| 1 | subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
|---|
| 2 | albedo,albedo_equivalent,emis,mu0,pplev,pplay,pt, & |
|---|
| 3 | tsurf,fract,dist_star,aerosol, & |
|---|
| 4 | dtlw,dtsw,fluxsurf_lw, & |
|---|
| 5 | fluxsurf_sw,fluxsurfabs_sw,fluxtop_lw, & |
|---|
| 6 | fluxabs_sw,fluxtop_dn, & |
|---|
| 7 | OLR_nu,OSR_nu, & |
|---|
| 8 | tau_col,firstcall,lastcall) |
|---|
| 9 | |
|---|
| 10 | use radinc_h |
|---|
| 11 | use radcommon_h |
|---|
| 12 | use datafile_mod, only: datadir |
|---|
| 13 | use ioipsl_getin_p_mod, only: getin_p |
|---|
| 14 | use gases_h |
|---|
| 15 | use radii_mod, only : su_aer_radii,back2lay_reffrad |
|---|
| 16 | use aerosol_mod, only : iaero_back2lay |
|---|
| 17 | USE tracer_h |
|---|
| 18 | use comcstfi_mod, only: pi, mugaz, cpp |
|---|
| 19 | use callkeys_mod, only: diurnal,tracer,nosurf, & |
|---|
| 20 | strictboundcorrk,specOLR |
|---|
| 21 | |
|---|
| 22 | implicit none |
|---|
| 23 | |
|---|
| 24 | !================================================================== |
|---|
| 25 | ! |
|---|
| 26 | ! Purpose |
|---|
| 27 | ! ------- |
|---|
| 28 | ! Solve the radiative transfer using the correlated-k method for |
|---|
| 29 | ! the gaseous absorption and the Toon et al. (1989) method for |
|---|
| 30 | ! scatttering due to aerosols. |
|---|
| 31 | ! |
|---|
| 32 | ! Authors |
|---|
| 33 | ! ------- |
|---|
| 34 | ! Emmanuel 01/2001, Forget 09/2001 |
|---|
| 35 | ! Robin Wordsworth (2009) |
|---|
| 36 | ! |
|---|
| 37 | !================================================================== |
|---|
| 38 | |
|---|
| 39 | !----------------------------------------------------------------------- |
|---|
| 40 | ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid |
|---|
| 41 | ! Layer #1 is the layer near the ground. |
|---|
| 42 | ! Layer #nlayer is the layer at the top. |
|---|
| 43 | !----------------------------------------------------------------------- |
|---|
| 44 | |
|---|
| 45 | |
|---|
| 46 | ! INPUT |
|---|
| 47 | INTEGER,INTENT(IN) :: ngrid ! Number of atmospheric columns. |
|---|
| 48 | INTEGER,INTENT(IN) :: nlayer ! Number of atmospheric layers. |
|---|
| 49 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! Tracers (kg/kg_of_air). |
|---|
| 50 | INTEGER,INTENT(IN) :: nq ! Number of tracers. |
|---|
| 51 | REAL,INTENT(IN) :: qsurf(ngrid,nq) ! Tracers on surface (kg.m-2). |
|---|
| 52 | REAL,INTENT(IN) :: albedo(ngrid,L_NSPECTV) ! Spectral Short Wavelengths Albedo. By MT2015 |
|---|
| 53 | REAL,INTENT(IN) :: emis(ngrid) ! Long Wave emissivity. |
|---|
| 54 | REAL,INTENT(IN) :: mu0(ngrid) ! Cosine of sun incident angle. |
|---|
| 55 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! Inter-layer pressure (Pa). |
|---|
| 56 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! Mid-layer pressure (Pa). |
|---|
| 57 | REAL,INTENT(IN) :: pt(ngrid,nlayer) ! Air temperature (K). |
|---|
| 58 | REAL,INTENT(IN) :: tsurf(ngrid) ! Surface temperature (K). |
|---|
| 59 | REAL,INTENT(IN) :: fract(ngrid) ! Fraction of day. |
|---|
| 60 | REAL,INTENT(IN) :: dist_star ! Distance star-planet (AU). |
|---|
| 61 | logical,intent(in) :: firstcall ! Signals first call to physics. |
|---|
| 62 | logical,intent(in) :: lastcall ! Signals last call to physics. |
|---|
| 63 | |
|---|
| 64 | ! OUTPUT |
|---|
| 65 | REAL,INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) ! Aerosol tau (kg/kg). |
|---|
| 66 | REAL,INTENT(OUT) :: dtlw(ngrid,nlayer) ! Heating rate (K/s) due to LW radiation. |
|---|
| 67 | REAL,INTENT(OUT) :: dtsw(ngrid,nlayer) ! Heating rate (K/s) due to SW radiation. |
|---|
| 68 | REAL,INTENT(OUT) :: fluxsurf_lw(ngrid) ! Incident LW flux to surf (W/m2). |
|---|
| 69 | REAL,INTENT(OUT) :: fluxsurf_sw(ngrid) ! Incident SW flux to surf (W/m2) |
|---|
| 70 | REAL,INTENT(OUT) :: fluxsurfabs_sw(ngrid) ! Absorbed SW flux by the surface (W/m2). By MT2015. |
|---|
| 71 | REAL,INTENT(OUT) :: fluxtop_lw(ngrid) ! Outgoing LW flux to space (W/m2). |
|---|
| 72 | REAL,INTENT(OUT) :: fluxabs_sw(ngrid) ! SW flux absorbed by the planet (W/m2). |
|---|
| 73 | REAL,INTENT(OUT) :: fluxtop_dn(ngrid) ! Incident top of atmosphere SW flux (W/m2). |
|---|
| 74 | REAL,INTENT(OUT) :: OLR_nu(ngrid,L_NSPECTI) ! Outgoing LW radition in each band (Normalized to the band width (W/m2/cm-1). |
|---|
| 75 | REAL,INTENT(OUT) :: OSR_nu(ngrid,L_NSPECTV) ! Outgoing SW radition in each band (Normalized to the band width (W/m2/cm-1). |
|---|
| 76 | REAL,INTENT(OUT) :: tau_col(ngrid) ! Diagnostic from aeropacity. |
|---|
| 77 | REAL,INTENT(OUT) :: albedo_equivalent(ngrid) ! Spectrally Integrated Albedo. For Diagnostic. By MT2015 |
