1 | /* gptitan: photochimie */ |
---|
2 | /* GCCM */ |
---|
3 | |
---|
4 | /* tout est passe en simple precision */ |
---|
5 | /* sauf pour l'inversion de la matrice */ |
---|
6 | |
---|
7 | /* nitriles et hydrocarbures separes pour l'inversion */ |
---|
8 | |
---|
9 | /* flux variable au sommet */ |
---|
10 | |
---|
11 | #include "titan.h" |
---|
12 | |
---|
13 | void gptitan_( |
---|
14 | double *RA, double *TEMP, double *NB, |
---|
15 | char CORPS[][10], double Y[][NLEV], |
---|
16 | double *FIN, int *LAT, double *MASS, double MD[][NLEV], |
---|
17 | double *KEDD, double *botCH4, double KRATE[][NLEV], |
---|
18 | int reactif[][5], int *nom_prod, int *nom_perte, |
---|
19 | int prod[][200], int perte[][200][2], int *aerprod, int *utilaer, |
---|
20 | double MAER[][NLEV], double PRODAER[][NLEV], |
---|
21 | double CSN[][NLEV], double CSH[][NLEV], |
---|
22 | int *htoh2, double *surfhaze) |
---|
23 | { |
---|
24 | char outlog[100],corps[100][10]; |
---|
25 | int i,j,k,l; |
---|
26 | int ireac,ncom1,ncom2; |
---|
27 | double ***a,***b,**c; |
---|
28 | double *fl,*fp,*mu,**jac,**ym1,**f; |
---|
29 | double fluxCH4; |
---|
30 | double conv,delta,deltamax; |
---|
31 | double cm,cp,dim,dip,dm,dp,dym,dyp,km,kp,r,dra,dram,drap; |
---|
32 | double np,nm,s,test,time,ts,v,dv; |
---|
33 | char str2[15]; |
---|
34 | FILE *out; |
---|
35 | |
---|
36 | /* va avec htoh2 */ |
---|
37 | double dyh,dyh2; |
---|
38 | |
---|
39 | /* va avec aer */ |
---|
40 | double dyc2h2,dyhc3n,dyhcn,dynccn,dych3cn,dyc2h3cn; |
---|
41 | double **k_dep,**faer; |
---|
42 | double *productaer,*csurn,*csurh,*mmolaer; |
---|
43 | |
---|
44 | if( (*aerprod) == 1 ) |
---|
45 | { |
---|
46 | k_dep = dm2d( 1, 5, 1, 3 ); /* k en s-1, reactions d'initiation */ |
---|
47 | faer = dm2d( 1, 5, 1, 3 ); /* fraction de chaque compose */ |
---|
48 | productaer = dm1d( 0, 3 ); /* local production rate by pathways */ |
---|
49 | mmolaer = dm1d( 0, 3 ); /* local molar mass by pathways */ |
---|
50 | csurn = dm1d( 0, 3 ); /* local C/N by pathways */ |
---|
51 | csurh = dm1d( 0, 3 ); /* local C/H by pathways */ |
---|
52 | } |
---|
53 | |
---|
54 | /* DEBUG */ |
---|
55 | printf("CHIMIE: lat=%d\n",(*LAT)+1); |
---|
56 | /**/ |
---|
57 | |
---|
58 | for( i = 0; i <= NC; i++) |
---|
59 | { |
---|
60 | strcpy( corps[i], CORPS[i] ); |
---|
61 | corps[i][strcspn(CORPS[i], " ")] = '\0'; |
---|
62 | } |
---|
63 | |
---|
64 | strcpy( outlog, "chimietitan" ); |
---|
65 | strcat( outlog, ".log" ); |
---|
66 | out = fopen( outlog, "w" ); |
---|
67 | fprintf(out,"CHIMIE: lat=%d\n",(*LAT)+1); |
---|
68 | fclose( out ); |
---|
69 | |
---|
70 | deltamax = 1.e5; |
---|
71 | test = 1.0e-15; |
---|
72 | |
---|
73 | /* valeur de r: |
---|
74 | r = g0 R0^2 / R * 2 * 1E-3 |
---|
75 | avec g0 en cm/s2, R0 en km, mu et mass en g |
---|
76 | */ |
---|
77 | r = 21.595656e0; |
---|
78 | |
