source: trunk/LMDZ.TITAN/libf/phytitan/calchim.F90 @ 2365

Last change on this file since 2365 was 2326, checked in by jvatant, 5 years ago

Update Titan reference photochemistry (reaction constants,branching ratios, condensation rates) according to Vuitton et al 2019.
--JVO

File size: 22.5 KB
Line 
1SUBROUTINE calchim(ngrid,qy_c,declin,dtchim,            &
2     ctemp,cpphi,cpphis,cplay,cplev,czlay,czlev,dqyc)
3
4  !---------------------------------------------------------------------------------------------------------
5  ! 
6  ! Purpose : Interface subroutine to photochemical C model for Titan GCM.
7  ! -------
8  !           The subroutine computes the chemical processes for a single vertical column.
9  !
10  ! - Only tendencies are returned.
11  ! - With moyzon_ch=.true. and input vectors zonally averaged
12  !   the calculation is done only once per lat. band
13  !
14  ! Authors: + S. Lebonnois : 01/2000 | 09/2003
15  ! -------                  adaptation for Titan 3D : 02/2009
16  !                          adaptation for // : 04/2013
17  !                          extension chemistry up to 1300km : 10/2013
18  !     
19  !          + J. Vatant d'Ollone
20  !               + 02/17 - adaptation for the new generic-forked physics
21  !               + 01/18 - 03/18 - Major transformations :
22  !                   - Upper chemistry fields are now stored in startfi
23  !                     and defined on a pressure grid from Vervack profile
24  !                   - These modifs enables to run chemistry with others resolution than 32x48x55 !
25  !                   - Only the actinic fluxes are still read in a 49-lat input but interp. on lat grid
26  !                   - Chemistry can still be done in 2D
27  !                      -> Calcul. once per band lat and put same tendency in all longi.
28  !                         Check for negs in physiq_mod.
29  !                      -> If procs sharing a lat band, no problem, the calcul will just be done twice.
30  !                      -> Will not work with Dynamico, where the chemistry will have to be done in 3D.
31  !                          ( and there'll be work to do to get rid of averaged fields )
32  !
33  !               + 02/19 : To always have correct photodissociations rates, altitudes sent here by physiq are always
34  !                         calculated with effective g - and with reference to the body not the local surface -
35  !                          even if in physiq we keep altitudes coherent with dynamics !
36  !
37  ! + STILL TO DO : + Replug the interaction with haze (cf titan.old) -> to see with JB.
38  !                 + Use iso_c_binding for the fortran-C exchanges.
39  !---------------------------------------------------------------------------------------------------------
40
41  ! --------------------------------------------------------------------
42  ! Structure :
43  ! -----------
44  !   0.  Declarations
45  !   I.  Init and firstcall
46  !         1. Read and store Vervack profile
47  !         2. Compute planetar averaged atm. properties
48  !         3. Init compound caracteristics
49  !         4. Init photodissociations rates from actinic fluxes
50  !         5. Init chemical reactions
51  !         6. Init eddy diffusion coeff
52  !   II. Loop on latitudes/grid-points
53  !         0. Check on 2D chemistry
54  !           1. Compute atm. properties at grid points
55  !           2. Interpolate photodissociation rates at lat,alt,dec
56  !           3. Read composition
57  !           4. Call main solver gptitan C routine
58  !           5. Calculate output tendencies on advected tracers
59  !           6. Update upper chemistry fields
60  !         0bis. If 2D chemsitry, don't recalculate if needed
61  ! -----------------------------------------------------------------
62
63  USE, INTRINSIC :: iso_c_binding
64  USE comchem_h
65  USE dimphy
66  USE datafile_mod, ONLY: datadir
67  USE comcstfi_mod, ONLY: g, rad, pi, r, kbol
68  USE geometry_mod, ONLY: latitude
69  USE logic_mod, ONLY: moyzon_ch
70  USE moyzon_mod, ONLY: tmoy, playmoy
71
72  IMPLICIT NONE
73
74! ------------------------------------------
75! *********** 0. Declarations *************
76! ------------------------------------------
77
78  ! Arguments
79  ! ---------
80
81  INTEGER, INTENT(IN)                              :: ngrid       ! Number of atmospheric columns.
82  REAL*8, DIMENSION(ngrid,klev,nkim), INTENT(IN)   :: qy_c        ! Chemical species on GCM layers after adv.+diss. (mol/mol).