|---|
| 78 | |
|---|
| 79 | |
|---|
| 80 | ! Globally varying aerosol optical properties on GCM grid ; not needed everywhere so not in radcommon_h. |
|---|
| 81 | REAL :: QVISsQREF3d(ngrid,nlayer,L_NSPECTV,naerkind) |
|---|
| 82 | REAL :: omegaVIS3d(ngrid,nlayer,L_NSPECTV,naerkind) |
|---|
| 83 | REAL :: gVIS3d(ngrid,nlayer,L_NSPECTV,naerkind) |
|---|
| 84 | REAL :: QIRsQREF3d(ngrid,nlayer,L_NSPECTI,naerkind) |
|---|
| 85 | REAL :: omegaIR3d(ngrid,nlayer,L_NSPECTI,naerkind) |
|---|
| 86 | REAL :: gIR3d(ngrid,nlayer,L_NSPECTI,naerkind) |
|---|
| 87 | |
|---|
| 88 | ! REAL :: omegaREFvis3d(ngrid,nlayer,naerkind) |
|---|
| 89 | ! REAL :: omegaREFir3d(ngrid,nlayer,naerkind) ! not sure of the point of these... |
|---|
| 90 | |
|---|
| 91 | REAL,ALLOCATABLE,SAVE :: reffrad(:,:,:) ! aerosol effective radius (m) |
|---|
| 92 | REAL,ALLOCATABLE,SAVE :: nueffrad(:,:,:) ! aerosol effective variance |
|---|
| 93 | !$OMP THREADPRIVATE(reffrad,nueffrad) |
|---|
| 94 | |
|---|
| 95 | !----------------------------------------------------------------------- |
|---|
| 96 | ! Declaration of the variables required by correlated-k subroutines |
|---|
| 97 | ! Numbered from top to bottom (unlike in the GCM) |
|---|
| 98 | !----------------------------------------------------------------------- |
|---|
| 99 | |
|---|
| 100 | REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) |
|---|
| 101 | REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) |
|---|
| 102 | |
|---|
| 103 | ! Optical values for the optci/cv subroutines |
|---|
| 104 | REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) |
|---|
| 105 | REAL*8 dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
|---|
| 106 | REAL*8 dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 107 | REAL*8 cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 108 | REAL*8 cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
|---|
| 109 | REAL*8 wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
|---|
| 110 | REAL*8 wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 111 | REAL*8 tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 112 | REAL*8 taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS) |
|---|
| 113 | REAL*8 taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS) |
|---|
| 114 | |
|---|
| 115 | REAL*8 tauaero(L_LEVELS+1,naerkind) |
|---|
| 116 | REAL*8 nfluxtopv,nfluxtopi,nfluxtop,fluxtopvdn |
|---|
| 117 | REAL*8 nfluxoutv_nu(L_NSPECTV) ! Outgoing band-resolved VI flux at TOA (W/m2). |
|---|
| 118 | REAL*8 nfluxtopi_nu(L_NSPECTI) ! Net band-resolved IR flux at TOA (W/m2). |
|---|
| 119 | REAL*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) ! For 1D diagnostic. |
|---|
| 120 | REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD) |
|---|
| 121 | REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD) |
|---|
| 122 | REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD) |
|---|
| 123 | REAL*8 albi,acosz |
|---|
| 124 | REAL*8 albv(L_NSPECTV) ! Spectral Visible Albedo. |
|---|
| 125 | |
|---|
| 126 | INTEGER ig,l,k,nw,iaer |
|---|
| 127 | |
|---|
| 128 | real szangle |
|---|
| 129 | logical global1d |
|---|
| 130 | save szangle,global1d |
|---|
| 131 | !$OMP THREADPRIVATE(szangle,global1d) |
|---|
| 132 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) |
|---|
| 133 | real*8 taugsurfi(L_NSPECTI,L_NGAUSS-1) |
|---|
| 134 | |
|---|
| 135 | ! Local aerosol optical properties for each column on RADIATIVE grid. |
|---|
| 136 | real*8,save,allocatable :: QXVAER(:,:,:) |
|---|
| 137 | real*8,save,allocatable :: QSVAER(:,:,:) |
|---|
| 138 | real*8,save,allocatable :: GVAER(:,:,:) |
|---|
| 139 | real*8,save,allocatable :: QXIAER(:,:,:) |
|---|
| 140 | real*8,save,allocatable :: QSIAER(:,:,:) |
|---|
| 141 | real*8,save,allocatable :: GIAER(:,:,:) |
|---|
| 142 | |
|---|
| 143 | real, dimension(:,:,:), save, allocatable :: QREFvis3d |
|---|
| 144 | real, dimension(:,:,:), save, allocatable :: QREFir3d |
|---|
| 145 | !$OMP THREADPRIVATE(QXVAER,QSVAER,GVAER,QXIAER,QSIAER,GIAER,QREFvis3d,QREFir3d) |
|---|
| 146 | |
|---|
| 147 | |
|---|
| 148 | ! Miscellaneous : |
|---|
| 149 | real*8 temp,temp1,temp2,pweight |
|---|
| 150 | character(len=10) :: tmp1 |
|---|
| 151 | character(len=10) :: tmp2 |
|---|
| 152 | |
|---|
| 153 | logical OLRz |
|---|
| 154 | real*8 NFLUXGNDV_nu(L_NSPECTV) |
|---|
| 155 | |
|---|
| 156 | ! Included by MT for albedo calculations. |
|---|
| 157 | REAL*8 albedo_temp(L_NSPECTV) ! For equivalent albedo calculation. |
|---|
| 158 | REAL*8 surface_stellar_flux ! Stellar flux reaching the surface. Useful for equivalent albedo calculation. |