---|
79 | /* DEBUG |
---|
80 | out = fopen( outlog, "a" ); |
---|
81 | fprintf(out,"CHIMIE: lat=%d\n",(*LAT)+1); |
---|
82 | fclose( out ); |
---|
83 | */ |
---|
84 | fl = dm1d( 0, NC-1 ); |
---|
85 | fp = dm1d( 0, NC-1 ); |
---|
86 | mu = dm1d( 0, NLEV-1 ); |
---|
87 | ym1 = dm2d( 0, NC-1, 0, NLEV-1 ); |
---|
88 | f = dm2d( 0, NC-1, 0, NLEV-1 ); |
---|
89 | jac = dm2d( 0, NC-1, 0, NC-1 ); |
---|
90 | c = dm2d( 0, NLEV-1, 0, NC-1 ); |
---|
91 | a = dm3d( 0, NLEV-1, 0, NC-1, 0, NC-1 ); |
---|
92 | b = dm3d( 0, NLEV-1, 0, NC-1, 1, 2 ); |
---|
93 | |
---|
94 | /* DEBUG */ |
---|
95 | /* |
---|
96 | out = fopen( "err.log", "a" ); |
---|
97 | fprintf( out,"%s\n", ); |
---|
98 | fclose( out ); |
---|
99 | */ |
---|
100 | |
---|
101 | /* initialisation mu, CH4 au sol */ |
---|
102 | |
---|
103 | for( j = 0; j <= NLEV-1; j++ ) |
---|
104 | { |
---|
105 | mu[j] = 0.0e0; |
---|
106 | for( i = 0; i <= ST-1; i++ ) |
---|
107 | { |
---|
108 | if( ( strcmp(corps[i], "CH4") == 0 ) && ( Y[i][j] <= *botCH4 ) && ( j == 0 ) ) |
---|
109 | { |
---|
110 | fluxCH4 = (*botCH4 - Y[i][j]); |
---|
111 | Y[i][j] = *botCH4; |
---|
112 | } |
---|
113 | mu[j] += ( MASS[i] * Y[i][j] ); |
---|
114 | } |
---|
115 | } |
---|
116 | |
---|
117 | /* initialisation compo avant calcul */ |
---|
118 | for( j = NLEV-1; j >= 0; j-- ) |
---|
119 | for( i = 0; i <= ST-1; i++ ) ym1[i][j] = max(Y[i][j],1.e-30); |
---|
120 | |
---|
121 | /* |
---|
122 | ========================================================================== |
---|
123 | STRATEGIE: |
---|
124 | INVERSION COMPLETE AVEC DIFFUSION ENTRE NLEV-1 et NLD |
---|
125 | PUIS INVERSION LOCALE PAR BLOC ENTRE NLD ET LA SURFACE |
---|
126 | ========================================================================== |
---|
127 | |
---|
128 | PREMIERE ETAPE: |
---|
129 | =============== |
---|
130 | INVERSION COMPLETE AVEC DIFFUSION ENTRE NLEV-1 et NLD |
---|
131 | =============== |
---|
132 | */ |
---|
133 | |
---|
134 | /* ****************** */ |
---|
135 | /* Time loop: */ |
---|
136 | /* ****************** */ |
---|
137 | |
---|
138 | time = ts = 0.0e0; |
---|
139 | delta = 1.e-3; |
---|
140 | |
---|
141 | while( time < (*FIN) ) |
---|
142 | { |
---|
143 | |
---|
144 | |
---|
145 | /* DEBUG |
---|
146 | for( j = NLEV-1; j >= NLD; j-- ) |
---|
147 | { |
---|
148 | out = fopen( outlog, "a" ); |
---|
149 | fprintf(out,"j=%d z=%e nb=%e T=%e\n",j,(RA[j]-R0),NB[j],TEMP[j]); |
---|
150 | fclose( out ); |
---|
151 | |
---|
152 | out = fopen( "profils.log", "a" ); |
---|
153 | fprintf(out,"%d %e %e %e\n",j,(RA[j]-R0),NB[j],TEMP[j]); |
---|
154 | for (i=0;i<=NREAC-1;i++) fprintf(out,"%d %e\n",i,KRATE[i][j]); |
---|
155 | for (i=0;i<=ST-1;i++) fprintf(out,"%10s %e\n",corps[i],Y[i][j]); |
---|
156 | fclose( out ); |
---|
157 | } |
---|
158 | exit(0); |
---|
159 | */ |
---|
160 | |
---|
161 | |
---|
