source: trunk/LMDZ.TITAN.old/libf/phytitan/piah2.F @ 2530

Last change on this file since 2530 was 3, checked in by slebonnois, 14 years ago

Creation de repertoires:

  • chantiers : pour communiquer sur nos projets de modifs
  • documentation : pour stocker les docs

Ajout de:

  • libf/phytitan : physique de Titan
  • libf/chimtitan: chimie de Titan
  • libf/phyvenus : physique de Venus
File size: 8.3 KB
Line 
1      SUBROUTINE PIAH2(NU,NT,XROT,XTRA,T)
2C
3C     XKH2 IS CALLED BY TH2HE TO COMPUT XK1, A FACTOR IN THE
4C     H2-H2 COLLISION-INDUCED ABSORPTION.
5C
6C     THIS VERSION INCLUDES RESULTS OF RECENT LOW-TEMPERATURE FITS
7C     BY G. BIRNBAUM ET AL (NBS), AS IMPLEMENTED BY VIRGIL KUNDE
8C     AND GORDON BJORAKER, AUGUST 1982.
9C
10C     THIS VERSION ALLOWS FOR A NON-EQUILIBRIUM PARA-HYDROGEN FRACTION.
11C
12C     LAST CHANGED BY JOHN HORNSTEIN   CSC   FEB 28,1983
13C     THIS CHANGE DELETED THE DOUBLE-TRANSITIONS, WHICH HAD BEEN
14C     INCORRECTLY FORMULATED IN BACHET ET AL. THE DELETION IS BY
15C     COMMENTING OUT WITH A "CD".
16C
17C  THREE PARAMETERS ARE USED TO FIT THE H2-H2 OPACITY FROM
18C  0 TO 2000 CM-1:  STREN, TAU1, & TAU2.  THE TEMPERATURE
19C  DEPENDENCE OF EACH PARAMETER IS HANDLED DIFFERENTLY.
20C  STREN WAS FIT TO EXPERIMENTAL VALUES IN DORE ET AL AND
21C  BACHET ET AL (1982) USING A LINEAR TEMPERATURE RELATION.
22C  TAU1 & TAU2 FOLLOW A POWER LAW OF THE FORM
23C  TAU = TAU0 * (T/T0)**BT AS SUGGESTED BY DORE ET AL.
24C  CONSTANTS FOR TAU1 ARE FROM DORE ET AL
25C  TAU2 = 1.23 * (TAU2 EVALUATED USING DORE POWER LAW). THIS MATCHES
26C  BACHET ET AL VALUES AT 195K & 297K (TAIL WT SINGLE +
27C  DOUBLE TRANSITION COEFFICIENTS).
28C
29C  PARAMETER DESCRIPTION
30C
31C  STRENGTH PARAMETER:  STREN     (SEE BACHET ET AL EQUATION 4B)
32C  STREN IS REALLY S/KB, TO AVOID LARGE POWERS OF 10.
33C
34C  STREN = 6 * <A**2> * OMEGA**2 * I8(R/SIGMA) / K
35C  (UNITS:  KELVIN*ANGSTROM**6)
36C
37C  <A**2> IS MEAN SQUARE POLARIZABILITY   UNIT:  ANGSTROM**6
38C  OMEGA  IS QUADRUPOLE MOMENT            UNIT:  ESU*CM**2
39C  R IS DISTANCE, SIGMA IS MOLECULAR SEPARATION, X = R/SIGMA
40C  I8(X) = 4*PI*INT(X**-8*EXP(-4.*E/(K*T)*(X**-12-X**-6))*X**2*DX)      00040000
41C  E & SIGMA ARE PARAMETERS OF LENNARD-JONES INTERMOLECULAR POTENTIAL
42C  INT(...DX) IS INTEGRAL 0 TO INFINITY
43C
44C  TIME PARAMETERS:  TAU1 & TAU2
45C
46C  TAU1    CONTROLS HALF WIDTH NEAR LINE CENTER
47C  TAU2    CONTROLS EXPONENTIAL DECAY OF WINGS
48C
49C
50C  DOUBLE TRANSITIONS ARE INCLUDED.
