |
---|
| 320 | ******************************************************* |
---|
| 321 | * * |
---|
| 322 | subroutine nuclea3(nbin,aerad,pc2h2,temp,sat,nucrate) |
---|
| 323 | * This subroutine computes the nucleation rate * |
---|
| 324 | * as given in Pruppacher & Klett (1978) in the * |
---|
| 325 | * case of water ice forming on a solid substrate. * |
---|
| 326 | * Definition refined by Keese (jgr,1989) * |
---|
| 327 | * * |
---|
| 328 | ******************************************************* |
---|
| 329 | |
---|
| 330 | implicit none |
---|
| 331 | #include "dimensions.h" |
---|
| 332 | #include "microtab.h" |
---|
| 333 | #include "varmuphy.h" |
---|
| 334 | |
---|
| 335 | integer nbin |
---|
| 336 | real aerad(nbin) |
---|
| 337 | |
---|
| 338 | real*8 nucrate(nbin) |
---|
| 339 | real*8 pc2h2 |
---|
| 340 | real temp |
---|
| 341 | real*8 sat |
---|
| 342 | |
---|
| 343 | integer l,i |
---|
| 344 | real*8 nc2h2 |
---|
| 345 | real sig3 ! Water-ice/air surface tension (N.m) |
---|
| 346 | real*8 rstar ! Radius of the critical germ (m) |
---|
| 347 | real*8 gstar ! # of molecules forming a critical embryo |
---|
| 348 | real*8 x ! Ratio rstar/radius of the nucleating dust particle |
---|
| 349 | real fistar ! Activation energy required to form a critical embryo (J) |
---|
| 350 | real*8 zeldov ! Zeldovitch factor (no dim) |
---|
| 351 | real*8 fshape3 ! function defined at the end of the file |
---|
| 352 | real*8 deltaf |
---|
| 353 | |
---|
| 354 | real nus |
---|
| 355 | data nus/1.e+13/ ! Jump frequency of a molecule (s-1) |
---|
| 356 | real m0 |
---|
| 357 | data m0/4.31894e-26/ ! Weight of a methane molecule (kg) |
---|
| 358 | real vo1 |
---|
| 359 | data vo1/4.22764e-5/ ! Volume molaire (masse molaire/masse volumique = MolWt/LDEN) |
---|
| 360 | real desorp |
---|
| 361 | data desorp/0.288e-19/ ! Activation energy for desorption of water on a dust-like substrate (J/molecule) |
---|
| 362 | real surfdif |
---|
| 363 | data surfdif/0.288e-20/! Estimated activation energy for surface diffusion of water molecules (J/molecule) |
---|
| 364 | |
---|
| 365 | IF (sat .GT. 1.) then ! minimum condition to activate nucleation |
---|
| 366 | |
---|
| 367 | nc2h2 = pc2h2 / kbz / temp |
---|
| 368 | rstar = 2. * sig3(temp) * vo1 / (rgp*temp*log(sat)) |
---|
| 369 | gstar = 4. * nav * pi * (rstar**3) / (3.*vo1) |
---|
| 370 | c Loop over size bins |
---|
| 371 | do i=1,nbin |
---|
| 372 | x = aerad(i) / rstar |
---|
| 373 | x = aerad(imono) / rstar ! r(5)=monomere |
---|
| 374 | fistar = (4./3.*pi) * sig3(temp) * (rstar**2.) |
---|
| 375 | & *fshape3(mtetac2h2,x) |
---|
| 376 | deltaf = min( max((2.*desorp-surfdif-fistar)/(kbz*temp) |
---|
| 377 | & , -100.), 100.) |
---|
| 378 | if (deltaf.eq.-100.) then |
---|
