1 | subroutine evapCH4(ngrid,nlayer,ptimestep,pplev,zzlay,zzlev, & |
---|
2 | u,v,tsurf,pqCH4, & |
---|
3 | tankCH4,pdqCH4,dtsurfevap) |
---|
4 | |
---|
5 | use radcommon_h, only: gzlat ! Gravity of the planet [m.s-2] |
---|
6 | use planete_mod, only: z0 ! Surface roughness of the planet [m] |
---|
7 | use geometry_mod, only: latitude_deg ! Latitude grid of the planet [°] |
---|
8 | |
---|
9 | implicit none |
---|
10 | |
---|
11 | !==================================================================== |
---|
12 | ! |
---|
13 | ! Purpose |
---|
14 | ! ------- |
---|
15 | ! Surface flux for methane evaporation. |
---|
16 | ! The routine calculates the surface flux of methane |
---|
17 | ! And the latente heat of methane evaporation. |
---|
18 | ! |
---|
19 | ! Implicit scheme. |
---|
20 | ! We start by adding to variables x the physical tendencies already computed. |
---|
21 | ! We resolve the equation : |
---|
22 | ! x(t+1) = x(t) + A * (dx/dt) * dt |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! INPUT |
---|
26 | ! ----- |
---|
27 | ! ngrid = Number of grid points in the chunk [-] |
---|
28 | ! nlayer = Number of vertical layers [-] |
---|
29 | ! ptimestep = Time step [s] |
---|
30 | ! pplev = Intermediate pressure levels [Pa] |
---|
31 | ! zzlay = Altitude at the middle of the atmospheric layers (ref : local surf) [m] |
---|
32 | ! zzlev = Altitude at the atmospheric layer boundaries (ref : local surf) [m] |
---|
33 | ! u = Zonal component of the wind [m.s-1] |
---|
34 | ! v = Meridional component of the wind [m.s-1] |
---|
35 | ! tsurf = Surface temperature [K] |
---|
36 | ! pqCH4 = Molar fraction of CH4 [mol.mol-1] |
---|
37 | ! |
---|
38 | ! |
---|
39 | ! OUTPUT |
---|
40 | ! ------ |
---|
41 | ! tankCH4 = Depth of surface methane tank [m] |
---|
42 | ! pdqCH4 = Molar fraction tendency of CH4 at the surface [mol.mol-1.s-1] |
---|
43 | ! dtsurfevap = Evaporation heating rate at the surface [K.s-1] |
---|
44 | ! |
---|
45 | ! |
---|
46 | ! Author(s) |
---|
47 | ! --------- |
---|
48 | ! B. de Batz de Trenquelléon (10/2022) |
---|
49 | ! |
---|
50 | !==================================================================== |
---|
51 | |
---|
52 | |
---|
53 | !------------------------------------ |
---|
54 | ! 0. DECLARATIONS |
---|
55 | !------------------------------------ |
---|
56 | |
---|
57 | ! Inputs : |
---|
58 | !--------- |
---|
59 | integer, intent(in) :: ngrid |
---|
60 | integer, intent(in) :: nlayer |
---|
61 | real, intent(in) :: ptimestep |
---|
62 | real, intent(in) :: pplev(ngrid,nlayer+1) |
---|
63 | real, intent(in) :: zzlay(ngrid,nlayer) |
---|
64 | real, intent(in) :: zzlev(ngrid,nlayer+1) |
---|
65 | real, intent(in) :: u(ngrid,nlayer) |
---|
66 | real, intent(in) :: v(ngrid,nlayer) |
---|
67 | real, intent(in) :: tsurf(ngrid) |
---|
68 | real, intent(in) :: pqCH4(ngrid,nlayer) |
---|
69 | |
---|
70 | ! Outputs : |
---|
71 | !---------- |
---|
72 | real, intent(out) :: tankCH4(ngrid) |
---|
73 | real, intent(out) :: pdqCH4(ngrid) |
---|
74 | real, intent(out) :: dtsurfevap(ngrid) |
---|
75 | |
---|
76 | ! Parameters : |
---|
77 | !------------- |
---|
78 | real, parameter :: karman = 0.4 ! Karman constant [-] |
---|
79 | real, parameter :: humCH4 = 0.5 ! Imposed surface humidity for CH4 [-] |
---|
80 | |
---|
