1 | SUBROUTINE GFLUXV(NTODO,WAVEN,DTDEL,TDEL,WDEL,CDEL |
---|
2 | & , F0PI,RSF,BTOP,BSURF,FP,FM,FMIDP,FMIDM,IPRINT) |
---|
3 | c PARAMETER (NL=101) |
---|
4 | USE TGMDAT_MOD, ONLY: UBARI,UBARV,UBAR0 |
---|
5 | IMPLICIT NONE |
---|
6 | INTEGER IPRINT,I,J,K,IDELTA,NAYER,NL,NTODO |
---|
7 | PARAMETER (NL=401) |
---|
8 | C ??FLAG? THIS VALUE (101) MUST BE .GE. NTODO |
---|
9 | C* THIS SUBROUTINE TAKES THE OPTICAL CONSTANTS AND BOUNDARY CONDITONS |
---|
10 | C FOR THE VISIBLE FLUX AT ONE WAVELENGTH AND SOLVES FOR THE FLUXES AT |
---|
11 | C THE LEVELS. THIS VERSION IS SET UP TO WORK WITH LAYER OPTICAL DEPTHS |
---|
12 | C MEASURED FROM THE TOP OF EACH LAEYER. (DTAU) TOP OF EACH LAYER HAS |
---|
13 | C OPTICAL DEPTH TAU(N).IN THIS SUB LEVEL N IS ABOVE LAYER N. THAT IS LAYER N |
---|
14 | C HAS LEVEL N ON TOP AND LEVEL N+1 ON BOTTOM. OPTICAL DEPTH INCREASES |
---|
15 | C FROM TOP TO BOTTOM. SEE C.P. MCKAY, TGM NOTES. |
---|
16 | C THIS SUBROUTINE DIFFERS FROM ITS IR CONTERPART IN THAT HERE WE SOLVE FOR |
---|
17 | C THE FLUXES DIRECTLY USING THE GENERALIZED NOTATION OF MEADOR AND WEAVOR |
---|
18 | C J.A.S., 37, 630-642, 1980. |
---|
19 | REAL B81,B82,R81 |
---|
20 | REAL AP,AM,F0PI,DENOM,CMMID,TAUMID,RSF,BTOP |
---|
21 | REAL EM,EP,PI,WAVEN,CPMID,BSURF,G4 |
---|
22 | C THIS NEXT ROW OF VARIABLES ARE THOSE ACTUALLY USED IN THE |
---|
23 | C ROUTINE |
---|
24 | REAL W0(NL), COSBAR(NL),DTAU(NL),TAU(NL) |
---|
25 | REAL wdel(ntodo-1),cdel(ntodo-1),dtdel(ntodo-1) |
---|
26 | REAL tdel(ntodo),fm(ntodo),fp(ntodo) |
---|
27 | REAL fmidm(ntodo),fmidp(ntodo) |
---|
28 | REAL ALPHA(NL),LAMDA(NL),XK1(NL),XK2(NL) |
---|
29 | REAL G1(NL),G2(NL),G3(NL) |
---|
30 | REAL GAMA(NL),CP(NL),CM(NL),CPM1(NL),CMM1(NL) |
---|
31 | &,E1(NL),E2(NL),E3(NL),E4(NL),EXPTRM(NL) |
---|
32 | DATA PI/3.14159265358979323846/ |
---|
33 | DATA IDELTA/1/ |
---|
34 | NAYER=NTODO-1 |
---|
35 | 505 CONTINUE |
---|
36 | C TURN ON THE DELTA-FUNCTION IF REQUIRED HERE |
---|
37 | c PRINT*,' UBAR0 ',UBARI,UBARV,UBAR0 |
---|
38 | |
---|
39 | IF (IDELTA .EQ. 0) THEN |
---|
40 | DO 101 J=1,NAYER |
---|
41 | W0(J)=WDEL(J) |
---|
42 | COSBAR(J)=CDEL(J) |
---|
43 | DTAU(J)=DTDEL(J) |
---|
44 | TAU(J)=TDEL(J) |
---|
45 | 101 CONTINUE |
---|
46 | TAU(NTODO)=TDEL(NTODO) |
---|
47 | ELSE |
---|
48 | C FOR THE DELTA FUNCTION HERE... |
---|
49 | TAU(1)=TDEL(1)*(1.-WDEL(1)*CDEL(1)**2) |
---|
50 | DO 102 J=1,NAYER |
---|
51 | W0(J)=WDEL(J)*(1.-CDEL(J)**2)/(1.-WDEL(J)*CDEL(J)**2) |
---|
52 | COSBAR(J)=CDEL(J)/(1.+CDEL(J)) |
---|
53 | DTAU(J)=DTDEL(J)*(1.-WDEL(J)*CDEL(J)**2) |
