[135] | 1 | SUBROUTINE GFLUXI(NLL,TLEV,NW,DW,DTAU,TAUCUM,W0,COSBAR,UBARI, |
---|
| 2 | * RSF,BTOP,BSURF,FTOPUP,FMIDP,FMIDM) |
---|
[2095] | 3 | |
---|
[135] | 4 | use radinc_h |
---|
| 5 | use radcommon_h, only: planckir |
---|
[1384] | 6 | use comcstfi_mod, only: pi |
---|
[2095] | 7 | |
---|
| 8 | IMPLICIT NONE |
---|
| 9 | |
---|
| 10 | !----------------------------------------------------------------------- |
---|
| 11 | ! THIS SUBROUTINE TAKES THE OPTICAL CONSTANTS AND BOUNDARY CONDITIONS |
---|
| 12 | ! FOR THE INFRARED FLUX AT ONE WAVELENGTH AND SOLVES FOR THE FLUXES AT |
---|
| 13 | ! THE LEVELS. THIS VERSION IS SET UP TO WORK WITH LAYER OPTICAL DEPTHS |
---|
| 14 | ! MEASURED FROM THE TOP OF EACH LAYER. THE TOP OF EACH LAYER HAS |
---|
| 15 | ! OPTICAL DEPTH ZERO. IN THIS SUB LEVEL N IS ABOVE LAYER N. THAT IS LAYER N |
---|
| 16 | ! HAS LEVEL N ON TOP AND LEVEL N+1 ON BOTTOM. OPTICAL DEPTH INCREASES |
---|
| 17 | ! FROM TOP TO BOTTOM. SEE C.P. MCKAY, TGM NOTES. |
---|
| 18 | ! THE TRI-DIAGONAL MATRIX SOLVER IS DSOLVER AND IS DOUBLE PRECISION SO MANY |
---|
| 19 | ! VARIABLES ARE PASSED AS SINGLE THEN BECOME DOUBLE IN DSOLVER |
---|
| 20 | ! |
---|
| 21 | ! NLL = NUMBER OF LEVELS (NLAYERS + 1) MUST BE LESS THAT NL (101) |
---|
| 22 | ! TLEV(L_LEVELS) = ARRAY OF TEMPERATURES AT GCM LEVELS |
---|
| 23 | ! WAVEN = WAVELENGTH FOR THE COMPUTATION |
---|
| 24 | ! DW = WAVENUMBER INTERVAL |
---|
| 25 | ! DTAU(NLAYER) = ARRAY OPTICAL DEPTH OF THE LAYERS |
---|
| 26 | ! W0(NLEVEL) = SINGLE SCATTERING ALBEDO |
---|
| 27 | ! COSBAR(NLEVEL) = ASYMMETRY FACTORS, 0=ISOTROPIC |
---|
| 28 | ! UBARI = AVERAGE ANGLE, MUST BE EQUAL TO 0.5 IN IR |
---|
| 29 | ! RSF = SURFACE REFLECTANCE |
---|
| 30 | ! BTOP = UPPER BOUNDARY CONDITION ON IR INTENSITY (NOT FLUX) |
---|
| 31 | ! BSURF = SURFACE EMISSION = (1-RSFI)*PLANCK, INTENSITY (NOT FLUX) |
---|
| 32 | ! FP(NLEVEL) = UPWARD FLUX AT LEVELS |
---|
| 33 | ! FM(NLEVEL) = DOWNWARD FLUX AT LEVELS |
---|
| 34 | ! FMIDP(NLAYER) = UPWARD FLUX AT LAYER MIDPOINTS |
---|
| 35 | ! FMIDM(NLAYER) = DOWNWARD FLUX AT LAYER MIDPOINTS |
---|
| 36 | !----------------------------------------------------------------------- |
---|
| 37 | |
---|
[135] | 38 | INTEGER NLL, NLAYER, L, NW, NT, NT2 |
---|