81 | real, parameter :: Flnp = 0.01 ! Fraction occupied by lakes (North Pole) |
---|
82 | real, parameter :: Flsp = 0.005 ! Fraction occupied by lakes (South Pole) |
---|
83 | |
---|
84 | real, parameter :: mmolair = 28.e-3 ! Molar mass of air [kg.mol-1] |
---|
85 | real, parameter :: mmolCH4 = 16.e-3 ! Molar mass of CH4 [kg.mol-1] |
---|
86 | real, parameter :: rhoiCH4 = 425. ! Density of ice of CH4 [kg.m-3] |
---|
87 | |
---|
88 | real, parameter :: TcCH4 = 190.56 ! Critical point of CH4 [K] |
---|
89 | real, parameter :: Cplake = 2689992 ! Surface heat capacity for hydrocarbon lakes [J.m-2.K-1] (Tokano 2005) |
---|
90 | |
---|
91 | ! Local variables : |
---|
92 | !------------------ |
---|
93 | integer :: ig |
---|
94 | |
---|
95 | ! Initialisation : |
---|
96 | real*8 :: rhoair ! Density of air [kg.m-3] |
---|
97 | real*8 :: ws ! Horizontal wind at the surface [m.s-1] |
---|
98 | real*8 :: Cd ! Turbulent term [-] |
---|
99 | real*8 :: qsatCH4 ! Saturation profile of CH4 [mol.mol-1] |
---|
100 | |
---|
101 | ! Flux : |
---|
102 | real*8 :: flux ! Surface flux [kg.m-2.s-1] |
---|
103 | real*8 :: fluxCH4 ! Surface flux fo CH4 [kg.m-2.s-1.mol.mol-1] |
---|
104 | |
---|
105 | ! Variations of CH4 : |
---|
106 | real*8 :: newpqCH4 ! New molar fraction of CH4 in the first layer [mol.mol-1] |
---|
107 | real*8 :: dtankCH4 ! Trend of CH4's tank [m] |
---|
108 | |
---|
109 | ! Latente heat : |
---|
110 | real*8 :: ftm, LvCH4 ! Variables for latente heat [-, J.kg-1] |
---|
111 | |
---|
112 | |
---|
113 | !------------------------------------ |
---|
114 | ! 1. INITIALISATION |
---|
115 | !------------------------------------ |
---|
116 | |
---|
117 | do ig = 1, ngrid ! Main loop on the horizontal grid |
---|
118 | |
---|
119 | ! Density of the first layer of the atmosphere [kg.m-3] |
---|
120 | rhoair = (pplev(ig,1) - pplev(ig,2)) / gzlat(ig,1) / (zzlev(ig,2) - zzlev(ig,1)) |
---|
121 | |
---|
122 | ! Horizontal winds at the surface [m.s-1] |
---|
123 | ws = sqrt(u(ig,1)*u(ig,1) + v(ig,1)*v(ig,1)) * (10. / zzlay(ig,1))**0.2 |
---|
124 | |
---|
125 | ! Source of turbulent kinetic energy at the surface [-] (Forget et al. 1999) |
---|
126 | Cd = (karman / log(1. + zzlay(ig,1)/z0))**2 |
---|
127 | |
---|
128 | ! Saturation profile of CH4 [mol.mol-1] (Fray and Schmidt 2009) : |
---|
129 | qsatCH4 = (1.0e5 / pplev(ig,1)) * exp(1.051e1 - 1.110e3/tsurf(ig) - 4.341e3/tsurf(ig)**2 + 1.035e5/tsurf(ig)**3 - 7.910e5/tsurf(ig)**4) |
---|
130 | qsatCH4 = humCH4 * qsatCH4 |
---|
131 | ! CH4 : 0.85 * qsat because of dissolution in N2 |
---|
132 | qsatCH4 = 0.85 * qsatCH4 |
---|
133 | |
---|
134 | ! Flux at the surface [kg.m-2.s-1] : |
---|
135 | flux = rhoair * Cd * ws |
---|
136 | |
---|
137 | ! <North Pole> |
---|
138 | if (REAL(latitude_deg(ig)) .ge. 70.) then |
---|
139 | flux = Flnp * flux |
---|
140 | ! <South Pole> |
---|
141 | else if (REAL(latitude_deg(ig)) .le. -70.) then |
---|
142 | flux = Flsp * flux |
---|
143 | ! <Mid Latitudes> |
---|
144 | else |
---|
145 | flux = 0.0 |
---|
146 | endif |
---|
147 | |
---|
148 | ! Empty tank ? |
---|
149 | if (tankCH4(ig) .le. 1.e-30) then |
---|
150 | flux = 0.0 |
---|
151 | tankCH4(ig) = 1.e-30 |
---|
152 | endif |
---|
153 | |
---|
154 | ! Flux of CH4 at the surface [kg.m-2.s-1.mol.mol-1] : |
---|
155 | fluxCH4 = flux * (qsatCH4 - pqCH4(ig,1)) |
---|
156 | |
---|
157 | |
---|