| 379 | nucrate(i) = 0. |
---|
| 380 | else |
---|
| 381 | zeldov = sqrt ( fistar / (3.*pi*kbz*temp*(gstar**2.)) ) |
---|
| 382 | nucrate(i) = zeldov * kbz* temp * rstar**2. |
---|
| 383 | & * 4. * pi * ( nc2h2*aerad(i) )**2. |
---|
| 384 | & / ( fshape3(mtetac2h2,x) * nus * m0 ) |
---|
| 385 | & * dexp(deltaf) |
---|
| 386 | |
---|
| 387 | |
---|
| 388 | if(i.gt.imono) nucrate(i)= zeldov * kbz* temp * rstar**2. |
---|
| 389 | & * 4. * pi * vrat_e**(i-imono)*(nc2h2*aerad(imono) )**2. |
---|
| 390 | & / (fshape3(mtetac2h2,x) * nus * m0 ) |
---|
| 391 | & * dexp(deltaf) |
---|
| 392 | |
---|
| 393 | endif |
---|
| 394 | enddo |
---|
| 395 | ELSE |
---|
| 396 | do i=1,nbin |
---|
| 397 | nucrate(i) = 0. |
---|
| 398 | enddo |
---|
| 399 | |
---|
| 400 | ENDIF |
---|
| 401 | |
---|
| 402 | return |
---|
| 403 | end |
---|
| 404 | |
---|
| 405 | ****************************************************************** |
---|
| 406 | subroutine c2h2sat(t,p,qsat) |
---|
| 407 | * * |
---|
| 408 | * cette fonction calcule la pression de vapeur saturante de l' * |
---|
| 409 | * ethane a une altitude donnee z par Reid et al., p657 * |
---|
| 410 | * * |
---|
| 411 | * Compatible avec Barth et al., dans l'intervalle 30-90K * |
---|
| 412 | * * |
---|
| 413 | * * |
---|
| 414 | ****************************************************************** |
---|
| 415 | |
---|
| 416 | real rgp |
---|
| 417 | data rgp/8.3143/ |
---|
| 418 | |
---|
| 419 | * declaration des variables internes |
---|
| 420 | * ---------------------------------- |
---|
| 421 | |
---|
| 422 | real qsat,t,p |
---|
| 423 | |
---|
| 424 | |
---|
| 425 | a=-6.90128 |
---|
| 426 | b=1.26873 |
---|
| 427 | c=-2.09113 |
---|
| 428 | d=-2.75601 |
---|
| 429 | pc=61.4*1.013e5 |
---|
| 430 | tc=308.3 |
---|
| 431 | |
---|
| 432 | x=(1.-t/tc) |
---|
| 433 | if(x.gt. 0.) qsat=(1-x)**(-1)*(a*x+b*x**1.5+c*x**3.+d*x**6.) |
---|
| 434 | if(x.le. 0.) qsat=a*x/abs(1.-x) ! approx pour t > tc |
---|
| 435 | qsat=pc*exp(qsat) |
---|
| 436 | |
---|
| 437 | qsat=qsat* 26.0 / (28.0*p) ! kg/kg |
---|
| 438 | |
---|
| 439 | return |
---|
| 440 | end |
---|
| 441 | |
---|
| 442 | c======================================================================= |
---|
| 443 | subroutine growthrate3(timestep,temp,press,pc2h2,sat,seq,r,Cste) |
---|
| 444 | c |
---|
| 445 | c Determination of the droplet growth rate |
---|
| 446 | c |
---|
| 447 | c======================================================================= |
---|
| 448 | |
---|
| 449 | IMPLICIT NONE |
---|
| 450 | #include "dimensions.h" |
---|
| 451 | #include "microtab.h" |
---|
| 452 | #include "varmuphy.h" |
---|
| 453 | |
---|
| 454 | c----------------------------------------------------------------------- |
---|
| 455 | C DECLARATIONS: |
---|