51C  THE ABSORPTION DUE TO DOUBLE TRANSITIONS IS PROPORTIONAL TO C2
52C  C2 = 4./45. * KAPPA**2
53C  KAPPA = (APL-APP)/(1./3. * (APL+2.*APP))
54C  APL & APP ARE POLARIZABILITIES PARALLEL
55C  AND PERPENDICULAR TO INTERNUCLEAR AXIS
56C  KAPPA = .375 FOR GROUND VIB STATE & J=0,1 OR 2 SEE KOLOS & WOLNIEWICZ
57C  JOURNAL OF CHEMICAL PHYSICS 46, 1426 (1967) TABLE 3
58      IMPLICIT REAL (A-H,O-Z)
59      REAL NU,NSQR,K
60      LOGICAL ILIST
61      DIMENSION XROT(251),XTRA(251),XJ(10),G(10),A2(250),RHO(250,10),
62     A E(10),WN(10),WW(10),CG(10),BH(250),STREN(250),TAU1R(250),
63     B TAU2R(250),TAU1T(250),TAU2T(250),COREG0(2),COREG(10,2)
64      DIMENSION T(251)
65      DATA JMAX1/8/,JMAX2/10/,
66     .   PI/3.141593/,HBAR/1.05450E-27/,C/2.997925E+10/,K/1.38054E-16/,
67     .   HCK/1.43879/,XNLOS/2.687E19/,S0/178./,DSDT/.4091/,
68     .   TAU1R0/7.25/,TAU2R0/3.45/,TAU1T0/7.25/,TAU2T0/3.45/,
69     .   BT1/-.605/,BT2/-.607/,T0/273.15/,C2/0.0125/
70C
71      DIMENSION  FPARA(99)
72      save pi,c,a2,ww,tau1t,tau2t,coreg0,rho,tau1r,tau2r,c1,k,bh,stren
73      save cg,coreg
74C
75C**********************************************************************
76C
77C
78C  G(J) ARE STATISTICAL WTS:
79C  G(J)=1 EVEN ROTATIONAL STATES,
80C  G(J)=3 ODD  ROTATIONAL STATES.
81      ILIST=.FALSE.
82C SET THE ORTHO/PARA TO EQUILIBRIUM -CPM
83      NPARA=-1.
84      DO 10  J = 1,JMAX2
85        COREG(J,1)=1.
86        COREG(J,2)=0.
87        XJ(J) = FLOAT(J-1)
88        G(J) = 1.0
89        IF (MOD(J,2) .EQ. 0)  G(J) = 3.0
90 10     E(J) = H2ENER(0.0,XJ(J))
91C  ******************   WARNING   ***********************
92C  CHANGE MADE BY REGIS COURTIN (APRIL 1986).
93C  THE FOLLOWING COEFFICIENTS ARE INTRODUCED FOR THE CASE
94C  OF COLLISIONS BETWEEN H2 AND N2 MOLECULES.
95C  THE CORRECTED ABSORPTION COEFFICIENTS FIT THE DATA OF
96C  DORE ET AL (1986), PREPRINT.