158 | !------------------------------------ |
---|
159 | ! 2. IMPLICIT SCHEME |
---|
160 | !------------------------------------ |
---|
161 | |
---|
162 | ! Flux at the surface [kg.m-2.s-1] --> [s-1] : |
---|
163 | flux = flux / rhoair / (zzlev(ig,2) - zzlev(ig,1)) |
---|
164 | |
---|
165 | ! New molar fraction of CH4 in the first layer [mol.mol-1] : |
---|
166 | newpqCH4 = (pqCH4(ig,1) + flux * ptimestep * qsatCH4) / (1. + flux * ptimestep) |
---|
167 | |
---|
168 | ! Trend of CH4's tank [m] |
---|
169 | dtankCH4 = - (newpqCH4 - pqCH4(ig,1)) * rhoair * (zzlev(ig,2) - zzlev(ig,1)) * mmolCH4 / mmolair / rhoiCH4 |
---|
170 | |
---|
171 | ! New tank depth of CH4 [m] |
---|
172 | if ((tankCH4(ig) + dtankCH4) .ge. 0.) then |
---|
173 | tankCH4(ig) = tankCH4(ig) + dtankCH4 |
---|
174 | else |
---|
175 | newpqCH4 = tankCH4(ig) / (rhoair * (zzlev(ig,2) - zzlev(ig,1)) * mmolCH4 / mmolair / rhoiCH4) + pqCH4(ig,1) |
---|
176 | tankCH4(ig) = 1.e-30 |
---|
177 | endif |
---|
178 | |
---|
179 | ! Trend of CH4's molar fraction in the first layer [mol.mol-1.s-1] |
---|
180 | pdqCH4(ig) = (newpqCH4 - pqCH4(ig,1)) / ptimestep |
---|
181 | |
---|
182 | |
---|
183 | !------------------------------------ |
---|
184 | ! 3. LATENTE HEAT |
---|
185 | !------------------------------------ |
---|
186 | |
---|
187 | ftm = (1. - tsurf(ig) / TcCH4) |
---|
188 | if(ftm .le. 1.e-3) then |
---|
189 | ftm = 1.e-3 |
---|
190 | endif |
---|
191 | |
---|
192 | ! Latente heat of CH4 vaporisation [J.kg-1.mol.mol-1] |
---|
193 | LvCH4 = 8.314 * 190.4 * (7.08 * ftm**0.354 + 10.95 * 1.1e-2 * ftm**0.456) / mmolCH4 |
---|
194 | |
---|
195 | ! Evaporation heating rate [K.s-1] |
---|
196 | dtsurfevap(ig) = - (fluxCH4 * LvCH4) / Cplake |
---|
197 | |
---|
198 | ! >>> [TEMPO : BBT] |
---|
199 | !open(501,file='Evap_CH4.out') |
---|
200 | !if(REAL(latitude_deg(ig)) .ge. 70.) then |
---|
201 | ! write(501,*) '-----------------------------------' |
---|
202 | ! write(501,*) 'Latitude =', REAL(latitude_deg(ig)) |
---|
203 | ! write(501,*) '' |
---|
204 | ! write(501,*) 'Initialisation variables :' |
---|
205 | ! write(501,*) 'Air density =', rhoair, 'kg.m-3' |
---|
206 | ! write(501,*) 'Horizontal wind =', ws, 'm.s-1' |
---|
207 | ! write(501,*) 'Turbulent term =', Cd |
---|
208 | ! write(501,*) 'CH4 saturation at the surface =', qsatCH4, 'mol.mol-1' |
---|
209 | ! write(501,*) '' |
---|
210 | ! write(501,*) 'Flux :' |
---|
211 | ! write(501,*) 'Flux of CH4 =', fluxCH4, 'kg.m-2.s-1.mol.mol-1' |
---|
212 | ! write(501,*) '' |
---|
213 | ! write(501,*) 'Variation of CH4 :' |
---|
214 | ! write(501,*) 'New molar fraction of CH4 =', newpqCH4, 'mol.mol-1' |
---|
215 | ! write(501,*) 'Trend of CH4 =', pdqCH4(ig), 'mol.mol-1.s-1' |
---|
216 | ! write(501,*) 'Variation of CH4 tank =', dtankCH4, 'm' |
---|
217 | ! write(501,*) '' |
---|
218 | ! write(501,*) 'Latent Heat :' |
---|
219 | ! write(501,*) 'Latente heat of CH4 vaporisation =', LvCH4, 'J.kg-1.mol.mol-1.s-1' |
---|
220 | ! write(501,*) 'dtsurfevap :', dtsurfevap(ig), 'K.s-1' |
---|
221 | ! write(501,*) '-----------------------------------' |
---|
222 | !endif |
---|
223 | !close(501) |
---|
224 | ! <<< [TEMPO : BBT] |
---|
225 | |
---|
226 | enddo ! End of main loop on the horizontal grid |
---|
227 | |
---|
228 | return |
---|
229 | |
---|
230 | end subroutine evapCH4 |
---|