83  REAL*8, INTENT(IN)                               :: declin      ! Solar declination (rad).
84  REAL*8, INTENT(IN)                               :: dtchim      ! Chemistry timsetep (s).
85  REAL*8, DIMENSION(ngrid,klev),      INTENT(IN)   :: ctemp       ! Mid-layer temperature (K).
86  REAL*8, DIMENSION(ngrid,klev),      INTENT(IN)   :: cpphi       ! Mid-layer geopotential (m2.s-2).
87  REAL*8, DIMENSION(ngrid),           INTENT(IN)   :: cpphis      ! Surface geopotential (m2.s-2).
88  REAL*8, DIMENSION(ngrid,klev),      INTENT(IN)   :: cplay       ! Mid-layer pressure (Pa).
89  REAL*8, DIMENSION(ngrid,klev+1),    INTENT(IN)   :: cplev       ! Inter-layer pressure (Pa).
90  REAL*8, DIMENSION(ngrid,klev),      INTENT(IN)   :: czlay       ! Mid-layer effective altitude (m) : ref = geoid.
91  REAL*8, DIMENSION(ngrid,klev+1),    INTENT(IN)   :: czlev       ! Inter-layer effective altitude (m) ref = geoid.
92
93  REAL*8, DIMENSION(ngrid,klev,nkim), INTENT(OUT)  :: dqyc        ! Chemical species tendencies on GCM layers (mol/mol/s).
94
95  ! Local variables :
96  ! -----------------
97
98  INTEGER :: i , l, ic, ig, igm1
99
100  INTEGER :: dec, idec, ipres, ialt, klat
101
102  REAL*8  :: declin_c  ! Declination (deg).
103  REAL*8  :: factp, factalt, factdec, factlat, krpddec, krpddecp1, krpddecm1
104  REAL*8  :: temp1, logp
105
106  ! Variables sent into chemistry module (must be in double precision)
107  ! ------------------------------------------------------------------
108
109  REAL*8, DIMENSION(nlaykim_tot) :: temp_c  ! Temperature (K).
110  REAL*8, DIMENSION(nlaykim_tot) :: press_c ! Pressure (Pa).
111  REAL*8, DIMENSION(nlaykim_tot) :: phi_c   ! Geopotential (m2.s-2) - actually not sent in chem. module but used to compute alts.
112  REAL*8, DIMENSION(nlaykim_tot) :: nb      ! Density (cm-3).
113
114  REAL*8, DIMENSION(nlaykim_tot,nkim) :: cqy   ! Chemical species in whole column (mol/mol) sent to chem. module.
115  REAL*8, DIMENSION(nlaykim_tot,nkim) :: cqy0  !     "      "     "   "      "        "     before modifs.
116
117  REAL*8  :: surfhaze(nlaykim_tot)
118  REAL*8  :: cprodaer(nlaykim_tot,4), cmaer(nlaykim_tot,4)
119  REAL*8  :: ccsn(nlaykim_tot,4), ccsh(nlaykim_tot,4)
120
121  REAL*8, DIMENSION(nlaykim_tot) :: rmil   ! Mid-layer distance (km) to planetographic center.
122  REAL*8, DIMENSION(nlaykim_tot) :: rinter ! Inter-layer distance (km) to planetographic center (RA grid in chem. module).
123  ! NB : rinter is on nlaykim_tot too, we don't care of the uppermost layer upper boundary altitude.