|---|
| 159 | |
|---|
| 160 | |
|---|
| 161 | !=============================================================== |
|---|
| 162 | ! I.a Initialization on first call |
|---|
| 163 | !=============================================================== |
|---|
| 164 | |
|---|
| 165 | |
|---|
| 166 | if(firstcall) then |
|---|
| 167 | |
|---|
| 168 | ! test on allocated necessary because of CLFvarying (two calls to callcorrk in physiq) |
|---|
| 169 | if(.not.allocated(QXVAER)) allocate(QXVAER(L_LEVELS+1,L_NSPECTV,naerkind)) |
|---|
| 170 | if(.not.allocated(QSVAER)) allocate(QSVAER(L_LEVELS+1,L_NSPECTV,naerkind)) |
|---|
| 171 | if(.not.allocated(GVAER)) allocate(GVAER(L_LEVELS+1,L_NSPECTV,naerkind)) |
|---|
| 172 | if(.not.allocated(QXIAER)) allocate(QXIAER(L_LEVELS+1,L_NSPECTI,naerkind)) |
|---|
| 173 | if(.not.allocated(QSIAER)) allocate(QSIAER(L_LEVELS+1,L_NSPECTI,naerkind)) |
|---|
| 174 | if(.not.allocated(GIAER)) allocate(GIAER(L_LEVELS+1,L_NSPECTI,naerkind)) |
|---|
| 175 | |
|---|
| 176 | !!! ALLOCATED instances are necessary because of CLFvarying (strategy to call callcorrk twice in physiq...) |
|---|
| 177 | IF(.not.ALLOCATED(QREFvis3d)) ALLOCATE(QREFvis3d(ngrid,nlayer,naerkind)) |
|---|
| 178 | IF(.not.ALLOCATED(QREFir3d)) ALLOCATE(QREFir3d(ngrid,nlayer,naerkind)) |
|---|
| 179 | ! Effective radius and variance of the aerosols |
|---|
| 180 | IF(.not.ALLOCATED(reffrad)) allocate(reffrad(ngrid,nlayer,naerkind)) |
|---|
| 181 | IF(.not.ALLOCATED(nueffrad)) allocate(nueffrad(ngrid,nlayer,naerkind)) |
|---|
| 182 | |
|---|
| 183 | call system('rm -f surf_vals_long.out') |
|---|
| 184 | |
|---|
| 185 | if(naerkind.gt.4)then |
|---|
| 186 | print*,'Code not general enough to deal with naerkind > 4 yet.' |
|---|
| 187 | call abort |
|---|
| 188 | endif |
|---|
| 189 | call su_aer_radii(ngrid,nlayer,reffrad,nueffrad) |
|---|
| 190 | |
|---|
| 191 | |
|---|
| 192 | !-------------------------------------------------- |
|---|
| 193 | ! Set up correlated k |
|---|
| 194 | !-------------------------------------------------- |
|---|
| 195 | |
|---|
| 196 | |
|---|
| 197 | print*, "callcorrk: Correlated-k data base folder:",trim(datadir) |
|---|
| 198 | call getin_p("corrkdir",corrkdir) |
|---|
| 199 | print*, "corrkdir = ",corrkdir |
|---|
| 200 | write( tmp1, '(i3)' ) L_NSPECTI |
|---|
| 201 | write( tmp2, '(i3)' ) L_NSPECTV |
|---|
| 202 | banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) |
|---|
| 203 | banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) |
|---|
| 204 | |
|---|
| 205 | call setspi ! Basic infrared properties. |
|---|
| 206 | call setspv ! Basic visible properties. |
|---|
| 207 | call sugas_corrk ! Set up gaseous absorption properties. |
|---|
| 208 | call suaer_corrk ! Set up aerosol optical properties. |
|---|
| 209 | |
|---|
| 210 | |
|---|
| 211 | OLR_nu(:,:) = 0. |
|---|
| 212 | OSR_nu(:,:) = 0. |
|---|
| 213 | |
|---|
| 214 | if (ngrid.eq.1) then |
|---|
| 215 | PRINT*, 'Simulate global averaged conditions ?' |
|---|
| 216 | global1d = .false. ! default value |
|---|
| 217 | call getin_p("global1d",global1d) |
|---|
| 218 | write(*,*) "global1d = ",global1d |
|---|
| 219 | |
|---|
| 220 | ! Test of incompatibility : if global1d is true, there should not be any diurnal cycle. |
|---|
| 221 | if (global1d.and.diurnal) then |
|---|
| 222 | print*,'if global1d is true, diurnal must be set to false' |
|---|
| 223 | stop |
|---|
| 224 | endif |
|---|
| 225 | |
|---|
| 226 | if (global1d) then |
|---|
| 227 | PRINT *,'Solar Zenith angle (deg.) ?' |
|---|
| 228 | PRINT *,'(assumed for averaged solar flux S/4)' |
|---|
| 229 | szangle=60.0 ! default value |
|---|
| 230 | call getin_p("szangle",szangle) |
|---|
| 231 | write(*,*) "szangle = ",szangle |
|---|
| 232 | endif |
|---|
| 233 | endif |
|---|
| 234 | |
|---|
| 235 | end if ! of if (firstcall) |
|---|
| 236 | |
|---|
| 237 | !======================================================================= |
|---|
| 238 | ! I.b Initialization on every call |
|---|
| 239 | !======================================================================= |
|---|
| 240 | |
|---|
| 241 | qxvaer(:,:,:)=0.0 |
|---|
| 242 | qsvaer(:,:,:)=0.0 |
|---|
| 243 | gvaer(:,:,:) =0.0 |
|---|
| 244 | |
|---|
| 245 | qxiaer(:,:,:)=0.0 |
|---|
| 246 | qsiaer(:,:,:)=0.0 |
|---|
| 247 | giaer(:,:,:) =0.0 |
|---|
| 248 | |
|---|
| 249 | !-------------------------------------------------- |
|---|
| 250 | ! Effective radius and variance of the aerosols |
|---|
| 251 | !-------------------------------------------------- |
|---|
| 252 | |
|---|
| 253 | do iaer=1,naerkind |