97C  ******************************************************
98      COREG0(1)=22.35
99      COREG0(2)=-0.56
100      COREG(1,1)=0.36
101      COREG(1,2)=0.18
102      COREG(2,1)=10.91
103      COREG(2,2)=-0.433
104C  ******************************************************
105C CG(J) = (2*J+1) * (CLEBSCH-GORDAN COEFF <J 2 J'> )**2
106      DO 20  J = 1,JMAX1
107        CG(J) = (2.0*XJ(J)+1.0) * (3.0*(XJ(J)+1.0)*(XJ(J)+2.0)) /
108     .          (2.0*(2.0*XJ(J)+1.0)*(2.0*XJ(J)+3.0))
109        WN(J) = E(J+2) - E(J)
110 20     WW(J) = 2.0 * PI * C * WN(J)
111      NSQR = (XNLOS*1.0E-24)**2
112      C1 = 2. * PI**2 * NSQR/(3. * HBAR * C)
113C     LIST HEADING FOR ORTHO AND PARA PROFILES:
114      IF ( (NPARA .LE. 0) .OR. (.NOT. ILIST))  GO TO 7000
115      WRITE(6,5000)
1165000  FORMAT(//,' EQUILIBRIUM AND ACTUAL FRACTIONS OF PARA-',
117     .      ' AND ORTHO-HYDROGEN:',/,' LAYER',7X,'FPARA(EQU)',
118     .      7X,'FPARA(HERE)',7X,'FORTHO(EQU)',7X,'FORTHO(HERE)')
1197000  DO 90 IT = 1,NT
120        BH(IT) = HBAR / (K*T(IT))
121C     EVALUATE    STREN, TAU1R, TAU2R AT DESIRED T
122        STREN(IT) = (S0 + DSDT*T(IT))
123        TAU1R(IT) = TAU1R0 * (T(IT)/T0)**BT1 * 1.0E-14
124        TAU2R(IT) = TAU2R0 * (T(IT)/T0)**BT2 * 1.0E-14
125        TAU1T(IT) = TAU1T0 * (T(IT)/T0)**BT1 * 1.0E-14
126        TAU2T(IT) = TAU2T0 * (T(IT)/T0)**BT2 * 1.0E-14
127C     COMPUTE THE FULL PARTION FUNCTION Z, USED IN EQUILIBRIUM,
128C     WHERE ORTHO AND PARA ARE CONVENIENTLY TREATED AS DIFFERENT
129C     STATES OF THE SAME SPECIES.
130        Z = 0.0
131        DO 50 J = 1,JMAX2
132          RHO(IT,J) = EXP(-1.*HCK*E(J)/T(IT))
133 50       Z = Z + (2.0*XJ(J)+1.0)*G(J)*RHO(IT,J)
134        IF (NPARA .LE. 0)  GO TO 54
135C     COMPUTE THE PARTITION FUNCTIONS ZPARA AND ZORTHO USED FOR
136C     NON-EQUILIBRIUM RATIOS, WHERE IT IS CONVENIENT TO TREAT
137C     ORTHO AND PARA AS DISTINCT SPECIES. THE NUCLEAR SPIN
138C     FACTORS G(J) CANCEL OUT IN THIS CASE.
139        ZPARA = 0.
140        ZORTHO = 0.
141        DO 1000  J=1,JMAX2,2
142          ZPARA = ZPARA + (2.*XJ(J) + 1.)*RHO(IT,J)
143          JJ = J + 1
1441000      ZORTHO = ZORTHO + (2.*XJ(JJ) + 1.)*RHO(IT,JJ)
145C     COMPUTE AND LIST THE EQUILIBRIUM AND ACTUAL PROFILES:
146        FEPARA = ZPARA/Z
147        FEORTH = 3.*ZORTHO/Z
148        FORTHO = 1. - FPARA(IT)
149        IF (ILIST)  WRITE(6,2000)  IT, FEPARA, FPARA(IT), FEORTH, FORTHO
1502000    FORMAT(' ',I4,2F15.5,10X,2F15.5)
151C     FORM A NEW RHO WHICH EQUALS RHO(PARA) WHEN XJ IS EVEN
152C     (INDEX J IS ODD) AND EQUALS RHO(ORTHO) WHEN XJ IS ODD.
