1 | /* gptitan: photochimie */ |
---|
2 | /* GCCM */ |
---|
3 | |
---|
4 | /* tout est passe en simple precision */ |
---|
5 | /* sauf pour l'inversion de la matrice */ |
---|
6 | |
---|
7 | /* nitriles et hydrocarbures separes pour l'inversion */ |
---|
8 | |
---|
9 | /* flux variable au sommet */ |
---|
10 | |
---|
11 | #include "titan.h" |
---|
12 | |
---|
13 | void gptitan_(const int *NLAT, |
---|
14 | double *RA, double *TEMP, double *NB, |
---|
15 | char CORPS[][10], double Y[][NLEV], double *FTOP, |
---|
16 | double *DECLIN, double *FIN, int *LAT, double *MASS, |
---|
17 | double *botCH4, |
---|
18 | double KRPD[][NLEV][RDISS+1][15], double KRATE[][NLEV], |
---|
19 | int reactif[][5], int *nom_prod, int *nom_perte, |
---|
20 | int prod[][200], int perte[][200][2], int *aerprod, int *utilaer, |
---|
21 | double MAER[][NLEV], double PRODAER[][NLEV], |
---|
22 | double CSN[][NLEV], double CSH[][NLEV], |
---|
23 | int *htoh2, double *surfhaze) |
---|
24 | { |
---|
25 | char outlog[100],corps[100][10]; |
---|
26 | int dec,declinint,i,j,k,l; |
---|
27 | int ireac,ncom1,ncom2; |
---|
28 | double *fl,*fp,*mu,**jac,*ym1; |
---|
29 | double *fluxtop,fluxCH4; |
---|
30 | double cm,conv,cp,delta,deltamax,dv,dr,drp,drm; |
---|
31 | double rr,np,nm,factdec,s,test,time,ts,v; |
---|
32 | double *fd,**jacd; |
---|
33 | char str2[15]; |
---|
34 | FILE *out; |
---|
35 | |
---|
36 | /* va avec htoh2 */ |
---|
37 | double dyh,dyh2; |
---|
38 | |
---|
39 | /* va avec aer */ |
---|
40 | double dyc2h2,dyhc3n,dyhcn,dynccn,dych3cn,dyc2h3cn; |
---|
41 | double **k_dep,**faer; |
---|
42 | double *productaer,*csurn,*csurh,*mmolaer; |
---|
43 | |
---|
44 | if( (*aerprod) == 1 ) |
---|
45 | { |
---|
46 | k_dep = dm2d( 1, 5, 1, 3 ); /* k en s-1, reactions d'initiation */ |
---|
47 | faer = dm2d( 1, 5, 1, 3 ); /* fraction de chaque compose */ |
---|
48 | productaer = dm1d( 0, 3 ); /* local production rate by pathways */ |
---|
49 | mmolaer = dm1d( 0, 3 ); /* local molar mass by pathways */ |
---|
50 | csurn = dm1d( 0, 3 ); /* local C/N by pathways */ |
---|
51 | csurh = dm1d( 0, 3 ); /* local C/H by pathways */ |
---|
52 | } |
---|
53 | |
---|
54 | /* DEBUG */ |
---|
55 | printf("CHIMIE: lat=%d declin=%e\n",(*LAT)+1,(*DECLIN)); |
---|
56 | /**/ |
---|
57 | |
---|
58 | for( i = 0; i <= NC; i++) |
---|
59 | { |
---|
60 | strcpy( corps[i], CORPS[i] ); |
---|
61 | corps[i][strcspn(CORPS[i], " ")] = '\0'; |
---|
62 | } |
---|
63 | |
---|
64 | strcpy( outlog, "chimietitan" ); |
---|
65 | strcat( outlog, ".log" ); |
---|
66 | deltamax = 1.e5; |
---|
67 | |
---|
68 | /* DEBUG |
---|
69 | out = fopen( outlog, "a" ); |
---|