162 | /* ------------------------------ */ |
---|
163 | /* Calculs variations et jacobien */ |
---|
164 | /* ------------------------------ */ |
---|
165 | |
---|
166 | for( j = NLEV-1; j >= NLD; j-- ) |
---|
167 | { |
---|
168 | |
---|
169 | /* init of step */ |
---|
170 | /* ------------ */ |
---|
171 | for( i = 0; i <= ST-1; i++ ) |
---|
172 | { |
---|
173 | fp[i] = fl[i] = 0.0e0; |
---|
174 | for( l = 0; l <= ST-1; l++ ) jac[i][l] = 0.0e0; |
---|
175 | } |
---|
176 | |
---|
177 | /* Chimie */ |
---|
178 | /* ------ */ |
---|
179 | |
---|
180 | /* productions et pertes chimiques */ |
---|
181 | for( i = 0; i <= ST-1; i++ ) |
---|
182 | { |
---|
183 | Y[i][j] = max(Y[i][j],1.e-30); /* minimum */ |
---|
184 | |
---|
185 | for( l = 0; l <= nom_prod[i]-1; l++ ) /* Production term */ |
---|
186 | { |
---|
187 | ireac = prod[i][l]; /* Number of the reaction involves. */ |
---|
188 | ncom1 = reactif[ireac][0]; /* First compound which reacts. */ |
---|
189 | if( reactif[ireac][1] == NC ) /* Photodissociation or relaxation */ |
---|
190 | { |
---|
191 | jac[i][ncom1] += ( KRATE[ireac][j] * NB[j] ); |
---|
192 | fp[i] += ( KRATE[ireac][j] * NB[j] * Y[ncom1][j] ); |
---|
193 | } |
---|
194 | else /* General case. */ |
---|
195 | { |
---|
196 | ncom2 = reactif[ireac][1]; /* Second compound which reacts. */ |
---|
197 | jac[i][ncom1] += ( KRATE[ireac][j] * Y[ncom2][j] ); /* Jacobian compound #1. */ |
---|
198 | jac[i][ncom2] += ( KRATE[ireac][j] * Y[ncom1][j] ); /* Jacobian compound #2. */ |
---|
199 | fp[i] += ( KRATE[ireac][j] * Y[ncom1][j] * Y[ncom2][j] ); /* Production term. */ |
---|
200 | } |
---|
201 | } |
---|
202 | |
---|
203 | for( l = 0; l <= nom_perte[i]-1; l++ ) /* Loss term. */ |
---|
204 | { |
---|
205 | ireac = perte[i][l][0]; /* Reaction number. */ |
---|
206 | ncom2 = perte[i][l][1]; /* Compound #2 reacts. */ |
---|
207 | if( reactif[ireac][1] == NC ) /* Photodissociation or relaxation */ |
---|
208 | { |
---|
209 | jac[i][i] -= ( KRATE[ireac][j] * NB[j] ); |
---|
210 | fl[i] += ( KRATE[ireac][j] * NB[j] ); |
---|
211 | } |
---|
212 | else /* General case. */ |
---|
213 | { |
---|
214 | jac[i][ncom2] -= ( KRATE[ireac][j] * Y[i][j] ); /* Jacobian compound #1. */ |
---|
215 | jac[i][i] -= ( KRATE[ireac][j] * Y[ncom2][j] ); /* Jacobien compound #2. */ |
---|
216 | fl[i] += ( KRATE[ireac][j] * Y[ncom2][j] ); /* Loss term. */ |
---|
217 | } |
---|
218 | } |
---|
219 | } |
---|
220 | |
---|
221 | |
---|
222 | /* Aerosols */ |
---|
223 | /* -------- */ |
---|
224 | if( (*aerprod) == 1 ) |
---|
225 | { |
---|
226 | aer(corps,TEMP,NB,Y,&j,k_dep,faer, |
---|
227 | &dyc2h2,&dyhc3n,&dyhcn,&dynccn,&dych3cn,&dyc2h3cn,utilaer, |
---|
228 | mmolaer,productaer,csurn,csurh); |
---|
229 | |
---|
230 | for( i = 0; i <= 3; i++ ) |
---|
231 | { |
---|
232 | PRODAER[i][j] = productaer[i]; |
---|
233 | MAER[i][j] = mmolaer[i]; |