|---|
| 254 | |
|---|
| 255 | if(iaer.eq.iaero_back2lay)then |
|---|
| 256 | call back2lay_reffrad(ngrid,reffrad(1,1,iaero_back2lay),nlayer,pplev) |
|---|
| 257 | endif |
|---|
| 258 | |
|---|
| 259 | end do !iaer=1,naerkind. |
|---|
| 260 | |
|---|
| 261 | |
|---|
| 262 | ! How much light do we get ? |
|---|
| 263 | do nw=1,L_NSPECTV |
|---|
| 264 | stel(nw)=stellarf(nw)/(dist_star**2) |
|---|
| 265 | end do |
|---|
| 266 | |
|---|
| 267 | ! Get 3D aerosol optical properties. |
|---|
| 268 | call aeroptproperties(ngrid,nlayer,reffrad,nueffrad, & |
|---|
| 269 | QVISsQREF3d,omegaVIS3d,gVIS3d, & |
|---|
| 270 | QIRsQREF3d,omegaIR3d,gIR3d, & |
|---|
| 271 | QREFvis3d,QREFir3d) |
|---|
| 272 | |
|---|
| 273 | ! Get aerosol optical depths. |
|---|
| 274 | call aeropacity(ngrid,nlayer,nq,pplay,pplev,pq,aerosol, & |
|---|
| 275 | reffrad,QREFvis3d,QREFir3d, & |
|---|
| 276 | tau_col) |
|---|
| 277 | |
|---|
| 278 | |
|---|
| 279 | |
|---|
| 280 | !----------------------------------------------------------------------- |
|---|
| 281 | do ig=1,ngrid ! Starting Big Loop over every GCM column |
|---|
| 282 | !----------------------------------------------------------------------- |
|---|
| 283 | |
|---|
| 284 | |
|---|
| 285 | !======================================================================= |
|---|
| 286 | ! II. Transformation of the GCM variables |
|---|
| 287 | !======================================================================= |
|---|
| 288 | |
|---|
| 289 | |
|---|
| 290 | !----------------------------------------------------------------------- |
|---|
| 291 | ! Aerosol optical properties Qext, Qscat and g. |
|---|
| 292 | ! The transformation in the vertical is the same as for temperature. |
|---|
| 293 | !----------------------------------------------------------------------- |
|---|
| 294 | |
|---|
| 295 | |
|---|
| 296 | do iaer=1,naerkind |
|---|
| 297 | ! Shortwave. |
|---|
| 298 | do nw=1,L_NSPECTV |
|---|
| 299 | |
|---|
| 300 | do l=1,nlayer |
|---|
| 301 | |
|---|
| 302 | temp1=QVISsQREF3d(ig,nlayer+1-l,nw,iaer) & |
|---|
| 303 | *QREFvis3d(ig,nlayer+1-l,iaer) |
|---|
| 304 | |
|---|
| 305 | temp2=QVISsQREF3d(ig,max(nlayer-l,1),nw,iaer) & |
|---|
| 306 | *QREFvis3d(ig,max(nlayer-l,1),iaer) |
|---|
| 307 | |
|---|
| 308 | qxvaer(2*l,nw,iaer) = temp1 |
|---|
| 309 | qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
|---|
| 310 | |
|---|
| 311 | temp1=temp1*omegavis3d(ig,nlayer+1-l,nw,iaer) |
|---|
| 312 | temp2=temp2*omegavis3d(ig,max(nlayer-l,1),nw,iaer) |
|---|
| 313 | |
|---|
| 314 | qsvaer(2*l,nw,iaer) = temp1 |
|---|
| 315 | qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
|---|
| 316 | |
|---|
| 317 | temp1=gvis3d(ig,nlayer+1-l,nw,iaer) |
|---|
| 318 | temp2=gvis3d(ig,max(nlayer-l,1),nw,iaer) |
|---|
| 319 | |
|---|
| 320 | gvaer(2*l,nw,iaer) = temp1 |
|---|
| 321 | gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
|---|
| 322 | |
|---|
| 323 | end do ! nlayer |
|---|
| 324 | |
|---|
| 325 | qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer) |
|---|
| 326 | qxvaer(2*nlayer+1,nw,iaer)=0. |
|---|
| 327 | |
|---|
| 328 | qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer) |
|---|
| 329 | qsvaer(2*nlayer+1,nw,iaer)=0. |
|---|
| 330 | |
|---|
| 331 | gvaer(1,nw,iaer)=gvaer(2,nw,iaer) |
|---|
| 332 | gvaer(2*nlayer+1,nw,iaer)=0. |
|---|
| 333 | |
|---|
| 334 | end do ! L_NSPECTV |
|---|
| 335 | |
|---|
| 336 | do nw=1,L_NSPECTI |
|---|
| 337 | ! Longwave |
|---|
| 338 | do l=1,nlayer |
|---|
| 339 | |
|---|
| 340 | temp1=QIRsQREF3d(ig,nlayer+1-l,nw,iaer) & |
|---|
| 341 | *QREFir3d(ig,nlayer+1-l,iaer) |
|---|
| 342 | |
|---|
| 343 | temp2=QIRsQREF3d(ig,max(nlayer-l,1),nw,iaer) & |
|---|
| 344 | *QREFir3d(ig,max(nlayer-l,1),iaer) |
|---|
| 345 | |
|---|
| 346 | qxiaer(2*l,nw,iaer) = temp1 |
|---|
| 347 | qxiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
|---|
| 348 | |
|---|
| 349 | temp1=temp1*omegair3d(ig,nlayer+1-l,nw,iaer) |
|---|
| 350 | temp2=temp2*omegair3d(ig,max(nlayer-l,1),nw,iaer) |
|---|
| 351 | |
|---|
| 352 | qsiaer(2*l,nw,iaer) = temp1 |
|---|
| 353 | qsiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
|---|
| 354 | |
|---|
| 355 | temp1=gir3d(ig,nlayer+1-l,nw,iaer) |
|---|
| 356 | temp2=gir3d(ig,max(nlayer-l,1),nw,iaer) |
|---|
| 357 | |
|---|
| 358 | giaer(2*l,nw,iaer) = temp1 |
|---|
| 359 | giaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
|---|
| 360 | |
|---|
| 361 | end do ! nlayer |
|---|
| 362 | |
|---|
| 363 | qxiaer(1,nw,iaer)=qxiaer(2,nw,iaer) |
|---|
| 364 | qxiaer(2*nlayer+1,nw,iaer)=0. |
|---|
| 365 | |
|---|
| 366 | qsiaer(1,nw,iaer)=qsiaer(2,nw,iaer) |