70 | fprintf(out,"CHIMIE: lat=%d declin=%e\n",(*LAT)+1,(*DECLIN)); |
---|
71 | fclose( out ); |
---|
72 | */ |
---|
73 | ym1 = dm1d( 0, NC-1 ); |
---|
74 | fl = dm1d( 0, NC-1 ); |
---|
75 | fp = dm1d( 0, NC-1 ); |
---|
76 | fd = dm1d( 0, NC-1 ); |
---|
77 | mu = dm1d( 0, NLEV-1 ); |
---|
78 | fluxtop = dm1d( 0, NC-1 ); |
---|
79 | jac = dm2d( 0, NC-1, 0, NC-1 ); |
---|
80 | jacd = dm2d( 0, NC-1, 0, NC-1 ); |
---|
81 | |
---|
82 | /* DEBUG */ |
---|
83 | /* |
---|
84 | out = fopen( "err.log", "a" ); |
---|
85 | fprintf( out,"%s\n", ); |
---|
86 | fclose( out ); |
---|
87 | */ |
---|
88 | |
---|
89 | /* initialisation krate pour dissociations */ |
---|
90 | |
---|
91 | if( ( (*DECLIN) *10 + 267 ) < 14. ) |
---|
92 | { |
---|
93 | declinint = 0; |
---|
94 | dec = 0; |
---|
95 | } |
---|
96 | else |
---|
97 | { |
---|
98 | if( ( (*DECLIN) * 10 + 267 ) > 520. ) |
---|
99 | { |
---|
100 | declinint = 14; |
---|
101 | dec = 534; |
---|
102 | } |
---|
103 | else |
---|
104 | { |
---|
105 | declinint = 1; |
---|
106 | dec = 27; |
---|
107 | while( ( (*DECLIN) * 10 + 267 ) >= (float)(dec+20) ) |
---|
108 | { |
---|
109 | dec += 40; |
---|
110 | declinint++; |
---|
111 | } |
---|
112 | } |
---|
113 | } |
---|
114 | if( ( (*DECLIN) >= -24. ) && ( (*DECLIN) <= 24. ) ) |
---|
115 | factdec = ( (*DECLIN) - (dec-267)/10. ) / 4.; |
---|
116 | else |
---|
117 | factdec = ( (*DECLIN) - (dec-267)/10. ) / 2.7; |
---|
118 | |
---|
119 | for( i = 0; i <= RDISS; i++ ) /* RDISS correspond a la dissociation de N2 par les GCR */ |
---|
120 | for( j = 0; j <= NLEV-1; j++ ) |
---|
121 | { |
---|
122 | if( factdec < 0. ) KRATE[i][j] = KRPD[*LAT][j][i][declinint-1] * fabs(factdec) |
---|
123 | + KRPD[*LAT][j][i][declinint] * ( 1 + factdec); |
---|
124 | if( factdec > 0. ) KRATE[i][j] = KRPD[*LAT][j][i][declinint+1] * factdec |
---|
125 | + KRPD[*LAT][j][i][declinint] * ( 1 - factdec); |
---|
126 | if( factdec == 0. ) KRATE[i][j] = KRPD[*LAT][j][i][declinint]; |
---|
127 | } |
---|
128 | |
---|
129 | /* initialisation mu, CH4 au sol */ |
---|
130 | |
---|
131 | for( j = 0; j <= NLEV-1; j++ ) |
---|
132 | { |
---|
133 | mu[j] = 0.0e0; |
---|
134 | for( i = 0; i <= ST-1; i++ ) |
---|
135 | { |
---|
136 | if( ( strcmp(corps[i], "CH4") == 0 ) && ( Y[i][j] <= *botCH4 ) && ( j == 0 ) ) |
---|
137 | { |
---|
138 | fluxCH4 = (*botCH4 - Y[i][j]); |
---|
139 | Y[i][j] = *botCH4; |
---|
140 | } |
---|
141 | mu[j] += ( MASS[i] * Y[i][j] ); |
---|
142 | } |
---|
143 | } |
---|
144 | |
---|
145 | /* ****************** */ |
---|
146 | /* Main loop: level */ |
---|
147 | /* ****************** */ |
---|
148 | |
---|
149 | for( j = NLEV-1; j >= 0; j-- ) |
---|
150 | { |
---|
151 | |
---|