---|
234 | CSN[i][j] = csurn[i]; |
---|
235 | CSH[i][j] = csurh[i]; |
---|
236 | } |
---|
237 | /* DEBUG |
---|
238 | printf("AERPROD : LAT = %d - J = %d\n",(*LAT),j); |
---|
239 | if(fabs(dyc2h2*NB[j])>fabs(fp[utilaer[2]]/10.)) |
---|
240 | printf("fp(%s) =%e; dyc2h2 =%e\n",corps[utilaer[2]], |
---|
241 | fp[utilaer[2]],dyc2h2*NB[j]); |
---|
242 | if(fabs(dyhcn*NB[j])>fabs(fp[utilaer[5]]/10.)) |
---|
243 | printf("fp(%s) =%e; dyhcn =%e\n",corps[utilaer[5]], |
---|
244 | fp[utilaer[5]],dyhcn*NB[j]); |
---|
245 | if(fabs(dyhc3n*NB[j])>fabs(fp[utilaer[6]]/10.)) |
---|
246 | printf("fp(%s) =%e; dyhc3n =%e\n",corps[utilaer[6]], |
---|
247 | fp[utilaer[6]],dyhc3n*NB[j]); |
---|
248 | if(fabs(dynccn*NB[j])>fabs(fp[utilaer[13]]/10.)) |
---|
249 | printf("fp(%s) =%e; dynccn =%e\n",corps[utilaer[13]], |
---|
250 | fp[utilaer[13]],dynccn*NB[j]); |
---|
251 | if(fabs(dych3cn*NB[j])>fabs(fp[utilaer[14]]/10.)) |
---|
252 | printf("fp(%s) =%e; dych3cn=%e\n",corps[utilaer[14]], |
---|
253 | fp[utilaer[14]],dych3cn*NB[j]); |
---|
254 | if(fabs(dyc2h3cn*NB[j])>fabs(fp[utilaer[15]]/10.)) |
---|
255 | printf("fp(%s) =%e; dyc2h3cn=%e\n",corps[utilaer[15]], |
---|
256 | fp[utilaer[15]],dyc2h3cn*NB[j]); |
---|
257 | */ |
---|
258 | |
---|
259 | fp[utilaer[2]] -= ( dyc2h2 * NB[j] ); |
---|
260 | fp[utilaer[5]] -= ( dyhcn * NB[j] ); |
---|
261 | fp[utilaer[6]] -= ( dyhc3n * NB[j] ); |
---|
262 | fp[utilaer[13]]-= ( dynccn * NB[j] ); |
---|
263 | fp[utilaer[14]]-= ( dych3cn * NB[j] ); |
---|
264 | fp[utilaer[15]]-= ( dyc2h3cn * NB[j] ); |
---|
265 | if( Y[utilaer[2]][j] != 0.0 ) |
---|
266 | jac[utilaer[2]][utilaer[2]] -= ( dyc2h2 * NB[j] / Y[utilaer[2]][j] ); |
---|
267 | if( Y[utilaer[5]][j] != 0.0 ) |
---|
268 | jac[utilaer[5]][utilaer[5]] -= ( dyhcn * NB[j] / Y[utilaer[5]][j] ); |
---|
269 | if( Y[utilaer[6]][j] != 0.0 ) |
---|
270 | jac[utilaer[6]][utilaer[6]] -= ( dyhc3n * NB[j] / Y[utilaer[6]][j] ); |
---|
271 | if( Y[utilaer[13]][j] != 0.0 ) |
---|
272 | jac[utilaer[13]][utilaer[13]] -= ( dynccn * NB[j] / Y[utilaer[13]][j] ); |
---|
273 | if( Y[utilaer[14]][j] != 0.0 ) |
---|
274 | jac[utilaer[14]][utilaer[14]] -= ( dych3cn * NB[j] / Y[utilaer[14]][j] ); |
---|
275 | if( Y[utilaer[15]][j] != 0.0 ) |
---|
276 | jac[utilaer[15]][utilaer[15]] -= (dyc2h3cn * NB[j] / Y[utilaer[15]][j] ); |
---|
277 | } |
---|
278 | |
---|
279 | |
---|
280 | /* H -> H2 on haze particles */ |
---|
281 | /* ------------------------- */ |
---|
282 | if( (*htoh2) == 1 ) |
---|
283 | { |
---|
284 | heterohtoh2(corps,TEMP,NB,Y,surfhaze,&j,&dyh,&dyh2,utilaer); |
---|
285 | /* dyh <= 0 / 1.0 en adsor., 1 en reac. */ |
---|
286 | |
---|
287 | /* DEBUG |
---|
288 | printf("HTOH2 : LAT = %d - J = %d\n",(*LAT),j); |
---|
289 | if(fabs(dyh*NB[j])>fabs(fp[utilaer[0]]/10.)) |
---|
290 | printf("fp(%s) = %e; dyh = %e\n",corps[utilaer[0]],fp[utilaer[0]],dyh*NB[j]); |