|---|
| 367 | qsiaer(2*nlayer+1,nw,iaer)=0. |
|---|
| 368 | |
|---|
| 369 | giaer(1,nw,iaer)=giaer(2,nw,iaer) |
|---|
| 370 | giaer(2*nlayer+1,nw,iaer)=0. |
|---|
| 371 | |
|---|
| 372 | end do ! L_NSPECTI |
|---|
| 373 | |
|---|
| 374 | end do ! naerkind |
|---|
| 375 | |
|---|
| 376 | ! Test / Correct for freaky s. s. albedo values. |
|---|
| 377 | do iaer=1,naerkind |
|---|
| 378 | do k=1,L_LEVELS+1 |
|---|
| 379 | |
|---|
| 380 | do nw=1,L_NSPECTV |
|---|
| 381 | if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then |
|---|
| 382 | print*,'Serious problems with qsvaer values' |
|---|
| 383 | print*,'in callcorrk' |
|---|
| 384 | call abort |
|---|
| 385 | endif |
|---|
| 386 | if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then |
|---|
| 387 | qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer) |
|---|
| 388 | endif |
|---|
| 389 | end do |
|---|
| 390 | |
|---|
| 391 | do nw=1,L_NSPECTI |
|---|
| 392 | if(qsiaer(k,nw,iaer).gt.1.05*qxiaer(k,nw,iaer))then |
|---|
| 393 | print*,'Serious problems with qsiaer values' |
|---|
| 394 | print*,'in callcorrk' |
|---|
| 395 | call abort |
|---|
| 396 | endif |
|---|
| 397 | if(qsiaer(k,nw,iaer).gt.qxiaer(k,nw,iaer))then |
|---|
| 398 | qsiaer(k,nw,iaer)=qxiaer(k,nw,iaer) |
|---|
| 399 | endif |
|---|
| 400 | end do |
|---|
| 401 | |
|---|
| 402 | end do ! L_LEVELS |
|---|
| 403 | end do ! naerkind |
|---|
| 404 | |
|---|
| 405 | !----------------------------------------------------------------------- |
|---|
| 406 | ! Aerosol optical depths |
|---|
| 407 | !----------------------------------------------------------------------- |
|---|
| 408 | |
|---|
| 409 | do iaer=1,naerkind ! a bug was here |
|---|
| 410 | do k=0,nlayer-1 |
|---|
| 411 | |
|---|
| 412 | pweight=(pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/ & |
|---|
| 413 | (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1)) |
|---|
| 414 | temp=aerosol(ig,L_NLAYRAD-k,iaer)/QREFvis3d(ig,L_NLAYRAD-k,iaer) |
|---|
| 415 | tauaero(2*k+2,iaer)=max(temp*pweight,0.d0) |
|---|
| 416 | tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.d0) |
|---|
| 417 | |
|---|
| 418 | end do |
|---|
| 419 | ! boundary conditions |
|---|
| 420 | tauaero(1,iaer) = tauaero(2,iaer) |
|---|
| 421 | tauaero(L_LEVELS+1,iaer) = tauaero(L_LEVELS,iaer) |
|---|
| 422 | !tauaero(1,iaer) = 0. |
|---|
| 423 | !tauaero(L_LEVELS+1,iaer) = 0. |
|---|
| 424 | |
|---|
| 425 | end do ! naerkind |
|---|
| 426 | |
|---|
| 427 | ! Albedo and Emissivity. |
|---|
| 428 | albi=1-emis(ig) ! Long Wave. |
|---|
| 429 | DO nw=1,L_NSPECTV ! Short Wave loop. |
|---|
| 430 | albv(nw)=albedo(ig,nw) |
|---|
| 431 | ENDDO |
|---|
| 432 | |
|---|
| 433 | if (nosurf) then ! Case with no surface. |
|---|
| 434 | DO nw=1,L_NSPECTV |
|---|
| 435 | if(albv(nw).gt.0.0) then |
|---|
| 436 | print*,'For open lower boundary in callcorrk must' |
|---|
| 437 | print*,'have spectral surface band albedos all set to zero!' |
|---|
| 438 | call abort |
|---|
| 439 | endif |
|---|
| 440 | ENDDO |
|---|
| 441 | endif |
|---|
| 442 | |
|---|
| 443 | if ((ngrid.eq.1).and.(global1d)) then ! Fixed zenith angle 'szangle' in 1D simulations w/ globally-averaged sunlight. |
|---|
| 444 | acosz = cos(pi*szangle/180.0) |
|---|
| 445 | print*,'acosz=',acosz,', szangle=',szangle |
|---|
| 446 | else |
|---|
| 447 | acosz=mu0(ig) ! Cosine of sun incident angle : 3D simulations or local 1D simulations using latitude. |
|---|
| 448 | endif |
|---|
| 449 | |
|---|
| 450 | !----------------------------------------------------------------------- |
|---|
| 451 | ! Pressure and temperature |
|---|
| 452 | !----------------------------------------------------------------------- |
|---|
| 453 | |
|---|
| 454 | DO l=1,nlayer |
|---|
| 455 | plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep |
|---|
| 456 | plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep |
|---|
| 457 | tlevrad(2*l) = pt(ig,nlayer+1-l) |
|---|
| 458 | tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2 |
|---|
| 459 | END DO |
|---|
| 460 | |
|---|
| 461 | plevrad(1) = 0. |
|---|
| 462 | plevrad(2) = 0. !! Trick to have correct calculations of fluxes in gflux(i/v).F, but the pmid levels are not impacted by this change. |
|---|
| 463 | |
|---|
| 464 | tlevrad(1) = tlevrad(2) |
|---|
| 465 | tlevrad(2*nlayer+1)=tsurf(ig) |
|---|
| 466 | |
|---|
| 467 | pmid(1) = max(pgasmin,0.0001*plevrad(3)) |
|---|
| 468 | pmid(2) = pmid(1) |
|---|
| 469 | |
|---|
| 470 | tmid(1) = tlevrad(2) |
|---|
| 471 | tmid(2) = tmid(1) |
|---|
| 472 | |
|---|
| 473 | DO l=1,L_NLAYRAD-1 |
|---|