152 | /* DEBUG |
---|
153 | out = fopen( outlog, "a" ); |
---|
154 | fprintf(out,"j=%d z=%e nb=%e T=%e\n",j,(RA[j]-R0),NB[j],TEMP[j]); |
---|
155 | fclose( out ); |
---|
156 | |
---|
157 | out = fopen( "profils.log", "a" ); |
---|
158 | fprintf(out,"%d %e %e %e\n",j,(RA[j]-R0),NB[j],TEMP[j]); |
---|
159 | for (i=0;i<=NREAC-1;i++) fprintf(out,"%d %e\n",i,KRATE[i][j]); |
---|
160 | for (i=0;i<=ST-1;i++) fprintf(out,"%10s %e\n",corps[i],Y[i][j]); |
---|
161 | fclose( out ); |
---|
162 | |
---|
163 | printf("%d %e %e %e\n",declinint,(RA[j]-R0),NB[j],TEMP[j]); |
---|
164 | for (i=0;i<=RDISS-1;i++) printf("%d %e\n",i,KRPD[*LAT][j][i][declinint]); |
---|
165 | for (i=0;i<=ST-1;i++) printf("%10s %e\n",corps[i],FTOP[i]); |
---|
166 | |
---|
167 | exit(0); |
---|
168 | */ |
---|
169 | |
---|
170 | time = ts = 0.0e0; |
---|
171 | /* delta = (*FIN); */ |
---|
172 | delta = 1.e-3; |
---|
173 | |
---|
174 | for( i = 0; i <= ST-1; i++ ) ym1[i] = max(Y[i][j],1.e-30); |
---|
175 | |
---|
176 | /* ++++++++++++ */ |
---|
177 | /* time loop. */ |
---|
178 | /* ++++++++++++ */ |
---|
179 | |
---|
180 | while( time < (*FIN) ) |
---|
181 | { |
---|
182 | |
---|
183 | /* Calcul de f et de la matrice jacobienne */ |
---|
184 | /* --------------------------------------- */ |
---|
185 | |
---|
186 | for( i = 0; i <= ST-1; i++ ) /* productions et pertes chimiques */ |
---|
187 | { |
---|
188 | Y[i][j] = max(Y[i][j],1.e-30); /* minimum */ |
---|
189 | |
---|
190 | fp[i] = fl[i] = 0.0e0; /* init for next step */ |
---|
191 | for( l = 0; l <= ST-1; l++ ) jac[i][l] = 0.0e0; |
---|
192 | |
---|
193 | for( l = 0; l <= nom_prod[i]-1; l++ ) /* Production term */ |
---|
194 | { |
---|
195 | ireac = prod[i][l]; /* Number of the reaction involves. */ |
---|
196 | ncom1 = reactif[ireac][0]; /* First compound which reacts. */ |
---|
197 | if( reactif[ireac][1] == NC ) /* Photodissociation or relaxation */ |
---|
198 | { |
---|
199 | jac[i][ncom1] += ( KRATE[ireac][j] * NB[j] ); |
---|
200 | fp[i] += ( KRATE[ireac][j] * NB[j] * Y[ncom1][j] ); |
---|
201 | } |
---|
202 | else /* General case. */ |
---|
203 | { |
---|
204 | ncom2 = reactif[ireac][1]; /* Second compound which reacts. */ |
---|
205 | jac[i][ncom1] += ( KRATE[ireac][j] * Y[ncom2][j] ); /* Jacobian compound #1. */ |
---|
206 | jac[i][ncom2] += ( KRATE[ireac][j] * Y[ncom1][j] ); /* Jacobian compound #2. */ |
---|
207 | fp[i] += ( KRATE[ireac][j] * Y[ncom1][j] * Y[ncom2][j] ); /* Production term. */ |
---|
208 | } |
---|
209 | } |
---|
210 | |
---|
211 | for( l = 0; l <= nom_perte[i]-1; l++ ) /* Loss term. */ |
---|
212 | { |
---|
213 | ireac = perte[i][l][0]; /* Reaction number. */ |
---|