124
125  ! Saved variables initialized at firstcall
126  ! ----------------------------------------
127
128  LOGICAL, SAVE :: firstcall = .TRUE.
129!$OMP THREADPRIVATE(firstcall)
130
131  REAL*8, DIMENSION(:), ALLOCATABLE, SAVE :: kedd ! Eddy mixing coefficient for upper chemistry (cm^2.s-1)
132!$OMP THREADPRIVATE(kedd)
133
134  REAL*8, DIMENSION(:,:), ALLOCATABLE, SAVE :: md   ! Mean molecular diffusion coefficients (cm^2.s-1)
135  REAL*8, DIMENSION(:),   ALLOCATABLE, SAVE :: mass ! Molar mass of the compounds (g.mol-1)
136!$OMP THREADPRIVATE(mass,md)
137
138  REAL*8, DIMENSION(:), ALLOCATABLE, SAVE :: r1d, ct1d, p1d, t1d ! Vervack profile
139  ! JVO 18 : No threadprivate for those as they'll be read in tcp.ver by master
140
141  REAL*8, DIMENSION(:,:,:,:), ALLOCATABLE, SAVE :: krpd  ! Photodissociations rate table
142  REAL*8, DIMENSION(:,:)    , ALLOCATABLE, SAVE :: krate ! Reactions rate ( photo + chem )
143!$OMP THREADPRIVATE(krpd,krate)
144
145  INTEGER, DIMENSION(:),     ALLOCATABLE, SAVE :: nom_prod, nom_perte
146  INTEGER, DIMENSION(:,:),   ALLOCATABLE, SAVE :: reactif
147  INTEGER, DIMENSION(:,:),   ALLOCATABLE, SAVE :: prod
148  INTEGER, DIMENSION(:,:,:), ALLOCATABLE, SAVE :: perte
149!$OMP THREADPRIVATE(nom_prod,nom_perte,reactif,prod,perte)
150
151  ! TEMPORARY : Dummy parameters without microphysics
152  ! Here to keep the whole stuff running without modif chem. module
153  ! ---------------------------------------------------------------
154
155  INTEGER  :: utilaer(16)
156  INTEGER  :: aerprod = 0
157  INTEGER  :: htoh2   = 0
158
159  ! -----------------------------------------------------------------------
160  ! ***************** I. Initialisations and Firstcall ********************
161  ! -----------------------------------------------------------------------
162
163  IF (firstcall) THEN
164
165     PRINT*, 'CHIMIE, premier appel'
166
167     if (ngrid .eq. 1) then ! if 1D no dynamic mixing, we set the kedd in all column
168       call check(nlaykim_tot,0,nlrt_kim,nkim)
169     else
170       call check(nlaykim_tot,klev-15,nlrt_kim,nkim)
171     endif
172
173     ALLOCATE(r1d(131))
174     ALLOCATE(ct1d(131))
175     ALLOCATE(p1d(131))
176     ALLOCATE(t1d(131))
177
178     ALLOCATE(md(nlaykim_tot,nkim))
179     ALLOCATE(mass(nkim))
180     
181     ALLOCATE(kedd(nlaykim_tot))
182     
183     ALLOCATE(krate(nlaykim_tot,nr_kim))
184     ALLOCATE(krpd(nd_kim+1,nlrt_kim,15,nlat_actfluxes))
185
186     ALLOCATE(nom_prod(nkim))
187     ALLOCATE(nom_perte(nkim))
188     ALLOCATE(reactif(5,nr_kim))
189     ALLOCATE(prod(200,nkim))
190     ALLOCATE(perte(2,200,nkim))
191     
192     ! 0. Deal with characters for C-interoperability
193     ! ----------------------------------------------
194     ! NB ( JVO 19 ) : Using iso_c_binding would do things in an even cleaner way !