| 39 | REAL*8 TERM, CPMID, CMMID |
---|
| 40 | REAL*8 PLANCK |
---|
| 41 | REAL*8 EM,EP |
---|
| 42 | REAL*8 COSBAR(L_NLAYRAD), W0(L_NLAYRAD), DTAU(L_NLAYRAD) |
---|
| 43 | REAL*8 TAUCUM(L_LEVELS), DTAUK |
---|
| 44 | REAL*8 TLEV(L_LEVELS) |
---|
| 45 | REAL*8 WAVEN, DW, UBARI, RSF |
---|
| 46 | REAL*8 BTOP, BSURF, FMIDP(L_NLAYRAD), FMIDM(L_NLAYRAD) |
---|
[2095] | 47 | REAL*8 B0(L_NLAYRAD) |
---|
| 48 | REAL*8 B1(L_NLAYRAD) |
---|
| 49 | REAL*8 ALPHA(L_NLAYRAD) |
---|
[1420] | 50 | REAL*8 LAMDA(L_NLAYRAD),XK1(L_NLAYRAD),XK2(L_NLAYRAD) |
---|
| 51 | REAL*8 GAMA(L_NLAYRAD),CP(L_NLAYRAD),CM(L_NLAYRAD) |
---|
| 52 | REAL*8 CPM1(L_NLAYRAD),CMM1(L_NLAYRAD),E1(L_NLAYRAD) |
---|
[2095] | 53 | REAL*8 E2(L_NLAYRAD) |
---|
| 54 | REAL*8 E3(L_NLAYRAD) |
---|
| 55 | REAL*8 E4(L_NLAYRAD) |
---|
[135] | 56 | REAL*8 FTOPUP, FLUXUP, FLUXDN |
---|
[2095] | 57 | REAL*8 :: TAUMAX = L_TAUMAX |
---|
[135] | 58 | |
---|
[2095] | 59 | ! AB : variables for interpolation |
---|
| 60 | REAL*8 C1 |
---|
| 61 | REAL*8 C2 |
---|
| 62 | REAL*8 P1 |
---|
| 63 | REAL*8 P2 |
---|
| 64 | |
---|
| 65 | !======================================================================= |
---|
| 66 | ! WE GO WITH THE HEMISPHERIC CONSTANT APPROACH IN THE INFRARED |
---|
| 67 | |
---|
[135] | 68 | NLAYER = L_NLAYRAD |
---|
| 69 | |
---|
| 70 | DO L=1,L_NLAYRAD-1 |
---|
[804] | 71 | |
---|
[2095] | 72 | !----------------------------------------------------------------------- |
---|
[804] | 73 | ! There is a problem when W0 = 1 |
---|
| 74 | ! open(888,file='W0') |
---|
| 75 | ! if ((W0(L).eq.0.).or.(W0(L).eq.1.)) then |
---|
| 76 | ! write(888,*) W0(L), L, 'gfluxi' |
---|
| 77 | ! endif |
---|
| 78 | ! Prevent this with an if statement: |
---|
[2095] | 79 | !----------------------------------------------------------------------- |
---|
| 80 | if (W0(L).eq.1.D0) then |
---|
| 81 | W0(L) = 0.99999D0 |
---|
| 82 | endif |
---|
| 83 | |
---|
| 84 | ALPHA(L) = SQRT( (1.0D0-W0(L))/(1.0D0-W0(L)*COSBAR(L)) ) |
---|
| 85 | LAMDA(L) = ALPHA(L)*(1.0D0-W0(L)*COSBAR(L))/UBARI |
---|
| 86 | |
---|
| 87 | NT = int(TLEV(2*L)*NTfac) - NTstar+1 |
---|
| 88 | NT2 = int(TLEV(2*L+2)*NTfac) - NTstar+1 |
---|
| 89 | |
---|
| 90 | ! AB : PLANCKIR(NW,NT) is replaced by P1, the linear interpolation result for a temperature NT |