214 | ncom2 = perte[i][l][1]; /* Compound #2 reacts. */ |
---|
215 | if( reactif[ireac][1] == NC ) /* Photodissociation or relaxation */ |
---|
216 | { |
---|
217 | jac[i][i] -= ( KRATE[ireac][j] * NB[j] ); |
---|
218 | fl[i] += ( KRATE[ireac][j] * NB[j] ); |
---|
219 | } |
---|
220 | else /* General case. */ |
---|
221 | { |
---|
222 | jac[i][ncom2] -= ( KRATE[ireac][j] * Y[i][j] ); /* Jacobian compound #1. */ |
---|
223 | jac[i][i] -= ( KRATE[ireac][j] * Y[ncom2][j] ); /* Jacobien compound #2. */ |
---|
224 | fl[i] += ( KRATE[ireac][j] * Y[ncom2][j] ); /* Loss term. */ |
---|
225 | } |
---|
226 | } |
---|
227 | } |
---|
228 | |
---|
229 | /* Aerosols */ |
---|
230 | /* -------- */ |
---|
231 | if( (*aerprod) == 1 ) |
---|
232 | { |
---|
233 | aer(corps,TEMP,NB,Y,&j,k_dep,faer, |
---|
234 | &dyc2h2,&dyhc3n,&dyhcn,&dynccn,&dych3cn,&dyc2h3cn,utilaer, |
---|
235 | mmolaer,productaer,csurn,csurh); |
---|
236 | |
---|
237 | for( i = 0; i <= 3; i++ ) |
---|
238 | { |
---|
239 | PRODAER[i][j] = productaer[i]; |
---|
240 | MAER[i][j] = mmolaer[i]; |
---|
241 | CSN[i][j] = csurn[i]; |
---|
242 | CSH[i][j] = csurh[i]; |
---|
243 | } |
---|
244 | /* DEBUG |
---|
245 | printf("AERPROD : LAT = %d - J = %d\n",(*LAT),j); |
---|
246 | if(fabs(dyc2h2*NB[j])>fabs(fp[utilaer[2]]/10.)) |
---|
247 | printf("fp(%s) =%e; dyc2h2 =%e\n",corps[utilaer[2]], |
---|
248 | fp[utilaer[2]],dyc2h2*NB[j]); |
---|
249 | if(fabs(dyhcn*NB[j])>fabs(fp[utilaer[5]]/10.)) |
---|
250 | printf("fp(%s) =%e; dyhcn =%e\n",corps[utilaer[5]], |
---|
251 | fp[utilaer[5]],dyhcn*NB[j]); |
---|
252 | if(fabs(dyhc3n*NB[j])>fabs(fp[utilaer[6]]/10.)) |
---|
253 | printf("fp(%s) =%e; dyhc3n =%e\n",corps[utilaer[6]], |
---|
254 | fp[utilaer[6]],dyhc3n*NB[j]); |
---|
255 | if(fabs(dynccn*NB[j])>fabs(fp[utilaer[13]]/10.)) |
---|
256 | printf("fp(%s) =%e; dynccn =%e\n",corps[utilaer[13]], |
---|
257 | fp[utilaer[13]],dynccn*NB[j]); |
---|
258 | if(fabs(dych3cn*NB[j])>fabs(fp[utilaer[14]]/10.)) |
---|
259 | printf("fp(%s) =%e; dych3cn=%e\n",corps[utilaer[14]], |
---|
260 | fp[utilaer[14]],dych3cn*NB[j]); |
---|
261 | if(fabs(dyc2h3cn*NB[j])>fabs(fp[utilaer[15]]/10.)) |
---|
262 | printf("fp(%s) =%e; dyc2h3cn=%e\n",corps[utilaer[15]], |
---|
263 | fp[utilaer[15]],dyc2h3cn*NB[j]); |
---|
264 | */ |
---|
265 | |
---|
266 | fp[utilaer[2]] -= ( dyc2h2 * NB[j] ); |
---|
267 | fp[utilaer[5]] -= ( dyhcn * NB[j] ); |
---|
268 | fp[utilaer[6]] -= ( dyhc3n * NB[j] ); |
---|
269 | fp[utilaer[13]]-= ( dynccn * NB[j] ); |
---|
270 | fp[utilaer[14]]-= ( dych3cn * NB[j] ); |
---|
271 | fp[utilaer[15]]-= ( dyc2h3cn * NB[j] ); |
---|
272 | if( Y[utilaer[2]][j] != 0.0 ) |
---|