---|
291 | if(fabs(dyh2*NB[j])>fabs(fp[utilaer[1]]/10.)) |
---|
292 | printf("fp(%s) = %e; dyh2 = %e\n",corps[utilaer[1]],fp[utilaer[1]],dyh2*NB[j]); |
---|
293 | */ |
---|
294 | |
---|
295 | fp[utilaer[0]] += ( dyh * NB[j] ); |
---|
296 | /* pourquoi pas *2 ?? cf gptit dans 2da... */ |
---|
297 | |
---|
298 | fp[utilaer[1]] += ( dyh2 * NB[j] ); |
---|
299 | if( Y[utilaer[0]][j] != 0.0 ) |
---|
300 | jac[utilaer[0]][utilaer[0]] += ( dyh * NB[j] / Y[utilaer[0]][j] ); |
---|
301 | /* pourquoi pas *2 ?? cf gptit dans 2da... */ |
---|
302 | } |
---|
303 | |
---|
304 | |
---|
305 | /* Backup jacobian level j. */ |
---|
306 | /* ------------------------ */ |
---|
307 | for( i = 0; i <= ST-1; i++ ) |
---|
308 | for( k = 0; k <= ST-1; k++ ) |
---|
309 | a[j][i][k] = jac[i][k]; |
---|
310 | |
---|
311 | |
---|
312 | /* Diffusion verticale et flux exterieurs */ |
---|
313 | /* -------------------------------------- */ |
---|
314 | |
---|
315 | /* |
---|
316 | pour dy/dr, dr doit etre en cm... |
---|
317 | pareil pour dphi/dr |
---|
318 | */ |
---|
319 | for( i = 0; i <= ST-1; i++ ) |
---|
320 | { |
---|
321 | |
---|
322 | /* First level. */ |
---|
323 | if( j == NLD ) |
---|
324 | { |
---|
325 | v = dv = 0.0e0; |
---|
326 | dra = RA[j+1]-RA[j]; |
---|
327 | |
---|
328 | cp = (NB[j+1]+NB[j])/2.; /* Mean total concentration. */ |
---|
329 | dip = r * (MASS[i]-(mu[j+1]+mu[j])/2.) / (TEMP[j+1]+TEMP[j]) / |
---|
330 | pow( RA[j+1], 2.0e0 ); /* Delta i,j level +1. */ |
---|
331 | dp = (MD[i][j]+MD[i][j+1])/2.; /* Mean molecular diffusion. */ |
---|
332 | dyp = (Y[i][j+1]-Y[i][j])/(RA[j+2]-RA[j])*2.e-5; /* Delta y level +1. */ |
---|
333 | kp = (KEDD[j+1]+KEDD[j])/2.; /* Mean eddy diffusion. */ |
---|
334 | /* div phi. */ |
---|
335 | f[i][j] = cp * ( dp * ( (Y[i][j+1]+Y[i][j])/2. * dip + dyp ) |
---|
336 | + kp * dyp ) |
---|
337 | * (4.e-5/dra/pow((1.+RA[j]/RA[j+1]),2.)) |
---|
338 | + fp[i] - Y[i][j]*fl[i] + v; |
---|
339 | /* dphi / dy this level. */ |
---|
340 | a[j][i][i] += ( cp * ( dp * 0.5e0 * dip |
---|
341 | - 2.e-5/(RA[j+2]-RA[j]) * (dp + kp) ) |
---|
342 | * (4.e-5/dra/pow((1.+RA[j]/RA[j+1]),2.)) + dv ); |
---|
343 | /* dphi / dy level +1. */ |
---|
344 | c[j][i] = -THETA * delta |
---|
345 | * cp * ( dp * 0.5e0 * dip |
---|
346 | + 2.e-5/(RA[j+2]-RA[j]) * (dp + kp) ) |
---|
347 | * (4.e-5/dra/pow((1.+RA[j]/RA[j+1]),2.)); |
---|
348 | } |
---|
349 | /* Last level. */ |
---|
350 | else if( j == NLEV-1 ) |
---|
351 | { |
---|
352 | v = dv = 0.0e0; |
---|
353 | dra = RA[NLEV-1]-RA[NLEV-2]; |
---|
354 | |
---|
355 | /* Jeans escape */ |
---|
356 | if( strcmp(corps[i], "H") == 0 ) |
---|
357 | { |
---|
358 | dv = top_H * NB[NLEV-1] |
---|
359 | * (4.e-5/dra/pow((2.-dra/(RA[NLEV-1]+dra)),2.)); |
---|
360 | v = dv * Y[i][NLEV-1]; |
---|
361 | } |
---|
362 | if( strcmp(corps[i], "H2") == 0 ) |
---|
363 | { |