---|
| 91 | ! AB : idem for PLANCKIR(NW,NT2) and P2 |
---|
| 92 | C1 = TLEV(2*L) * NTfac - int(TLEV(2*L) * NTfac) |
---|
| 93 | C2 = TLEV(2*L+2)*NTfac - int(TLEV(2*L+2)*NTfac) |
---|
| 94 | P1 = (1.0D0 - C1) * PLANCKIR(NW,NT) + C1 * PLANCKIR(NW,NT+1) |
---|
| 95 | P2 = (1.0D0 - C2) * PLANCKIR(NW,NT2) + C2 * PLANCKIR(NW,NT2+1) |
---|
| 96 | B1(L) = (P2 - P1) / DTAU(L) |
---|
| 97 | B0(L) = P1 |
---|
[135] | 98 | END DO |
---|
[2095] | 99 | |
---|
| 100 | ! Take care of special lower layer |
---|
| 101 | |
---|
[135] | 102 | L = L_NLAYRAD |
---|
[804] | 103 | |
---|
| 104 | if (W0(L).eq.1.) then |
---|
[959] | 105 | W0(L) = 0.99999D0 |
---|
[804] | 106 | end if |
---|
[2095] | 107 | |
---|
[959] | 108 | ALPHA(L) = SQRT( (1.0D0-W0(L))/(1.0D0-W0(L)*COSBAR(L)) ) |
---|
| 109 | LAMDA(L) = ALPHA(L)*(1.0D0-W0(L)*COSBAR(L))/UBARI |
---|
[2095] | 110 | |
---|
[995] | 111 | ! Tsurf is used for 1st layer source function |
---|
| 112 | ! -- same results for most thin atmospheres |
---|
| 113 | ! -- and stabilizes integrations |
---|
[1146] | 114 | NT = int(TLEV(2*L+1)*NTfac) - NTstar+1 |
---|
[995] | 115 | !! For deep, opaque, thick first layers (e.g. Saturn) |
---|
| 116 | !! what is below works much better, not unstable, ... |
---|
| 117 | !! ... and actually fully accurate because 1st layer temp (JL) |
---|
[1146] | 118 | !NT = int(TLEV(2*L)*NTfac) - NTstar+1 |
---|
[995] | 119 | !! (or this one yields same results |
---|
| 120 | !NT = int( (TLEV(2*L)+TLEV(2*L+1))*0.5*NTfac ) - NTstar+1 |
---|
[2095] | 121 | |
---|
[543] | 122 | NT2 = int(TLEV(2*L)*NTfac) - NTstar+1 |
---|
[2095] | 123 | |
---|
| 124 | ! AB : PLANCKIR(NW,NT) is replaced by P1, the linear interpolation result for a temperature NT |
---|
| 125 | ! AB : idem for PLANCKIR(NW,NT2) and P2 |
---|
| 126 | C1 = TLEV(2*L+1)*NTfac - int(TLEV(2*L+1)*NTfac) |
---|
| 127 | C2 = TLEV(2*L) * NTfac - int(TLEV(2*L) * NTfac) |
---|
| 128 | P1 = (1.0D0 - C1) * PLANCKIR(NW,NT) + C1 * PLANCKIR(NW,NT+1) |
---|
| 129 | P2 = (1.0D0 - C2) * PLANCKIR(NW,NT2) + C2 * PLANCKIR(NW,NT2+1) |
---|
| 130 | B1(L) = (P1 - P2) / DTAU(L) |
---|
| 131 | B0(L) = P2 |
---|
| 132 | |
---|
[135] | 133 | DO L=1,L_NLAYRAD |
---|
[2095] | 134 | GAMA(L) = (1.0D0-ALPHA(L))/(1.0D0+ALPHA(L)) |
---|