273 | jac[utilaer[2]][utilaer[2]] -= ( dyc2h2 * NB[j] / Y[utilaer[2]][j] ); |
---|
274 | if( Y[utilaer[5]][j] != 0.0 ) |
---|
275 | jac[utilaer[5]][utilaer[5]] -= ( dyhcn * NB[j] / Y[utilaer[5]][j] ); |
---|
276 | if( Y[utilaer[6]][j] != 0.0 ) |
---|
277 | jac[utilaer[6]][utilaer[6]] -= ( dyhc3n * NB[j] / Y[utilaer[6]][j] ); |
---|
278 | if( Y[utilaer[13]][j] != 0.0 ) |
---|
279 | jac[utilaer[13]][utilaer[13]] -= ( dynccn * NB[j] / Y[utilaer[13]][j] ); |
---|
280 | if( Y[utilaer[14]][j] != 0.0 ) |
---|
281 | jac[utilaer[14]][utilaer[14]] -= ( dych3cn * NB[j] / Y[utilaer[14]][j] ); |
---|
282 | if( Y[utilaer[15]][j] != 0.0 ) |
---|
283 | jac[utilaer[15]][utilaer[15]] -= (dyc2h3cn * NB[j] / Y[utilaer[15]][j] ); |
---|
284 | } |
---|
285 | |
---|
286 | /* H -> H2 on haze particles */ |
---|
287 | /* ------------------------- */ |
---|
288 | if( (*htoh2) == 1 ) |
---|
289 | { |
---|
290 | heterohtoh2(corps,TEMP,NB,Y,surfhaze,&j,&dyh,&dyh2,utilaer); |
---|
291 | /* dyh <= 0 / 1.0 en adsor., 1 en reac. */ |
---|
292 | |
---|
293 | /* DEBUG |
---|
294 | printf("HTOH2 : LAT = %d - J = %d\n",(*LAT),j); |
---|
295 | if(fabs(dyh*NB[j])>fabs(fp[utilaer[0]]/10.)) |
---|
296 | printf("fp(%s) = %e; dyh = %e\n",corps[utilaer[0]],fp[utilaer[0]],dyh*NB[j]); |
---|
297 | if(fabs(dyh2*NB[j])>fabs(fp[utilaer[1]]/10.)) |
---|
298 | printf("fp(%s) = %e; dyh2 = %e\n",corps[utilaer[1]],fp[utilaer[1]],dyh2*NB[j]); |
---|
299 | */ |
---|
300 | |
---|
301 | fp[utilaer[0]] += ( dyh * NB[j] ); |
---|
302 | fp[utilaer[1]] += ( dyh2 * NB[j] ); |
---|
303 | if( Y[utilaer[0]][j] != 0.0 ) |
---|
304 | jac[utilaer[0]][utilaer[0]] += ( dyh * NB[j] / Y[utilaer[0]][j] ); |
---|
305 | } |
---|
306 | |
---|
307 | for( i = 0; i <= ST-1; i++ ) /* finition pour inversion */ |
---|
308 | { |
---|
309 | for( k = 0; k <= ST-1; k++ ) |
---|
310 | { |
---|
311 | jac[i][k] *= ( -THETA * delta ); /* Correction time step. */ |
---|
312 | if( k == i ) jac[k][k] += NB[j]; /* Correction diagonal. */ |
---|
313 | jacd[i][k] = (double)jac[i][k]; |
---|
314 | } |
---|
315 | |
---|
316 | fd[i] = (double)(delta * ( fp[i] - Y[i][j]*fl[i] )); |
---|
317 | } |
---|
318 | |
---|
319 | /* for( i = ST; i <= NC-1; i++ ) pas d'inversion (soot,prod): que faire? |
---|
320 | { |
---|
321 | Y[i][j] = ??? ; |
---|
322 | } |
---|
323 | */ |
---|
324 | |
---|
325 | /* Inversion of matrix cf method LU */ |
---|
326 | /* -------------------------------- */ |
---|
327 | |
---|
328 | /* inversion by blocs: */ |
---|
329 | /* Hydrocarbons */ |
---|
330 | |
---|
331 | solve( jacd, fd, 0, NHC-1 ); |
---|
332 | |
---|
333 | for( i = 0; i <= NHC-1; i++ ) |
---|
334 | { |
---|
335 | Y[i][j] += (float)fd[i]; |