---|
54 | TAU(J+1)=TAU(J)+DTAU(J) |
---|
55 | c print*,'W0=',W0(J),' COSBAR=',COSBAR(J) |
---|
56 | c print*,'DTAU=',DTAU(J),' TAU=',TAU(J) |
---|
57 | c print*,'WDEL=',WDEL(J),' CDEL=',CDEL(J),' DTDEL=',DTDEL(J) |
---|
58 | 102 CONTINUE |
---|
59 | ENDIF |
---|
60 | C WE GO WITH THE HEMISPHERIC CONSTANT APPROACH |
---|
61 | C AS DEFINED BY M&W - THIS IS THE WAY THE IR IS DONE |
---|
62 | DO 20 J=1,NAYER |
---|
63 | ALPHA(J)=SQRT( (1.-W0(J))/(1.-W0(J)*COSBAR(J)) ) |
---|
64 | C THIS SET OF G'S IS FOR THE TWO STREAM HEMI-CONSTANT |
---|
65 | C G1(J)=(1.-W0(J)*0.5*(1.+COSBAR(J)))/UBARV |
---|
66 | C G2(J)=W0(J)*0.5*(1.-COSBAR(J))/UBARV |
---|
67 | C G3(J)=0.5*(1.-COSBAR(J)) |
---|
68 | C SET OF CONSTANTS DETERMINED BY DOM |
---|
69 | G1(J)= (SQRT(3.)*0.5)*(2. - W0(J)*(1.+COSBAR(J))) |
---|
70 | G2(J)= (SQRT(3.)*W0(J)*0.5)*(1.-COSBAR(J)) |
---|
71 | G3(J)=0.5*(1.-SQRT(3.)*COSBAR(J)*UBAR0) |
---|
72 | LAMDA(J)=SQRT(G1(J)**2 - G2(J)**2) |
---|
73 | GAMA(J)=(G1(J)-LAMDA(J))/G2(J) |
---|
74 | |
---|
75 | 20 CONTINUE |
---|
76 | DO 7 J=1,NAYER |
---|
77 | G4=1.-G3(J) |
---|
78 | DENOM=LAMDA(J)**2 - 1./UBAR0**2 |
---|
79 | c print*,'G1(J)**2- G2(J)**2',G1(J)**2 - G2(J)**2 |
---|
80 | c print*,'SQRT(G1(J)**2 - G2(J)**2)',SQRT(G1(J)**2 |
---|
81 | c & - G2(J)**2) |
---|
82 | c print*,'DENOM=',LAMDA(J)**2,1./UBAR0**2 |
---|
83 | C THERE IS A POTENTIAL PROBLEM HERE IF W0=0 AND UBARV=UBAR0 |
---|
84 | C THEN DENOM WILL VANISH. THIS ONLY HAPPENS PHYSICALLY WHEN |
---|
85 | C THE SCATTERING GOES TO ZERO |
---|
86 | C PREVENT THIS WITH A IF STATEMENT |
---|
87 | IF ( DENOM .EQ. 0.) THEN |
---|
88 | PRINT*,UBAR0 |
---|
89 | DENOM=1.E-4 |
---|
90 | PRINT*,'G1(J)**2- G2(J)**2',G1(J)**2 - G2(J)**2 |
---|
91 | PRINT*,'SQRT(G1(J)**2 - G2(J)**2)',SQRT(G1(J)**2 |
---|
92 | & - G2(J)**2) |
---|
93 | PRINT*,'DENOM=',LAMDA(J)**2,1./UBAR0**2 |
---|
94 | WRITE (6,99) |
---|
95 | 99 FORMAT (' DENOM ZERO; RESET # 1IN GFLUXV, W0=0?') |
---|
96 | END IF |
---|
97 | AM=F0PI*W0(J)*(G4 *(G1(J)+1./UBAR0) +G2(J)*G3(J) )/DENOM |
---|
98 | AP=F0PI*W0(J)*(G3(J)*(G1(J)-1./UBAR0) +G2(J)*G4 )/DENOM |
---|
99 | C* CPM1 AND CMM1 ARE THE CPLUS AND CMINUS TERMS EVALUATED |
---|
100 | C AT THE TOP OF THE LAYER, THAT IS LOWER OPTICAL DEPTH TAU(J) |
---|
101 | CPM1(J)=AP*EXP(-TAU(J)/UBAR0) |
---|
102 | CMM1(J)=AM*EXP(-TAU(J)/UBAR0) |
---|
103 | C* CP AND CM ARE THE CPLUS AND CMINUS TERMS EVALUATED AT THE |
---|
104 | C BOTTOM OF THE LAYER. THAT IS AT HIGHER OPTICAL DEPTH TAU(J+1) |
---|
105 | CP(J)=AP*EXP(-TAU(J+1)/UBAR0) |