---|
364 | dv = top_H2 * NB[NLEV-1] |
---|
365 | * (4.e-5/dra/pow((2.-dra/(RA[NLEV-1]+dra)),2.)); |
---|
366 | v = dv * Y[i][NLEV-1]; |
---|
367 | } |
---|
368 | /* Input flux for N(4S) */ |
---|
369 | if( strcmp(corps[i], "N4S") == 0 ) |
---|
370 | v = top_N4S |
---|
371 | * (4.e-5/dra/pow((2.-dra/(RA[NLEV-1]+dra)),2.)); |
---|
372 | |
---|
373 | cm = (NB[NLEV-1]+NB[NLEV-2])/2.; /* Mean total concentration. */ |
---|
374 | dim = r * (MASS[i]-(mu[NLEV-1]+mu[NLEV-2])/2.) |
---|
375 | / (TEMP[NLEV-1]+TEMP[NLEV-2]) |
---|
376 | / pow( RA[NLEV-1], 2.0e0 ); /* Delta i,j level -1. */ |
---|
377 | dm = (MD[i][NLEV-1]+MD[i][NLEV-2])/2.; /* Mean molecular diffusion. */ |
---|
378 | dym = (Y[i][NLEV-1]-Y[i][NLEV-2])/dra*1.e-5; /* Delta y level -1. */ |
---|
379 | km = (KEDD[NLEV-1]+KEDD[NLEV-2])/2.; /* Mean eddy diffusion. */ |
---|
380 | /* div phi. */ |
---|
381 | f[i][NLEV-1] = fp[i] - Y[i][NLEV-1]*fl[i] - v |
---|
382 | - cm * ( dm * ( (Y[i][NLEV-1]+Y[i][NLEV-2])/2. * dim + dym ) |
---|
383 | + km * dym ) |
---|
384 | * (4.e-5/dra/pow((2.+dra/RA[NLEV-1]),2.)); |
---|
385 | /* dphi / dy this level */ |
---|
386 | a[NLEV-1][i][i] -= ( cm * ( dm * 0.5e0 * dim |
---|
387 | + 1.e-5/dra * (dm + km ) ) |
---|
388 | * (4.e-5/dra/pow((2.+dra/RA[NLEV-1]),2.)) + dv ); |
---|
389 | /* dphi / dy level -1. */ |
---|
390 | b[NLEV-1][i][2] = THETA * delta |
---|
391 | * cm * ( dm * 0.5e0 * dim |
---|
392 | - 1.e-5/dra * (dm + km ) ) |
---|
393 | * (4.e-5/dra/pow((2.+dra/RA[NLEV-1]),2.)); |
---|
394 | } |
---|
395 | else |
---|
396 | { |
---|
397 | v = dv = 0.0e0; |
---|
398 | dram=(RA[j+1]-RA[j-1])/2.; |
---|
399 | if (j<NLEV-2) |
---|
400 | drap=(RA[j+1]-RA[j-1])/2.; |
---|
401 | else |
---|
402 | drap=dram; |
---|
403 | |
---|
404 | cm = (NB[j]+NB[j-1])/2.; /* Mean concentration level -1. */ |
---|
405 | cp = (NB[j]+NB[j+1])/2.; /* Mean concentration level +1. */ |
---|
406 | dip = r * (MASS[i]-(mu[j+1]+mu[j])/2.) / (TEMP[j+1]+TEMP[j]) / |
---|
407 | pow( RA[j+1], 2.0e0 ); /* Delta i,j level +1. */ |
---|
408 | dim = r * (MASS[i]-(mu[j]+mu[j-1])/2.) / (TEMP[j]+TEMP[j-1]) / |
---|
409 | pow( RA[j], 2.0e0 ); /* Delta i,j level -1. */ |
---|
410 | dm = (MD[i][j-1]+MD[i][j])/2.; /* Mean molecular diffusion level -1. */ |
---|
411 | dp = (MD[i][j+1]+MD[i][j])/2.; /* Mean molecular diffusion level +1. */ |
---|
412 | dym = (Y[i][j]-Y[i][j-1])/dram*1.e-5; /* Delta y level -1. */ |
---|
413 | dyp = (Y[i][j+1]-Y[i][j])/drap*1.e-5; /* Delta y level +1. */ |
---|
414 | km = (KEDD[j]+KEDD[j-1])/2.; /* Mean eddy diffusion level -1. */ |
---|
415 | kp = (KEDD[j]+KEDD[j+1])/2.; /* Mean eddy diffusion level +1. */ |
---|
416 | /* div phi. */ |
---|
417 | f[i][j] = cp * ( dp * ( (Y[i][j+1]+Y[i][j])/2. * dip + dyp ) |
---|
418 | + kp * dyp ) |
---|
419 | * (4.e-5/(RA[j+1]-RA[j])/pow((1.+RA[j]/RA[j+1]),2.)) |
---|
420 | - cm * ( dm * ( (Y[i][j]+Y[i][j-1])/2. * dim + dym ) |