---|
336 | if( Y[i][j] <= 1.0e-30 ) Y[i][j] = 0.0e0; |
---|
337 | } |
---|
338 | |
---|
339 | /* Nitriles */ |
---|
340 | |
---|
341 | solve( jacd, fd, NHC, ST-1 ); |
---|
342 | |
---|
343 | for( i = NHC+1; i <= ST-1; i++ ) |
---|
344 | { |
---|
345 | Y[i][j] += (float)fd[i]; |
---|
346 | if( Y[i][j] <= 1.0e-30 ) Y[i][j] = 0.0e0; |
---|
347 | } |
---|
348 | |
---|
349 | /* end inversion by blocs: */ |
---|
350 | |
---|
351 | for( i = 0; i <= ST-1; i++ ) |
---|
352 | { |
---|
353 | |
---|
354 | /* CH4 au sol */ |
---|
355 | /* ---------- */ |
---|
356 | |
---|
357 | if( ( strcmp(corps[i], "CH4") == 0 ) && ( j == 0 ) && ( Y[i][j] < *botCH4 ) ) |
---|
358 | { |
---|
359 | fluxCH4 += (*botCH4 - Y[i][0]); |
---|
360 | Y[i][0] = *botCH4; |
---|
361 | } |
---|
362 | |
---|
363 | } |
---|
364 | |
---|
365 | /* test evolution delta */ |
---|
366 | /* -------------------- */ |
---|
367 | |
---|
368 | for( i = 0; i <= ST-1; i++ ) |
---|
369 | { |
---|
370 | test = 1.0e-15; |
---|
371 | if( ( Y[i][j] > test ) && ( ym1[i] > test ) ) |
---|
372 | { |
---|
373 | conv = fabs( Y[i][j] - ym1[i] ) / ym1[i]; |
---|
374 | |
---|
375 | if( conv > ts ) |
---|
376 | { |
---|
377 | /* |
---|
378 | if( conv >= 0.1 ) |
---|
379 | { |
---|
380 | out = fopen( outlog, "a" ); |
---|
381 | fprintf( out, "Lat no %d; declin:%e;", (*LAT)+1, (*DECLIN) ); |
---|
382 | fprintf(out, " alt:%e; %s %e %e ; %e %e\n",(RA[j]-R0),corps[i],ym1[i],Y[i][j],time,delta); |
---|
383 | fclose( out ); |
---|
384 | } |
---|
385 | */ |
---|
386 | ts = conv; |
---|
387 | } |
---|
388 | } |
---|
389 | } |
---|
390 | |
---|
391 | if( ts < 0.1e0 ) |
---|
392 | { |
---|
393 | for( i = 0; i <= ST-1; i++ ) |
---|
394 | if( (Y[i][j] >= 0.5e0) && (strcmp(corps[i],"N2") != 0) ) |
---|
395 | { |
---|
396 | out = fopen( outlog, "a" ); |
---|
397 | fprintf( out, "WARNING %s mixing ratio is %e %e at %d\n", |
---|
398 | corps[i], ym1[i], Y[i][j], j ); |
---|
399 | for( k = 0; k <= NLEV-1; k++ ) fprintf( out, "%d %e %e\n",k,ym1[i],Y[i][k] ); |
---|
400 | fclose( out ); |
---|
401 | // exit(0); |
---|
402 | Y[i][j] = 1.e-20; |
---|
403 | } |
---|
404 | for( i = 0; i <= NC-1; i++ ) ym1[i] = max(Y[i][j],1.e-30); |
---|
405 | time += delta; |
---|
406 | if( ts < 1.00e-5 ) delta *= 1.0e2; |
---|
407 | if( ( ts > 1.00e-5 ) && ( ts < 1.0e-4 ) ) delta *= 1.0e1; |
---|
408 | if( ( ts > 1.00e-4 ) && ( ts < 1.0e-3 ) ) delta *= 5.0e0; |
---|
409 | if( ( ts > 0.001e0 ) && ( ts < 0.01e0 ) ) delta *= 3.0e0; |
---|
410 | if( ( ts > 0.010e0 ) && ( ts < 0.05e0 ) ) delta *= 1.5e0; |
---|
411 | |
---|
412 | delta = min( deltamax, delta ); |
---|
413 | } |
---|
414 | else |
---|
415 | { |
---|