195     DO ic=1,nkim
196       nomqy_c(ic) = trim(cnames(ic))//char(0) ! Add the C null terminator
197     ENDDO
198     nomqy_c(nkim+1)="HV"//char(0) ! For photodissociations
199
200     ! 1. Read Vervack profile "tcp.ver", once for all
201     ! -----------------------------------------------
202
203!$OMP MASTER
204     OPEN(11,FILE=TRIM(datadir)//'/tcp.ver',STATUS='old')
205     READ(11,*)
206     DO i=1,131
207        READ(11,*) r1d(i), t1d(i), ct1d(i), p1d(i)
208        ! For debug :
209        ! -----------
210        ! PRINT*, "tcp.ver", r1d(i), t1d(i), ct1d(i), p1d(i)
211     ENDDO
212     CLOSE(11)
213!$OMP END MASTER
214!$OMP BARRIER
215
216     ! 2. Calculation of temp_c, densities and altitudes in planetary average
217     ! ----------------------------------------------------------------------
218     
219     ! JVO18 : altitudes are no more calculated in firstcall, as I set kedd in pressure grid
220
221     ! a. For GCM layers we just copy-paste ( assuming that physiq always send correct altitudes ! )
222
223     PRINT*,'Init chemistry : pressure, density, temperature ... :'
224     PRINT*,'level, press_c (mbar), nb (cm-3), temp_c (K)'
225     
226     IF (ngrid.NE.1) THEN
227       DO l=1,klev
228          temp_c(l)  = tmoy(l)                              ! K
229          press_c(l) = playmoy(l)/100.                      ! mbar
230          nb(l)      = 1.e-4*press_c(l) / (kbol*temp_c(l))  ! cm-3
231          PRINT*, l, press_c(l), nb(l), temp_c(l)
232       ENDDO
233     ELSE
234       DO l=1,klev
235          temp_c(l)  = ctemp(1,l)                             ! K
236          press_c(l) = cplay(1,l)/100.                        ! mbar
237          nb(l)      = 1.e-4*press_c(l) / (kbol*temp_c(l))  ! cm-3
238          PRINT*, l, press_c(l), nb(l), temp_c(l)
239       ENDDO
240     ENDIF
241
242     ! b. Extension in upper atmosphere with Vervack profile
243     ! NB : Maybe the transition klev/klev+1 is harsh if T profile different from Vervack ...     
244
245     ipres=1
246     DO l=klev+1,nlaykim_tot
247        press_c(l) = preskim(l-klev) / 100.0
248        DO i=ipres,130
249           IF ( (press_c(l).LE.p1d(i)) .AND. (press_c(l).GT.p1d(i+1)) ) THEN
250              ipres=i
251           ENDIF
252        ENDDO
253        factp = (press_c(l)-p1d(ipres)) / (p1d(ipres+1)-p1d(ipres))
254
255        nb(l)      = exp( log(ct1d(ipres))*(1-factp) + log(ct1d(ipres+1))* factp )
256        temp_c(l)  = t1d(ipres)*(1-factp) + t1d(ipres+1)*factp
257        PRINT*, l , press_c(l), nb(l), temp_c(l)
258     ENDDO
259
260     ! 3. Compounds caracteristics
261     ! ---------------------------
262     mass(:) = 0.0
263     call comp(nomqy_c,nb,temp_c,mass,md)
264     PRINT*,'           Mass'
265     DO ic=1,nkim
266        PRINT*, nomqy_c(ic), mass(ic)
267     ENDDO
268
269     ! 4. Photodissociation rates
270     ! --------------------------
271     call disso(krpd,nlat_actfluxes)
272
273     ! 5. Init. chemical reactions with planetary average T prof.