153      DO 3000  J=1,JMAX2,2
154        RHO(IT,J) = FPARA(IT)*RHO(IT,J)/ZPARA
155        JJ = J + 1
1563000    RHO(IT,JJ) = FORTHO*RHO(IT,JJ)/ZORTHO
157      GO TO 57
158C  EQUILIBRIUM HYDROGEN STATISTICAL WEIGHTS
15954      DO 55  J = 1,JMAX2
16055        RHO(IT,J) = G(J)*RHO(IT,J) / Z
16157      A2(IT) = 0.0
162        DO 60  J = 1,JMAX1
16360        A2(IT) = A2(IT) + XJ(J)*(XJ(J)+1.0)*(2.0*XJ(J)+1.0)*RHO(IT,J)/
164     .                  ((2.0*XJ(J)-1.0)*(2.0*XJ(J)+3.0))
165 90   CONTINUE
166      RETURN
167      ENTRY OPAH2(NU,NT,XROT,XTRA,T)
168      W = 2.0 * PI * C * NU
169      DO 200  IT = 1,NT
170        DBL = 0.
171        FR = 0.
172C    EVALUATE TRANSLATIONAL PART OF SHAPE FACTOR F
173        FT = A2(IT) * GAMFCN(W,T(IT),TAU1T(IT),TAU2T(IT))
174     .* COREG0(1)*T(IT)**COREG0(2)
175        DO 125 J = 1,JMAX1
176C     EVALUATE THE ROTATIONAL PART OF F
177          FR = FR + CG(J) * (RHO(IT,J)*GAMFCN(W-WW(J),T(IT),TAU1R(IT),
178     .         TAU2R(IT))+RHO(IT,J+2)*GAMFCN(W+WW(J),T(IT),TAU1R(IT),
179     .         TAU2R(IT)))
180     .                     * COREG(J,1)*T(IT)**COREG(J,2)
181C         DBL = DBL + CG(J) * (RHO(IT,J) + RHO(IT,J+2))
182 125  CONTINUE
183C  ADD ON PART OF DOUBLE TRANSITION OPACITY (BACHET ET AL EQN 11)
184CD    FR = FR * (1.0 + C2 * A2(IT))
185C  MORE DOUBLE TRANS  (BACHET ET AL EQN 12)
186CD    FT = FT * (1.0 + C2 * A2(IT))
187C  AND STILL MORE DOUBLE TRANS (BACHET ET AL EQN 13)
188CD    FT = FT + C2 * DBL*DBL*GAMFCN(W,T(IT),TAU1T(IT),TAU2T(IT))
189      F = FT + FR
190C  EVALUATE & ADD ON DOUBLE TRANSITIONS (BACHET ET AL EQN 14)
191CD    DO 130 J1=1,4
192CD    DO 130 J2=1,4
193CD    IF (J1.NE.(J1+2).OR.J2.NE.(J1+2))
194CD   A  F = F + C2*RHO(IT,J1)*CG(J1)*RHO(IT,J2)*CG(J2)
195CD   B  * GAMFCN(W-WW(J1)-WW(J2),T(IT),TAU1R(IT),TAU2R(IT))
196CD    IF ((J1+2).NE.(J2+2).OR.J2.NE.J1)
197CD   A  F = F + C2*RHO(IT,J1+2)*CG(J1)*RHO(IT,J2)*CG(J2)
198CD   B  * GAMFCN(W+WW(J1)-WW(J2),T(IT),TAU1R(IT),TAU2R(IT))
199CD    IF ((J1+2).NE.J2.OR.(J2+2).NE.J1)
200CD   A  F = F + C2*RHO(IT,J1+2)*CG(J1)*RHO(IT,J2+2)*CG(J2)
201CD   B  * GAMFCN(W+WW(J1)+WW(J2),T(IT),TAU1R(IT),TAU2R(IT))
202CD    IF (J1.NE.J2.OR.(J2+2).NE.(J1+2))
203CD   A  F = F + C2*RHO(IT,J1)*CG(J1)*RHO(IT,J2+2)*CG(J2)
204CD   B  * GAMFCN(W-WW(J1)+WW(J2),T(IT),TAU1R(IT),TAU2R(IT)
205CD130 CONTINUE
206      XROT(IT) = C1 * K * W * (1.0-EXP(-BH(IT)*W)) * STREN(IT)*FR
207      XTRA(IT) = XROT(IT)*FT/FR
208200   CONTINUE
209      RETURN
210      END
Note: See TracBrowser for help on using the repository browser.