| 456 | c ------------- |
---|
| 457 | |
---|
| 458 | common/lheat/Lv |
---|
| 459 | |
---|
| 460 | c |
---|
| 461 | c arguments: |
---|
| 462 | c ---------- |
---|
| 463 | |
---|
| 464 | REAL timestep |
---|
| 465 | REAL temp ! temperature in the middle of the layer (K) |
---|
| 466 | REAL press ! pressure in the middle of the layer (K) |
---|
| 467 | REAL*8 pc2h2 ! Methane vapor partial pressure (Pa) |
---|
| 468 | REAL*8 sat ! saturation ratio |
---|
| 469 | REAL r ! crystal radius before condensation (m) |
---|
| 470 | REAL seq ! Equilibrium saturation ratio |
---|
| 471 | |
---|
| 472 | c local: |
---|
| 473 | c ------ |
---|
| 474 | |
---|
| 475 | REAL psat |
---|
| 476 | REAL moln2,molc2h2 |
---|
| 477 | REAL To,tc2h2,wc2h2 ! Reid et al., (eq 7-9.4 + Appendix compound [168]) |
---|
| 478 | REAL fte |
---|
| 479 | |
---|
| 480 | c Effective gas molecular radius (m) |
---|
| 481 | data moln2/1.75e-10/ ! N2 |
---|
| 482 | c Effective gas molecular radius (m) |
---|
| 483 | data molc2h2/2.015e-10/ ! C2H2 |
---|
| 484 | c Temperature critique + omega |
---|
| 485 | data tc2h2/308.3/ |
---|
| 486 | data wc2h2/19.0e-2/ |
---|
| 487 | |
---|
| 488 | REAL k,Lv |
---|
| 489 | REAL knudsen ! Knudsen number (gas mean free path/particle radius) |
---|
| 490 | REAL a,Dv,lambda,Rk,Rd ! Intermediate computations for growth rate |
---|
| 491 | REAL*8 Cste |
---|
| 492 | |
---|
| 493 | c----------------------------------------------------------------------- |
---|
| 494 | c Ice particle growth rate by diffusion/impegement of molecules |
---|
| 495 | c r.dr/dt = (S-Seq) / (Seq*Rk+Rd) |
---|
| 496 | c with r the crystal radius, Rk and Rd the resistances due to |
---|
| 497 | c latent heat release and to vapor diffusion respectively |
---|
| 498 | c----------------------------------------------------------------------- |
---|
| 499 | |
---|
| 500 | psat = pc2h2 / sat |
---|
| 501 | |
---|
| 502 | c - Thermal conductibility of N2 |
---|
| 503 | |
---|
| 504 | k = ( 2.857e-2 * temp - 0.5428 ) * 4.184e-3 |
---|
| 505 | |
---|
| 506 | |
---|
| 507 | c - Latent heat of c2h2 (J.kg-1) |
---|
| 508 | Lv =581.e3 ! eq (7-9.4) Reid et al. |
---|
| 509 | fte=(1.-temp/tc2h2) |
---|
| 510 | if (fte.le.1.e-3) fte=1.e-3 |
---|
| 511 | Lv=8.314*tc2h2*(7.08*fte**0.354+10.95*wc2h2*fte**0.456)/26.e-3 |
---|
| 512 | |
---|
| 513 | |
---|
| 514 | |
---|
| 515 | c - Constant to compute gas mean free path |
---|
| 516 | c l= (T/P)*a, with a = ( 0.707*8.31/(4*pi*molrad**2 * avogadro)) |
---|
| 517 | |
---|
| 518 | a = 0.707*rgp/(4 * pi* (moln2*1.e10)**2 * (nav*1.e-20)) |
---|
| 519 | |
---|
| 520 | c - Compute Dv, methane vapor diffusion coefficient |
---|
| 521 | c accounting for both kinetic and continuum regime of diffusion, |
---|