| 135 | TERM = UBARI/(1.0D0-W0(L)*COSBAR(L)) |
---|
| 136 | |
---|
| 137 | ! CPM1 AND CMM1 ARE THE CPLUS AND CMINUS TERMS EVALUATED |
---|
| 138 | ! AT THE TOP OF THE LAYER, THAT IS ZERO OPTICAL DEPTH |
---|
| 139 | |
---|
| 140 | CPM1(L) = B0(L)+B1(L)*TERM |
---|
| 141 | CMM1(L) = B0(L)-B1(L)*TERM |
---|
| 142 | |
---|
| 143 | ! CP AND CM ARE THE CPLUS AND CMINUS TERMS EVALUATED AT THE |
---|
| 144 | ! BOTTOM OF THE LAYER. THAT IS AT DTAU OPTICAL DEPTH. |
---|
| 145 | ! JL18 put CP and CM after the calculation of CPM1 and CMM1 to avoid unecessary calculations. |
---|
| 146 | |
---|
| 147 | CP(L) = CPM1(L) +B1(L)*DTAU(L) |
---|
| 148 | CM(L) = CMM1(L) +B1(L)*DTAU(L) |
---|
[135] | 149 | END DO |
---|
[2095] | 150 | |
---|
| 151 | ! NOW CALCULATE THE EXPONENTIAL TERMS NEEDED |
---|
| 152 | ! FOR THE TRIDIAGONAL ROTATED LAYERED METHOD |
---|
| 153 | ! WARNING IF DTAU(J) IS GREATER THAN ABOUT 35 (VAX) |
---|
| 154 | ! WE CLIP IT TO AVOID OVERFLOW. |
---|
| 155 | |
---|
[135] | 156 | DO L=1,L_NLAYRAD |
---|
[2095] | 157 | EP = EXP( MIN((LAMDA(L)*DTAU(L)),TAUMAX)) ! CLIPPED EXPONENTIAL |
---|
[959] | 158 | EM = 1.0D0/EP |
---|
[135] | 159 | E1(L) = EP+GAMA(L)*EM |
---|
| 160 | E2(L) = EP-GAMA(L)*EM |
---|
| 161 | E3(L) = GAMA(L)*EP+EM |
---|
| 162 | E4(L) = GAMA(L)*EP-EM |
---|
| 163 | END DO |
---|
[2095] | 164 | |
---|
| 165 | ! B81=BTOP ! RENAME BEFORE CALLING DSOLVER - used to be to set |
---|
| 166 | ! B82=BSURF ! them to real*8 - but now everything is real*8 |
---|
| 167 | ! R81=RSF ! so this may not be necessary |
---|
[135] | 168 | |
---|
[2095] | 169 | ! DOUBLE PRECISION TRIDIAGONAL SOLVER |
---|
| 170 | |
---|
[135] | 171 | CALL DSOLVER(NLAYER,GAMA,CP,CM,CPM1,CMM1,E1,E2,E3,E4,BTOP, |
---|
| 172 | * BSURF,RSF,XK1,XK2) |
---|
[2095] | 173 | |
---|
| 174 | ! NOW WE CALCULATE THE FLUXES AT THE MIDPOINTS OF THE LAYERS. |
---|
| 175 | |
---|
[135] | 176 | DO L=1,L_NLAYRAD-1 |
---|
[2095] | 177 | DTAUK = TAUCUM(2*L+1)-TAUCUM(2*L) |
---|
| 178 | EP = EXP(MIN(LAMDA(L)*DTAUK,TAUMAX)) ! CLIPPED EXPONENTIAL |
---|
| 179 | EM = 1.0D0/EP |
---|
| 180 | TERM = UBARI/(1.D0-W0(L)*COSBAR(L)) |
---|
| 181 | |
---|
| 182 | ! CP AND CM ARE THE CPLUS AND CMINUS TERMS EVALUATED AT THE |
---|
| 183 | ! BOTTOM OF THE LAYER. THAT IS AT DTAU OPTICAL DEPTH |
---|