---|
106 | CM(J)=AM*EXP(-TAU(J+1)/UBAR0) |
---|
107 | c print*,'AM=',AM,' AP=',AP |
---|
108 | c print*,'CPM1(J)=',CPM1(J),' CMM1(J)=',CMM1(J) |
---|
109 | c print*,'CP(J)=',CP(J),' CM(J)=',CM(J) |
---|
110 | 7 CONTINUE |
---|
111 | C* |
---|
112 | C* NOW CALCULATE THE EXPONENTIAL TERMS NEEDED |
---|
113 | C* FOR THE TRIDIAGONAL ROTATED LAYERED METHOD |
---|
114 | C* WARNING IF DTAU(J) IS GREATER THAN ABOUT 35 |
---|
115 | C* WE CLIPP IT TO AVOID OVERFLOW. |
---|
116 | C* EXP (TAU) - EXP(-TAU) WILL BE NONSENSE THIS IS |
---|
117 | C* CORRECTED IN THE DSOLVER ROUTINE. ??FLAG? |
---|
118 | DO 103 J=1,NAYER |
---|
119 | EXPTRM(J)=35. |
---|
120 | IF ( LAMDA(J)*DTAU(J) .LT. 35. ) EXPTRM(J)=LAMDA(J)*DTAU(J) |
---|
121 | 103 CONTINUE |
---|
122 | C* NEED TO CLIPP THE EXPONENTIAL HERE. |
---|
123 | DO 8 J=1,NAYER |
---|
124 | EP=EXP(EXPTRM(J)) |
---|
125 | EM=1.0/EP |
---|
126 | E1(J)=EP+GAMA(J)*EM |
---|
127 | E2(J)=EP-GAMA(J)*EM |
---|
128 | E3(J)=GAMA(J)*EP+EM |
---|
129 | E4(J)=GAMA(J)*EP-EM |
---|
130 | 8 CONTINUE |
---|
131 | C |
---|
132 | B81=BTOP |
---|
133 | B82=BSURF |
---|
134 | R81=RSF |
---|
135 | CALL DSOLVER(NAYER,GAMA,CP,CM,CPM1,CMM1 |
---|
136 | & ,E1,E2,E3,E4,B81,B82,R81,XK1,XK2) |
---|
137 | C |
---|
138 | C EVALUATE THE NTODO FLUXES THROUGH THE NAYER LAYERS |
---|
139 | C USE THE TOP (TAU=0) OPTICAL DEPTH EXPRESSIONS TO EVALUATE FP AND FM |
---|
140 | C AT THE THE TOP OF EACH LAYER,J = LEVEL J |
---|
141 | DO 46 J=1,NAYER |
---|
142 | FP(J)= XK1(J) + GAMA(J)*XK2(J) + CPM1(J) |
---|
143 | FM(J)=GAMA(J)*XK1(J) + XK2(J) + CMM1(J) |
---|
144 | 46 CONTINUE |
---|
145 | C USE EXPRESSION FOR BOTTOM FLUX TO GET THE FP AND FM AT NTODO |
---|
146 | J=NAYER |
---|
147 | EP=EXP(EXPTRM(J)) |
---|
148 | EM=1.0/EP |
---|
149 | FP(J+1)=XK1(J)*EP + GAMA(J)*XK2(J)*EM + CP(J) |
---|
150 | FM(J+1)=XK1(J)*EP*GAMA(J) + XK2(J)*EM + CM(J) |
---|
151 | C NOTE THAT WE HAVE SOLVED FOR THE FLUXES DIRECTLY AND NO |
---|
152 | C FURTHER INTEGRATION IS NEEDED, THE UBARV TERM IS ABSORBED |
---|
153 | C INTO THE DEFINITION OF G1 THU G4 |
---|
154 | C UBARV = .5 IS HEMISPHERIC CONSTANT |
---|
155 | C UBARV = SQRT(3) IS GAUSS QUADRATURE |
---|
156 | C AND OTHER CASES AS PER MEADOR AND WEAVOR, JAS, 37, 630-643,1980. |
---|
157 | C |
---|
158 | C ADD THE DIRECT FLUX TERM TO THE DOWNWELLING RADIATION, LIOU 182 |
---|
159 | DO 80 J=1,NTODO |
---|
160 | FM(J)=FM(J)+UBAR0*F0PI*EXP(-TAU(J)/UBAR0) |
---|
161 | 80 CONTINUE |
---|
162 | C |
---|
163 | C NOW WE CALCULATE THE FLUXES AT THE MIDPOINTS OF THE LAYERS. |