| 474 | tmid(2*l+1) = tlevrad(2*l+1) |
|---|
| 475 | tmid(2*l+2) = tlevrad(2*l+1) |
|---|
| 476 | pmid(2*l+1) = plevrad(2*l+1) |
|---|
| 477 | pmid(2*l+2) = plevrad(2*l+1) |
|---|
| 478 | END DO |
|---|
| 479 | pmid(L_LEVELS) = plevrad(L_LEVELS) |
|---|
| 480 | tmid(L_LEVELS) = tlevrad(L_LEVELS) |
|---|
| 481 | |
|---|
| 482 | !!Alternative interpolation: |
|---|
| 483 | ! pmid(3) = pmid(1) |
|---|
| 484 | ! pmid(4) = pmid(1) |
|---|
| 485 | ! tmid(3) = tmid(1) |
|---|
| 486 | ! tmid(4) = tmid(1) |
|---|
| 487 | ! DO l=2,L_NLAYRAD-1 |
|---|
| 488 | ! tmid(2*l+1) = tlevrad(2*l) |
|---|
| 489 | ! tmid(2*l+2) = tlevrad(2*l) |
|---|
| 490 | ! pmid(2*l+1) = plevrad(2*l) |
|---|
| 491 | ! pmid(2*l+2) = plevrad(2*l) |
|---|
| 492 | ! END DO |
|---|
| 493 | ! pmid(L_LEVELS) = plevrad(L_LEVELS-1) |
|---|
| 494 | ! tmid(L_LEVELS) = tlevrad(L_LEVELS-1) |
|---|
| 495 | |
|---|
| 496 | ! Test for out-of-bounds pressure. |
|---|
| 497 | if(plevrad(3).lt.pgasmin)then |
|---|
| 498 | print*,'Minimum pressure is outside the radiative' |
|---|
| 499 | print*,'transfer kmatrix bounds, exiting.' |
|---|
| 500 | call abort |
|---|
| 501 | elseif(plevrad(L_LEVELS).gt.pgasmax)then |
|---|
| 502 | print*,'Maximum pressure is outside the radiative' |
|---|
| 503 | print*,'transfer kmatrix bounds, exiting.' |
|---|
| 504 | call abort |
|---|
| 505 | endif |
|---|
| 506 | |
|---|
| 507 | ! Test for out-of-bounds temperature. |
|---|
| 508 | do k=1,L_LEVELS |
|---|
| 509 | if(tlevrad(k).lt.tgasmin)then |
|---|
| 510 | print*,'Minimum temperature is outside the radiative' |
|---|
| 511 | print*,'transfer kmatrix bounds' |
|---|
| 512 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
|---|
| 513 | print*,"tgasmin=",tgasmin |
|---|
| 514 | if (strictboundcorrk) then |
|---|
| 515 | call abort |
|---|
| 516 | else |
|---|
| 517 | print*,'***********************************************' |
|---|
| 518 | print*,'we allow model to continue with tlevrad=tgasmin' |
|---|
| 519 | print*,' ... we assume we know what you are doing ... ' |
|---|
| 520 | print*,' ... but do not let this happen too often ... ' |
|---|
| 521 | print*,'***********************************************' |
|---|
| 522 | !tlevrad(k)=tgasmin |
|---|
| 523 | endif |
|---|
| 524 | elseif(tlevrad(k).gt.tgasmax)then |
|---|
| 525 | ! print*,'Maximum temperature is outside the radiative' |
|---|
| 526 | ! print*,'transfer kmatrix bounds, exiting.' |
|---|
| 527 | ! print*,"k=",k," tlevrad(k)=",tlevrad(k) |
|---|
| 528 | ! print*,"tgasmax=",tgasmax |
|---|
| 529 | if (strictboundcorrk) then |
|---|
| 530 | call abort |
|---|
| 531 | else |
|---|
| 532 | ! print*,'***********************************************' |
|---|
| 533 | ! print*,'we allow model to continue with tlevrad=tgasmax' |
|---|
| 534 | ! print*,' ... we assume we know what you are doing ... ' |
|---|
| 535 | ! print*,' ... but do not let this happen too often ... ' |
|---|
| 536 | ! print*,'***********************************************' |
|---|
| 537 | !tlevrad(k)=tgasmax |
|---|
| 538 | endif |
|---|
| 539 | endif |
|---|
| 540 | enddo |
|---|
| 541 | do k=1,L_NLAYRAD+1 |
|---|
| 542 | if(tmid(k).lt.tgasmin)then |
|---|
| 543 | print*,'Minimum temperature is outside the radiative' |
|---|
| 544 | print*,'transfer kmatrix bounds, exiting.' |
|---|
| 545 | print*,"k=",k," tmid(k)=",tmid(k) |
|---|
| 546 | print*,"tgasmin=",tgasmin |
|---|
| 547 | if (strictboundcorrk) then |
|---|
| 548 | call abort |
|---|
| 549 | else |
|---|
| 550 | print*,'***********************************************' |
|---|
| 551 | print*,'we allow model to continue with tmid=tgasmin' |
|---|
| 552 | print*,' ... we assume we know what you are doing ... ' |
|---|
| 553 | print*,' ... but do not let this happen too often ... ' |
|---|
| 554 | print*,'***********************************************' |
|---|
| 555 | tmid(k)=tgasmin |
|---|
| 556 | endif |
|---|
| 557 | elseif(tmid(k).gt.tgasmax)then |
|---|
| 558 | ! print*,'Maximum temperature is outside the radiative' |
|---|
| 559 | ! print*,'transfer kmatrix bounds, exiting.' |
|---|
| 560 | ! print*,"k=",k," tmid(k)=",tmid(k) |
|---|
| 561 | ! print*,"tgasmax=",tgasmax |
|---|
| 562 | if (strictboundcorrk) then |
|---|
| 563 | call abort |
|---|
| 564 | else |
|---|
| 565 | ! print*,'***********************************************' |
|---|
| 566 | ! print*,'we allow model to continue with tmid=tgasmin' |
|---|
| 567 | ! print*,' ... we assume we know what you are doing ... ' |
|---|
| 568 | ! print*,' ... but do not let this happen too often ... ' |
|---|
| 569 | ! print*,'***********************************************' |