| 522 | c the nature of which depending on the Knudsen number. |
---|
| 523 | |
---|
| 524 | Dv = 1./3. * sqrt( 8*rgp*temp/(pi*Mc2h2) )* (kbz*1.e20) * temp/ |
---|
| 525 | & (pi*press*(moln2*1.e10+molc2h2*1.e10)**2 * sqrt(1.+Mc2h2/Mn2)) |
---|
| 526 | |
---|
| 527 | knudsen = temp / press * a / r |
---|
| 528 | lambda = (1.333+0.71/knudsen) / (1.+1./knudsen) |
---|
| 529 | Dv = Dv / (1. + lambda * knudsen) |
---|
| 530 | |
---|
| 531 | c - Compute Rk |
---|
| 532 | Rk = Lv**2 * rhoi_c2h2 * Mc2h2 / (k*rgp*temp**2.) |
---|
| 533 | * print*,'Cste Rk :',Lv,k,rgp,t |
---|
| 534 | |
---|
| 535 | c - Compute Rd |
---|
| 536 | Rd = rgp * temp *rhoi_c2h2 / (Dv*psat*Mc2h2) |
---|
| 537 | * print*,'Cste Rd :',Dv,psat,Mc2h2 |
---|
| 538 | |
---|
| 539 | c - Compute: rdr/dt = Cste * (S-Seq) |
---|
| 540 | Cste = 1. / (seq*Rk+Rd) |
---|
| 541 | * print*,'Cste Cste :',seq,Rk,Rd |
---|
| 542 | |
---|
| 543 | |
---|
| 544 | RETURN |
---|
| 545 | END |
---|
| 546 | |
---|
| 547 | |
---|
| 548 | ********************************************************* |
---|
| 549 | real function sig3(t) |
---|
| 550 | * this function computes the surface tension (N.m) * |
---|
| 551 | * between acethylene and air as a function of temp. * |
---|
| 552 | ********************************************************* |
---|
| 553 | |
---|
| 554 | real t |
---|
| 555 | pc=61.4*1.01325e5 |
---|
| 556 | tc=308.3 |
---|
| 557 | tb=188.4 |
---|
| 558 | tr=t/tc |
---|
| 559 | tbr=tb/tc |
---|
| 560 | if(t.gt.308.0) then |
---|
| 561 | tr=308./tc |
---|
| 562 | endif |
---|
| 563 | |
---|
| 564 | |
---|
| 565 | |
---|
| 566 | sig3=0.1196*(1.+(tbr*alog(pc/1.01325))/(1.-tbr))-0.279 |
---|
| 567 | sig3=pc**(2./3.)*tc**(1./3.)*sig3*(1.-tr)**(11./9.) |
---|
| 568 | sig3=sig3*1.e-8 |
---|
| 569 | |
---|
| 570 | return |
---|
| 571 | end |
---|
| 572 | |
---|
| 573 | ********************************************************* |
---|
| 574 | real*8 function fshape3(cost,rap) |
---|
| 575 | * function computing the f(m,x) factor * |
---|
| 576 | * related to energy required to form a critical embryo * |
---|
| 577 | ********************************************************* |
---|
| 578 | |
---|
| 579 | implicit none |
---|
| 580 | |
---|
| 581 | real cost |
---|
| 582 | real*8 rap |
---|
| 583 | real*8 phi |
---|
| 584 | real*8 a,b,c |
---|
| 585 | |
---|
| 586 | |
---|
| 587 | phi = sqrt( 1. - 2.*cost*rap + rap**2 ) |
---|
| 588 | a = 1. + ( (1.-cost*rap)/phi )**3 |
---|
| 589 | b = (rap**3) * (2.-3.*(rap-cost)/phi+((rap-cost)/phi)**3) |
---|
| 590 | c = 3. * cost * (rap**2) * ((rap-cost)/phi-1.) |
---|
| 591 | |
---|
| 592 | fshape3 = 0.5*(a+b+c) |
---|
| 593 | |
---|
| 594 | if (rap.gt.3000.) fshape3 = ((2.+cost)*(1.-cost)**2)/4. |
---|
| 595 | |
---|
| 596 | return |
---|
| 597 | end |
---|
| 598 | |
---|