| 184 | |
---|
| 185 | CPMID = B0(L)+B1(L)*DTAUK +B1(L)*TERM |
---|
| 186 | CMMID = B0(L)+B1(L)*DTAUK -B1(L)*TERM |
---|
| 187 | FMIDP(L) = XK1(L)*EP + GAMA(L)*XK2(L)*EM + CPMID |
---|
| 188 | FMIDM(L) = XK1(L)*EP*GAMA(L) + XK2(L)*EM + CMMID |
---|
| 189 | |
---|
| 190 | ! FOR FLUX WE INTEGRATE OVER THE HEMISPHERE TREATING INTENSITY CONSTANT |
---|
| 191 | |
---|
| 192 | FMIDP(L) = FMIDP(L)*PI |
---|
| 193 | FMIDM(L) = FMIDM(L)*PI |
---|
[135] | 194 | END DO |
---|
[2095] | 195 | |
---|
| 196 | ! And now, for the special bottom layer |
---|
[135] | 197 | |
---|
| 198 | L = L_NLAYRAD |
---|
| 199 | |
---|
| 200 | EP = EXP(MIN((LAMDA(L)*DTAU(L)),TAUMAX)) ! CLIPPED EXPONENTIAL |
---|
[959] | 201 | EM = 1.0D0/EP |
---|
| 202 | TERM = UBARI/(1.D0-W0(L)*COSBAR(L)) |
---|
[135] | 203 | |
---|
[2095] | 204 | ! CP AND CM ARE THE CPLUS AND CMINUS TERMS EVALUATED AT THE |
---|
| 205 | ! BOTTOM OF THE LAYER. THAT IS AT DTAU OPTICAL DEPTH |
---|
[135] | 206 | |
---|
| 207 | CPMID = B0(L)+B1(L)*DTAU(L) +B1(L)*TERM |
---|
| 208 | CMMID = B0(L)+B1(L)*DTAU(L) -B1(L)*TERM |
---|
| 209 | FMIDP(L) = XK1(L)*EP + GAMA(L)*XK2(L)*EM + CPMID |
---|
| 210 | FMIDM(L) = XK1(L)*EP*GAMA(L) + XK2(L)*EM + CMMID |
---|
| 211 | |
---|
[2095] | 212 | ! FOR FLUX WE INTEGRATE OVER THE HEMISPHERE TREATING INTENSITY CONSTANT |
---|
| 213 | |
---|
[135] | 214 | FMIDP(L) = FMIDP(L)*PI |
---|
| 215 | FMIDM(L) = FMIDM(L)*PI |
---|
[2095] | 216 | |
---|
| 217 | ! FLUX AT THE PTOP LEVEL |
---|
| 218 | |
---|
[959] | 219 | EP = 1.0D0 |
---|
| 220 | EM = 1.0D0 |
---|
| 221 | TERM = UBARI/(1.0D0-W0(1)*COSBAR(1)) |
---|
[2095] | 222 | |
---|
| 223 | ! CP AND CM ARE THE CPLUS AND CMINUS TERMS EVALUATED AT THE |
---|
| 224 | ! BOTTOM OF THE LAYER. THAT IS AT DTAU OPTICAL DEPTH |
---|
| 225 | |
---|
[135] | 226 | CPMID = B0(1)+B1(1)*TERM |
---|
| 227 | CMMID = B0(1)-B1(1)*TERM |
---|
[2095] | 228 | |
---|
[135] | 229 | FLUXUP = XK1(1)*EP + GAMA(1)*XK2(1)*EM + CPMID |
---|
| 230 | FLUXDN = XK1(1)*EP*GAMA(1) + XK2(1)*EM + CMMID |
---|
[2095] | 231 | |
---|
| 232 | ! FOR FLUX WE INTEGRATE OVER THE HEMISPHERE TREATING INTENSITY CONSTANT |
---|
| 233 | |
---|
[135] | 234 | FTOPUP = (FLUXUP-FLUXDN)*PI |
---|
[2095] | 235 | |
---|
| 236 | |
---|
[135] | 237 | RETURN |
---|
| 238 | END |
---|