|---|
| 570 | tmid(k)=tgasmax |
|---|
| 571 | endif |
|---|
| 572 | endif |
|---|
| 573 | enddo |
|---|
| 574 | |
|---|
| 575 | !======================================================================= |
|---|
| 576 | ! III. Calling the main radiative transfer subroutines |
|---|
| 577 | !======================================================================= |
|---|
| 578 | |
|---|
| 579 | |
|---|
| 580 | Cmk= 0.01 * 1.0 / (glat(ig) * mugaz * 1.672621e-27) ! q_main=1.0 assumed. |
|---|
| 581 | glat_ig=glat(ig) |
|---|
| 582 | |
|---|
| 583 | !----------------------------------------------------------------------- |
|---|
| 584 | ! Short Wave Part |
|---|
| 585 | !----------------------------------------------------------------------- |
|---|
| 586 | |
|---|
| 587 | if(fract(ig) .ge. 1.0e-4) then ! Only during daylight. |
|---|
| 588 | if((ngrid.eq.1).and.(global1d))then |
|---|
| 589 | do nw=1,L_NSPECTV |
|---|
| 590 | stel_fract(nw)= stel(nw)* 0.25 / acosz ! globally averaged = divide by 4, and we correct for solar zenith angle |
|---|
| 591 | end do |
|---|
| 592 | else |
|---|
| 593 | do nw=1,L_NSPECTV |
|---|
| 594 | stel_fract(nw)= stel(nw) * fract(ig) |
|---|
| 595 | end do |
|---|
| 596 | endif |
|---|
| 597 | |
|---|
| 598 | call optcv(dtauv,tauv,taucumv,plevrad, & |
|---|
| 599 | qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero, & |
|---|
| 600 | tmid,pmid,taugsurf,gweight) |
|---|
| 601 | |
|---|
| 602 | call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, & |
|---|
| 603 | acosz,stel_fract,gweight, & |
|---|
| 604 | nfluxtopv,fluxtopvdn,nfluxoutv_nu,nfluxgndv_nu, & |
|---|
| 605 | fmnetv,fluxupv,fluxdnv,fzerov,taugsurf) |
|---|
| 606 | |
|---|
| 607 | else ! During the night, fluxes = 0. |
|---|
| 608 | nfluxtopv = 0.0d0 |
|---|
| 609 | fluxtopvdn = 0.0d0 |
|---|
| 610 | nfluxoutv_nu(:) = 0.0d0 |
|---|
| 611 | nfluxgndv_nu(:) = 0.0d0 |
|---|
| 612 | do l=1,L_NLAYRAD |
|---|
| 613 | fmnetv(l)=0.0d0 |
|---|
| 614 | fluxupv(l)=0.0d0 |
|---|
| 615 | fluxdnv(l)=0.0d0 |
|---|
| 616 | end do |
|---|
| 617 | end if |
|---|
| 618 | |
|---|
| 619 | |
|---|
| 620 | ! Equivalent Albedo Calculation (for OUTPUT). MT2015 |
|---|
| 621 | if(fract(ig) .ge. 1.0e-4) then ! equivalent albedo makes sense only during daylight. |
|---|
| 622 | surface_stellar_flux=sum(nfluxgndv_nu(1:L_NSPECTV)) |
|---|
| 623 | if(surface_stellar_flux .gt. 1.0e-3) then ! equivalent albedo makes sense only if the stellar flux received by the surface is positive. |
|---|
| 624 | DO nw=1,L_NSPECTV |
|---|
| 625 | albedo_temp(nw)=albedo(ig,nw)*nfluxgndv_nu(nw) |
|---|
| 626 | ENDDO |
|---|
| 627 | albedo_temp(1:L_NSPECTV)=albedo_temp(1:L_NSPECTV)/surface_stellar_flux |
|---|
| 628 | albedo_equivalent(ig)=sum(albedo_temp(1:L_NSPECTV)) |
|---|
| 629 | else |
|---|
| 630 | albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. |
|---|
| 631 | endif |
|---|
| 632 | else |
|---|
| 633 | albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. |
|---|
| 634 | endif |
|---|
| 635 | |
|---|
| 636 | |
|---|
| 637 | !----------------------------------------------------------------------- |
|---|
| 638 | ! Long Wave Part |
|---|
| 639 | !----------------------------------------------------------------------- |
|---|
| 640 | |
|---|
| 641 | call optci(plevrad,tlevrad,dtaui,taucumi, & |
|---|
| 642 | qxiaer,qsiaer,giaer,cosbi,wbari,tauaero,tmid,pmid, & |
|---|
| 643 | taugsurfi,gweight) |
|---|
| 644 | |
|---|
| 645 | call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi, & |
|---|
| 646 | wnoi,dwni,cosbi,wbari,gweight,nfluxtopi,nfluxtopi_nu, & |
|---|
| 647 | fmneti,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi) |
|---|
| 648 | |
|---|
| 649 | !----------------------------------------------------------------------- |
|---|
| 650 | ! Transformation of the correlated-k code outputs |
|---|
| 651 | ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) |
|---|
| 652 | |
|---|
| 653 | ! Flux incident at the top of the atmosphere |
|---|
| 654 | fluxtop_dn(ig)=fluxtopvdn |
|---|
| 655 | |
|---|
| 656 | fluxtop_lw(ig) = real(nfluxtopi) |
|---|
| 657 | fluxabs_sw(ig) = real(-nfluxtopv) |
|---|
| 658 | fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD)) |
|---|
| 659 | fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD)) |
|---|
| 660 | |
|---|
| 661 | ! Flux absorbed by the surface. By MT2015. |
|---|
| 662 | fluxsurfabs_sw(ig) = fluxsurf_sw(ig)*(1.-albedo_equivalent(ig)) |
|---|
| 663 | |
|---|
| 664 | if(fluxtop_dn(ig).lt.0.0)then |
|---|
| 665 | print*,'Achtung! fluxtop_dn has lost the plot!' |
|---|