416 | for( i = 0; i <= NC-1; i++ ) Y[i][j] = ym1[i]; |
---|
417 | |
---|
418 | if( ts > 0.8 ) delta *= 1.e-6; |
---|
419 | if( ( ts > 0.6 ) && ( ts <= 0.8 ) ) delta *= 1.e-4; |
---|
420 | if( ( ts > 0.4 ) && ( ts <= 0.6 ) ) delta *= 1.e-2; |
---|
421 | if( ( ts > 0.3 ) && ( ts <= 0.4 ) ) delta *= 0.1; |
---|
422 | if( ( ts > 0.2 ) && ( ts <= 0.3 ) ) delta *= 0.2; |
---|
423 | if( ( ts > 0.1 ) && ( ts <= 0.2 ) ) delta *= 0.3; |
---|
424 | } |
---|
425 | ts = 0.0e0; |
---|
426 | /* |
---|
427 | out = fopen( outlog, "a" ); |
---|
428 | fprintf(out, " alt:%e; delta:%e; time:%e; fin:%e\n",(RA[j]-R0),delta,time,(*FIN)); |
---|
429 | fclose( out ); |
---|
430 | */ |
---|
431 | } |
---|
432 | |
---|
433 | /* +++++++++++++++++++ */ |
---|
434 | /* end of time loop. */ |
---|
435 | /* +++++++++++++++++++ */ |
---|
436 | |
---|
437 | for( i = 0; i <= ST-1; i++ ) |
---|
438 | if( ( strcmp(corps[i],"CH4") == 0 ) && ( j == 0 ) ) |
---|
439 | fluxCH4 *= ( MASS[i]/(6.022e23*time) ); |
---|
440 | |
---|
441 | } |
---|
442 | |
---|
443 | /* **************** */ |
---|
444 | /* end of main loop */ |
---|
445 | /* **************** */ |
---|
446 | |
---|
447 | /* Plafond: !! OU !! flux vertical */ |
---|
448 | /* ------------------------------------ */ |
---|
449 | |
---|
450 | for( i = 0; i <= ST-1; i++ ) |
---|
451 | if( FTOP[i] != 0.0e0 ) |
---|
452 | { |
---|
453 | fluxtop[i] = (- FTOP[i]/NB[NLEV-2]) * MASS[i]/6.022e23; |
---|
454 | Y[i][NLEV-2] += FTOP[i]/NB[NLEV-2]*(*FIN); |
---|
455 | Y[i][NLEV-2] = max(Y[i][NLEV-2],0.0e0); |
---|
456 | // on ajuste aussi le niveau dans la derniere couche... |
---|
457 | // pour eviter les effets vers le haut |
---|
458 | Y[i][NLEV-1] = Y[i][NLEV-2]; |
---|
459 | } |
---|
460 | |
---|
461 | /* Niveau de N2 */ |
---|
462 | /* ------------ */ |
---|
463 | |
---|
464 | for( j = 0; j <= NLEV-1; j++ ) |
---|
465 | { |
---|
466 | conv = 0.0e0; |
---|
467 | for( i = 0; i <= ST-1; i++ ) if( strcmp(corps[i],"N2") != 0 ) conv += Y[i][j]; |
---|
468 | for( i = 0; i <= ST-1; i++ ) if( strcmp(corps[i],"N2") == 0 ) Y[i][j] = 1. - conv; |
---|
469 | } |
---|
470 | |
---|
471 | if( (*aerprod) == 1 ) |
---|
472 | { |
---|
473 | fdm2d( k_dep, 1, 5, 1 ); |
---|
474 | fdm2d( faer, 1, 5, 1 ); |
---|
475 | fdm1d( productaer, 0 ); |
---|
476 | fdm1d( mmolaer, 0 ); |
---|
477 | fdm1d( csurn, 0 ); |
---|
478 | fdm1d( csurh, 0 ); |
---|
479 | } |
---|
480 | |
---|
481 | fdm1d( ym1, 0 ); |
---|
482 | fdm1d( fl, 0 ); |
---|
483 | fdm1d( fp, 0 ); |
---|
484 | fdm1d( fd, 0 ); |
---|
485 | fdm1d( mu, 0 ); |
---|
486 | fdm1d( fluxtop, 0 ); |
---|
487 | fdm2d( jac, 0, NC-1, 0 ); |
---|
488 | fdm2d( jacd, 0, NC-1, 0 ); |
---|
489 | } |
---|