---|
421 | + km * dym ) |
---|
422 | * (4.e-5/(RA[j+1]-RA[j])/pow((1.+RA[j+1]/RA[j]),2.)) |
---|
423 | + fp[i] - fl[i] * Y[i][j] + v; |
---|
424 | /* dphi / dy this level */ |
---|
425 | a[j][i][i] += ( cp * ( dp * 0.5e0 * dip |
---|
426 | - 1.e-5/drap * (dp + kp) ) |
---|
427 | * (4.e-5/(RA[j+1]-RA[j])/pow((1.+RA[j]/RA[j+1]),2.)) |
---|
428 | - cm * ( dm * 0.5e0 * dim |
---|
429 | + 1.e-5/dram * (dm + km ) ) |
---|
430 | * (4.e-5/(RA[j+1]-RA[j])/pow((1.+RA[j+1]/RA[j]),2.)) ); |
---|
431 | /* dphi / dy level -1. */ |
---|
432 | b[j][i][2] = THETA * delta |
---|
433 | * cm * ( dm * 0.5e0 * dim |
---|
434 | - 1.e-5/dram * (dm + km ) ) |
---|
435 | * (4.e-5/(RA[j+1]-RA[j])/pow((1.+RA[j+1]/RA[j]),2.)); |
---|
436 | /* dphi / dy level +1. */ |
---|
437 | c[j][i] = -THETA * delta |
---|
438 | * cp * ( dp * 0.5e0 * dip |
---|
439 | + 1.e-5/drap * (dp + kp) ) |
---|
440 | * (4.e-5/(RA[j+1]-RA[j])/pow((1.+RA[j]/RA[j+1]),2.)); |
---|
441 | } |
---|
442 | } |
---|
443 | |
---|
444 | |
---|
445 | |
---|
446 | /* finition pour inversion */ |
---|
447 | /* ----------------------- */ |
---|
448 | |
---|
449 | for( i = 0; i <= ST-1; i++ ) |
---|
450 | { |
---|
451 | for( k = 0; k <= ST-1; k++ ) |
---|
452 | { |
---|
453 | a[j][i][k] *= ( -THETA * delta ); /* Correction time step. */ |
---|
454 | if( k == i ) a[j][k][k] += NB[j]; /* Correction diagonal. */ |
---|
455 | } |
---|
456 | f[i][j] *= delta; |
---|
457 | } |
---|
458 | |
---|
459 | } |
---|
460 | |
---|
461 | |
---|
462 | /* -------------------------------- */ |
---|
463 | /* Inversion of matrix cf method LU */ |
---|
464 | /* -------------------------------- */ |
---|
465 | |
---|
466 | for( j = NLD+1; j <= NLEV-1; j++ ) |
---|
467 | { |
---|
468 | solve( a, j-1, 0, ST-1 ); |
---|
469 | for( i = 0; i <= ST-1; i++ ) |
---|
470 | { |
---|
471 | s = 0.0e0; |
---|
472 | for( k = 0; k <= ST-1; k++ ) |
---|
473 | { |
---|
474 | a[j][i][k] -= ( b[j][i][2] * c[j-1][k] * a[j-1][i][k] ); |
---|
475 | s += ( b[j][i][2] * f[k][j-1] * a[j-1][i][k] ); |
---|
476 | } |
---|
477 | f[i][j] -= s; |
---|
478 | } |
---|
479 | } |
---|
480 | solve( a, NLEV-1, 0, ST-1 ); |
---|
481 | for( j = NLEV-1; j >= NLD; j-- ) |
---|
482 | { |
---|
483 | if( j != NLEV-1 ) |
---|
484 | for( i = 0; i <= ST-1; i++ ) f[i][j] -= ( c[j][i] * b[j+1][i][1] ); |
---|
485 | for( i = 0; i <= ST-1; i++ ) |
---|
486 | { |
---|
487 | s = 0.0e0; |
---|
488 | for( k = 0; k <= ST-1; k++ ) s += ( a[j][i][k] * f[k][j] ); |
---|
489 | b[j][i][1] = s; |
---|
490 | Y[i][j] += s; |
---|
491 | if( Y[i][j] <= 1.0e-30 ) Y[i][j] = 0.0e0; |
---|
492 | } |
---|
493 | } |
---|
494 | |
---|
495 | /* ------------------ */ |
---|
496 | /* Tests et evolution */ |
---|
497 | /* ------------------ */ |
---|
498 | |
---|
499 | /* Calcul deviation */ |
---|
500 | /* ---------------- */ |
---|
501 | |