| 666 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
|---|
| 667 | print*,'acosz=',acosz |
|---|
| 668 | print*,'aerosol=',aerosol(ig,:,:) |
|---|
| 669 | print*,'temp= ',pt(ig,:) |
|---|
| 670 | print*,'pplay= ',pplay(ig,:) |
|---|
| 671 | call abort |
|---|
| 672 | endif |
|---|
| 673 | |
|---|
| 674 | ! Spectral output, for exoplanet observational comparison |
|---|
| 675 | if(specOLR)then |
|---|
| 676 | do nw=1,L_NSPECTI |
|---|
| 677 | OLR_nu(ig,nw)=nfluxtopi_nu(nw)/DWNI(nw) !JL Normalize to the bandwidth |
|---|
| 678 | end do |
|---|
| 679 | do nw=1,L_NSPECTV |
|---|
| 680 | !GSR_nu(ig,nw)=nfluxgndv_nu(nw) |
|---|
| 681 | OSR_nu(ig,nw)=nfluxoutv_nu(nw)/DWNV(nw) !JL Normalize to the bandwidth |
|---|
| 682 | end do |
|---|
| 683 | endif |
|---|
| 684 | |
|---|
| 685 | ! Finally, the heating rates |
|---|
| 686 | |
|---|
| 687 | DO l=2,L_NLAYRAD |
|---|
| 688 | dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) & |
|---|
| 689 | *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
|---|
| 690 | dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1)) & |
|---|
| 691 | *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
|---|
| 692 | END DO |
|---|
| 693 | |
|---|
| 694 | ! These are values at top of atmosphere |
|---|
| 695 | dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) & |
|---|
| 696 | *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(1))) |
|---|
| 697 | dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) & |
|---|
| 698 | *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(1))) |
|---|
| 699 | |
|---|
| 700 | |
|---|
| 701 | !----------------------------------------------------------------------- |
|---|
| 702 | end do ! End of big loop over every GCM column. |
|---|
| 703 | !----------------------------------------------------------------------- |
|---|
| 704 | |
|---|
| 705 | |
|---|
| 706 | |
|---|
| 707 | !----------------------------------------------------------------------- |
|---|
| 708 | ! Additional diagnostics |
|---|
| 709 | !----------------------------------------------------------------------- |
|---|
| 710 | |
|---|
| 711 | ! IR spectral output, for exoplanet observational comparison |
|---|
| 712 | if(lastcall.and.(ngrid.eq.1))then ! could disable the 1D output, they are in the diagfi and diagspec... JL12 |
|---|
| 713 | |
|---|
| 714 | print*,'Saving scalar quantities in surf_vals.out...' |
|---|
| 715 | print*,'psurf = ', pplev(1,1),' Pa' |
|---|
| 716 | open(116,file='surf_vals.out') |
|---|
| 717 | write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1), & |
|---|
| 718 | real(-nfluxtopv),real(nfluxtopi) |
|---|
| 719 | close(116) |
|---|
| 720 | |
|---|
| 721 | |
|---|
| 722 | ! USEFUL COMMENT - Do Not Remove. |
|---|
| 723 | ! |
|---|
| 724 | ! if(specOLR)then |
|---|
| 725 | ! open(117,file='OLRnu.out') |
|---|
| 726 | ! do nw=1,L_NSPECTI |
|---|
| 727 | ! write(117,*) OLR_nu(1,nw) |
|---|
| 728 | ! enddo |
|---|
| 729 | ! close(117) |
|---|
| 730 | ! |
|---|
| 731 | ! open(127,file='OSRnu.out') |
|---|
| 732 | ! do nw=1,L_NSPECTV |
|---|
| 733 | ! write(127,*) OSR_nu(1,nw) |
|---|
| 734 | ! enddo |
|---|
| 735 | ! close(127) |
|---|
| 736 | ! endif |
|---|
| 737 | |
|---|
| 738 | ! OLR vs altitude: do it as a .txt file. |
|---|
| 739 | OLRz=.false. |
|---|
| 740 | if(OLRz)then |
|---|
| 741 | print*,'saving IR vertical flux for OLRz...' |
|---|
| 742 | open(118,file='OLRz_plevs.out') |
|---|
| 743 | open(119,file='OLRz.out') |
|---|
| 744 | do l=1,L_NLAYRAD |
|---|
| 745 | write(118,*) plevrad(2*l) |
|---|
| 746 | do nw=1,L_NSPECTI |
|---|
| 747 | write(119,*) fluxupi_nu(l,nw) |
|---|
| 748 | enddo |
|---|
| 749 | enddo |
|---|
| 750 | close(118) |
|---|
| 751 | close(119) |
|---|
| 752 | endif |
|---|
| 753 | |
|---|
| 754 | endif |
|---|
| 755 | |
|---|
| 756 | ! See physiq.F for explanations about CLFvarying. This is temporary. |
|---|
| 757 | if (lastcall) then |
|---|
| 758 | IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi ) |
|---|
| 759 | IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv ) |
|---|
| 760 | !$OMP BARRIER |
|---|
| 761 | !$OMP MASTER |
|---|
| 762 | IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref ) |
|---|
| 763 | IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref ) |
|---|
| 764 | IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref ) |
|---|
| 765 | !$OMP END MASTER |
|---|
| 766 | !$OMP BARRIER |
|---|
| 767 | IF ( ALLOCATED(reffrad)) DEALLOCATE(reffrad) |
|---|
| 768 | IF ( ALLOCATED(nueffrad)) DEALLOCATE(nueffrad) |
|---|
| 769 | endif |
|---|
| 770 | |
|---|
| 771 | |
|---|
| 772 | end subroutine callcorrk |
|---|