---|
164 | C EXACLTY ANALOGOUS TO THE ABOVE COMPUTATION |
---|
165 | C |
---|
166 | DO 1982 J=1,NAYER |
---|
167 | EP=EXP(0.5*EXPTRM(J)) |
---|
168 | EM=1.0/EP |
---|
169 | G4=1.-G3(J) |
---|
170 | DENOM=LAMDA(J)**2 - 1./UBAR0**2 |
---|
171 | C THERE IS A POTENTIAL PROBLEM HERE IF W0=0 AND UBARV=UBAR0 |
---|
172 | C THEN DENOM WILL VANISH. THIS ONLY HAPPENS PHYSICALLY WHEN |
---|
173 | C THE SCATTERING GOES TO ZERO |
---|
174 | C PREVENT THIS WITH A IF STATEMENT |
---|
175 | IF ( DENOM .EQ. 0.) THEN |
---|
176 | DENOM=1.E-4 |
---|
177 | PRINT*,'G1(J)**2- G2(J)**2',G1(J)**2 - G2(J)**2 |
---|
178 | PRINT*,'SQRT(G1(J)**2 - G2(J)**2)',SQRT(G1(J)**2 |
---|
179 | & - G2(J)**2) |
---|
180 | PRINT*,'DENOM=',LAMDA(J)**2,1./UBAR0**2 |
---|
181 | WRITE (6,78) |
---|
182 | 78 FORMAT (' DENOM ZERO; RESET # 2 IN GFLUXV, W0=0?') |
---|
183 | END IF |
---|
184 | AM=F0PI*W0(J)*(G4 *(G1(J)+1./UBAR0) +G2(J)*G3(J) )/DENOM |
---|
185 | AP=F0PI*W0(J)*(G3(J)*(G1(J)-1./UBAR0) +G2(J)*G4 )/DENOM |
---|
186 | C* CPMID AND CMMID ARE THE CPLUS AND CMINUS TERMS EVALUATED |
---|
187 | C AT THE MIDDLE OF THE LAYER, THAT IS LOWER OPTICAL DEPTH TAU(J)+ |
---|
188 | TAUMID= (TAU(J)+0.5*DTAU(J) ) |
---|
189 | CPMID=AP*EXP(-TAUMID/UBAR0) |
---|
190 | CMMID=AM*EXP(-TAUMID/UBAR0) |
---|
191 | FMIDP(J)=XK1(J)*EP + GAMA(J)*XK2(J)*EM + CPMID |
---|
192 | FMIDM(J)=XK1(J)*EP*GAMA(J) + XK2(J)*EM + CMMID |
---|
193 | C ADD THE DIRECT FLUX TO THE DOWNWELLING TERM |
---|
194 | FMIDM(J)= FMIDM(J) +UBAR0*F0PI*EXP(-TAUMID/UBAR0) |
---|
195 | 1982 CONTINUE |
---|
196 | C ** NOW PRINTOUT IF NECESSARY |
---|
197 | IF (IPRINT .LT. 9) RETURN |
---|
198 | WRITE(6,601) F0PI,RSF,BTOP,BSURF |
---|
199 | DO 120 J=1,NAYER |
---|
200 | WRITE (6,301) TAU(J),FP(J),FM(J),DTAU(J),W0(J),COSBAR(J) |
---|
201 | & ,ALPHA(J), LAMDA(J),G1(J),G2(J),G3(J) |
---|
202 | 120 CONTINUE |
---|
203 | J=NTODO |
---|
204 | WRITE (6,301) TAU(J),FP(J),FM(J) |
---|
205 | WRITE (6,602) |
---|
206 | DO 130 J=1,NAYER |
---|
207 | WRITE (6,301) CP(J),CM(J),E1(J),E2(J),E3(J),E4(J),CPM1(J) |
---|
208 | & ,CMM1(J),GAMA(J) |
---|
209 | 130 CONTINUE |
---|
210 | 301 FORMAT(1X,1P13E10.3) |
---|
211 | 602 FORMAT(' CP(J),CM(J),E1(J),E2(J),EM1(J),EM2(J),CPM1(J),CMM1(J)' |
---|
212 | & ,',GAMA(J)') |
---|
213 | 601 FORMAT(1X,'F0PI,RSF,BTOP,BSURF= ',1P4E10.3,/ |
---|
214 | & ' TAU,FUP,FDOWN,DTAU(J),W0(J),COSBAR(J)' |
---|
215 | & ,',ALPHA(J),LAMDA(J),G1,G2,G3') |
---|
216 | C *******************************************************************012 |
---|
217 | RETURN |
---|
218 | END |
---|