274     ! ----------------------------------------------------------
275
276     !  NB : Chemical reactions rate are assumed to be constant within the T range of Titan's atm
277     !  so we fill their krate once for all but krate for photodiss will be filled at each timestep
278     
279     call chimie(nomqy_c,nb,temp_c,krate,reactif, &
280          nom_perte,nom_prod,perte,prod)
281
282     ! 6. Eddy mixing coefficients (constant with time and space)
283     ! ----------------------------------------------------------
284     
285     kedd(:) = 1.e3 ! Default value =/= zero
286
287     ! NB : Eddy coeffs (e.g. Lavvas et al 08, Yelle et al 08) in altitude but they're rather linked to pressure
288     !      Below GCM top we have dynamic mixing and for levs < nld=klev-15 the chem. solver ignores diffusion
289
290     !! First calculate kedd for upper chemistry layers
291     !DO l=klev-4,nlaykim_tot
292     !   logp=-log10(press_c(l))
293     !! 2E6 at 400 km ~ 10-2 mbar
294     !   IF     ( logp.ge.2.0 .and. logp.le.3.0 ) THEN
295     !         kedd(l) = 2.e6 * 5.0**(logp-2.0)
296     !! 1E7 at 500 km ~ 10-3 mbar
297     !   ELSE IF     ( logp.ge.3.0 .and. logp.le.4.0 ) THEN
298     !         kedd(l) = 1.e7 * 3.0**(logp-3.0)
299     !! 3E7 above 700 km ~ 10-4 mbar
300     !   ELSEIF ( logp.gt.4.0                   ) THEN
301     !        kedd(l) = 3.e7
302     !   ENDIF
303     !ENDDO
304
305     ! Kedd from (E7) in Vuitton 2019
306     if (ngrid .eq. 1) then ! if 1D no dynamic mixing, we set the kedd in all column
307       DO l=1,nlaykim_tot
308         kedd(l) = 300.0 * ( 1.0E2 / press_c(l) )**1.5 * 3.0E7 /  &
309                 ( 300.0 * ( 1.0E2 / press_c(l) )**1.5 + 3.0E7 )
310       ENDDO
311     else
312       DO l=klev-4,nlaykim_tot
313         ! JVO 18 : We keep the nominal profile in the GCM 5 upper layers
314         !          to have  a correct vertical mixing in the sponge layer
315         kedd(l) = 300.0 * ( 1.0E2 / press_c(l) )**1.5 * 3.0E7 /  &
316               ( 300.0 * ( 1.0E2 / press_c(l) )**1.5 + 3.0E7 )
317       ENDDO
318     endif
319     
320     if (ngrid .gt. 1) then ! not in 1D, no dynamic mixing
321       ! Then adjust 10 layers profile fading to default value depending on kedd(ptop)
322       DO l=klev-15,klev-5
323          temp1   = ( log10(press_c(l)/press_c(klev-15)) ) / ( log10(press_c(klev-4)/press_c(klev-15)) )
324          kedd(l) = 10.**( 3.0 + log10(kedd(klev-4)/1.e3) * temp1 )
325       ENDDO
326     endif
327 
328     firstcall = .FALSE.
329  ENDIF  ! firstcall
330 
331  declin_c = declin*180./pi
332
333  ! -----------------------------------------------------------------------
334  ! *********************** II. Loop on latitudes *************************
335  ! -----------------------------------------------------------------------
336 
337  DO ig=1,ngrid
338
339    IF (ig.eq.1) THEN
340        igm1=1
341     ELSE
342        igm1=ig-1
343     ENDIF
344
345     ! If 2D chemistry, trick to do the calculation only once per latitude band within the chunk
346     ! NB1 : Will be obsolete with DYNAMICO, the chemistry will necessarly be 3D
347     ! NB2 : Test of same latitude with dlat=0.1 : I think that if you run sims better than 1/10th degree then
348     ! either it's with Dynamico and doesn't apply OR it is more than enough in terms of "preco / calc time" !
349     ! -------------------------------------------------------------------------------------------------------
350
351     IF ( ( moyzon_ch .AND. ( ig.EQ.1 .OR. (ABS(latitude(ig)-latitude(igm1)).GT.0.1*pi/180.0)) ) .OR. (.NOT. moyzon_ch) ) THEN
352
353        ! 1. Compute altitude for the grid point with hydrostat. equilib.
354        ! ---------------------------------------------------------------
355
356        ! a. For GCM layers we just copy-paste
357        ! JVO 19 : Now physiq always sent correct altitudes with effective g for chemistry ( even if it's not the case in physiq )
358
359        DO l=1,klev
360           rinter(l)  = (czlev(ig,l)+rad)/1000.0             ! km
361           rmil(l)    = (czlay(ig,l)+rad)/1000.0             ! km
362           temp_c(l)  = ctemp(ig,l)                          ! K
363           phi_c(l)   = cpphi(ig,l)                          ! m2.s-2
364           press_c(l) = cplay(ig,l)/100.                     ! mbar
365           nb(l)      = 1.e-4*press_c(l) / (kbol*temp_c(l))  ! cm-3
366        ENDDO
367        rinter(klev+1)=(czlev(ig,klev+1)+rad)/1000.
368
369        ! b. Extension in upper atmosphere with Vervack profile
370
371        ipres=1
372        DO l=klev+1,nlaykim_tot
373          press_c(l) = preskim(l-klev) / 100.0
374          DO i=ipres,130
375              IF ( (press_c(l).LE.p1d(i)) .AND. (press_c(l).GT.p1d(i+1)) ) THEN
376                ipres=i
377              ENDIF
378          ENDDO
379          factp = (press_c(l)-p1d(ipres)) / (p1d(ipres+1)-p1d(ipres))
380
381          nb(l)      = exp( log(ct1d(ipres))*(1-factp) + log(ct1d(ipres+1))* factp )
382          temp_c(l)  = t1d(ipres)*(1-factp) + t1d(ipres+1)*factp
383        ENDDO
384 
385        ! We build altitude with hydrostatic equilibrium on preskim grid with Vervack profile
386        ! ( keeping in mind that preskim is built based on Vervack profile with dz=10km )
387
388        DO l=klev+1,nlaykim_tot
389
390           ! Compute geopotential on the upper grid with effective g to have correct altitudes
391           ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
392
393           temp1 = 0.5*(temp_c(l-1)+temp_c(l)) ! interlayer temp
394           phi_c(l) = phi_c(l-1) + r*temp1*log(press_c(l-1)/press_c(l)) ! Geopotential assuming hydrostatic equilibrium
395
396           rmil(l)  =  ( g*rad*rad / (g*rad - ( phi_c(l) + cpphis(ig) ) ) ) / 1000.0 ! z(phi) with g varying with altitude with reference to the geoid
397        ENDDO
398
399        DO l=klev+2,nlaykim_tot
400          rinter(l) = 0.5*(rmil(l-1) + rmil(l)) ! should be balanced with the intermediate pressure rather than 0.5
401        ENDDO
402
403        ! 2. From krpd, compute krate for dissociations (declination-latitude-altitude interpolation)
404        ! -------------------------------------------------------------------------------------------
405
406        ! a. Calculate declination dependence
407
408        if ((declin_c*10+267).lt.14.) then
409           idec = 0
410           dec  = 0
411        else
412           if ((declin_c*10+267).gt.520.) then
413              idec = 14
414              dec  = 534
415           else
416              idec = 1
417              dec  = 27
418              do while( (declin_c*10+267).ge.real(dec+20) )
419                 dec  = dec+40
420                 idec = idec+1
421              enddo
422           endif
423        endif
424        if ((declin_c.ge.-24.).and.(declin_c.le.24.)) then
425           factdec = ( declin_c - (dec-267)/10. ) / 4.
426        else
427           factdec = ( declin_c - (dec-267)/10. ) / 2.7
428        endif
429
430        ! b. Calculate klat for interpolation on fixed latitudes of actinic fluxes input
431
432        klat=1
433        DO i=1,nlat_actfluxes
434          IF (latitude(ig).LT.lat_actfluxes(i)) klat=i
435        ENDDO
436        IF (klat==nlat_actfluxes) THEN ! avoid rounding problems
437          klat    = nlat_actfluxes-1
438          factlat = 1.0
439        ELSE
440          factlat = (latitude(ig)-lat_actfluxes(klat))/(lat_actfluxes(klat+1)-lat_actfluxes(klat))
441        ENDIF
442
443        ! c. Altitude loop
444
445        DO l=1,nlaykim_tot
446
447           ! Calculate ialt for interpolation in altitude (krpd every 2 km)
448           ialt    = int((rmil(l)-rad/1000.)/2.)+1
449           factalt = (rmil(l)-rad/1000.)/2.-(ialt-1)
450
451           ! Altitude can go above top limit of UV levels - in this case we keep the 1310km top fluxes
452           IF (ialt.GT.nlrt_kim-1) THEN
453             ialt     = nlrt_kim-1 ! avoid out-of-bound array
454             factalt  = 1.0
455           ENDIF
456
457           DO i=1,nd_kim+1 ! nd_kim+1 is dissociation of N2 by GCR
458
459                 krpddec   =   (   krpd(i,ialt  ,idec+1,klat)   * (1.0-factalt)                   &
460                                 + krpd(i,ialt+1,idec+1,klat)   * factalt       ) * (1.0-factlat) &
461                             + (   krpd(i,ialt  ,idec+1,klat+1) * (1.0-factalt)                   &
462                                 + krpd(i,ialt+1,idec+1,klat+1) * factalt       ) * factlat
463
464              if      ( factdec.lt.0. ) then
465                 krpddecm1 =   (   krpd(i,ialt  ,idec  ,klat)   * (1.0-factalt)                   &
466                                 + krpd(i,ialt+1,idec  ,klat)   * factalt       ) * (1.0-factlat) &
467                             + (   krpd(i,ialt  ,idec  ,klat+1) * (1.0-factalt)                   &
468                                 + krpd(i,ialt+1,idec  ,klat+1) * factalt       ) * factlat
469                 krate(l,i) = krpddecm1 * abs(factdec) + krpddec   * ( 1.0 + factdec)
470              else if ( factdec.gt.0. ) then
471                 krpddecp1 =   (   krpd(i,ialt  ,idec+2,klat)   * (1.0-factalt)                   &
472                                 + krpd(i,ialt+1,idec+2,klat)   * factalt       ) * (1.0-factlat) &
473                             + (   krpd(i,ialt  ,idec+2,klat+1) * (1.0-factalt)                   &
474                                 + krpd(i,ialt+1,idec+2,klat+1) * factalt       ) * factlat
475                 krate(l,i) = krpddecp1 * factdec      + krpddec   * ( 1.0 - factdec)
476              else if ( factdec.eq.0. ) then
477                 krate(l,i) = krpddec
478              endif
479
480           ENDDO ! i=1,nd_kim+1
481        ENDDO ! l=1,nlaykim_tot
482
483        ! 3. Read composition
484        ! -------------------
485
486        DO ic=1,nkim
487           DO l=1,klev
488              cqy(l,ic) = qy_c(ig,l,ic) ! advected tracers for the GCM part converted to molar frac.
489           ENDDO
490           
491           DO l=1,nlaykim_up
492              cqy(klev+l,ic) = ykim_up(ic,ig,l) ! ykim_up for the upper atm.
493           ENDDO
494        ENDDO
495
496        cqy0(:,:) = cqy(:,:) ! Stores compo. before modifs
497
498        ! 4. Call main Titan chemistry C routine
499        ! --------------------------------------
500
501        call gptitan(rinter,temp_c,nb,                  &
502             nomqy_c,cqy,                               &
503             dtchim,latitude(ig)*180./pi,mass,md,       &
504             kedd,krate,reactif,                        &
505             nom_prod,nom_perte,prod,perte,             &
506             aerprod,utilaer,cmaer,cprodaer,ccsn,ccsh,  &
507             htoh2,surfhaze)
508
509        ! 5. Calculates tendencies on composition for advected tracers
510        ! ------------------------------------------------------------
511        DO ic=1,nkim
512           DO l=1,klev
513              dqyc(ig,l,ic) = (cqy(l,ic) - cqy0(l,ic))/dtchim ! (mol/mol/s)
514           ENDDO
515        ENDDO
516
517        ! 6. Update ykim_up
518        ! -----------------
519        DO ic=1,nkim
520           DO l=1,nlaykim_up
521              ykim_up(ic,ig,l) = cqy(klev+l,ic)
522           ENDDO
523        ENDDO
524        ! NB: The full vertical composition grid will be created only for the outputs
525
526
527     ELSE ! In 2D chemistry, if following grid point at same latitude, same zonal mean so don't do calculations again !
528        dqyc(ig,:,:)    = dqyc(igm1,:,:) ! will be put back in 3D with longitudinal variations assuming same relative tendencies within a lat band
529        ykim_up(:,ig,:) = ykim_up(:,igm1,:) ! no horizontal mixing in upper layers -> no longitudinal variations
530     ENDIF
531
532  ENDDO
533
534END SUBROUTINE calchim
Note: See TracBrowser for help on using the repository browser.