---|
502 | for( j = NLD; j <= NLEV-1; j++ ) |
---|
503 | for( i = 0; i <= ST-1; i++ ) |
---|
504 | if( ( Y[i][j] > test ) && ( ym1[i][j] > test ) ) |
---|
505 | { |
---|
506 | conv = fabs( Y[i][j] - ym1[i][j] ) / ym1[i][j]; |
---|
507 | if( conv > ts ) |
---|
508 | { |
---|
509 | /* |
---|
510 | if( conv >= 0.1 ) |
---|
511 | { |
---|
512 | out = fopen( outlog, "a" ); |
---|
513 | fprintf( out, "Lat no %d;", (*LAT)+1); |
---|
514 | fprintf(out, " alt:%e; %s %e %e ; %e %e\n",(RA[j]-R0),corps[i],ym1[i],Y[i][j],time,delta); |
---|
515 | fclose( out ); |
---|
516 | } |
---|
517 | */ |
---|
518 | ts = conv; |
---|
519 | } |
---|
520 | } |
---|
521 | |
---|
522 | /* test deviation */ |
---|
523 | /* -------------- */ |
---|
524 | |
---|
525 | if( ts < 0.1e0 ) |
---|
526 | { |
---|
527 | for( i = 0; i <= ST-1; i++ ) |
---|
528 | for( j = NLD; j <= NLEV-1; j++ ) |
---|
529 | if( (Y[i][j] >= 0.5e0) && (strcmp(corps[i],"N2") != 0) ) |
---|
530 | { |
---|
531 | out = fopen( outlog, "a" ); |
---|
532 | fprintf( out, "WARNING %s mixing ratio is %e %e at %d\n", |
---|
533 | corps[i], ym1[i], Y[i][j], j ); |
---|
534 | for( k = 0; k <= NLEV-1; k++ ) fprintf( out, "%d %e %e\n",k,ym1[i],Y[i][k] ); |
---|
535 | fclose( out ); |
---|
536 | exit(0); |
---|
537 | // Y[i][j] = 1.e-20; |
---|
538 | } |
---|
539 | for( j = NLD; j <= NLEV-1; j++ ) |
---|
540 | for( i = 0; i <= NC-1; i++ ) ym1[i][j] = max(Y[i][j],1.e-30); |
---|
541 | time += delta; |
---|
542 | if( ts < 1.00e-5 ) delta *= 1.0e2; |
---|
543 | if( ( ts > 1.00e-5 ) && ( ts < 1.0e-4 ) ) delta *= 1.0e1; |
---|
544 | if( ( ts > 1.00e-4 ) && ( ts < 1.0e-3 ) ) delta *= 5.0e0; |
---|
545 | if( ( ts > 1.00e-3 ) && ( ts < 5.0e-3 ) ) delta *= 3.0e0; |
---|
546 | if( ( ts > 5.00e-3 ) && ( ts < 0.01e0 ) ) delta *= 1.5e0; |
---|
547 | if( ( ts > 0.010e0 ) && ( ts < 0.03e0 ) ) delta *= 1.2e0; |
---|
548 | if( ( ts > 0.030e0 ) && ( ts < 0.05e0 ) ) delta *= 1.1e0; |
---|
549 | |
---|
550 | // if( ( ts > 0.001e0 ) && ( ts < 0.01e0 ) ) delta *= 3.0e0; |
---|
551 | // if( ( ts > 0.010e0 ) && ( ts < 0.05e0 ) ) delta *= 1.5e0; |
---|
552 | |
---|
553 | delta = min( deltamax, delta ); |
---|
554 | } |
---|
555 | else |
---|
556 | { |
---|
557 | for( j = NLD; j <= NLEV-1; j++ ) |
---|
558 | for( i = 0; i <= NC-1; i++ ) Y[i][j] = ym1[i][j]; |
---|
559 | |
---|
560 | if( ts > 0.8 ) delta *= 1.e-6; |
---|
561 | if( ( ts > 0.6 ) && ( ts <= 0.8 ) ) delta *= 1.e-4; |
---|
562 | if( ( ts > 0.4 ) && ( ts <= 0.6 ) ) delta *= 1.e-2; |
---|
563 | if( ( ts > 0.3 ) && ( ts <= 0.4 ) ) delta *= 0.1; |
---|
564 | if( ( ts > 0.2 ) && ( ts <= 0.3 ) ) delta *= 0.2; |
---|
565 | if( ( ts > 0.1 ) && ( ts <= 0.2 ) ) delta *= 0.3; |
---|
566 | } |
---|
567 | ts = 0.0e0; |
---|
568 | |
---|
569 | out = fopen( outlog, "a" ); |
---|
570 | fprintf(out, "delta:%e; time:%e; fin:%e\n",delta,time,(*FIN)); |
---|
571 | fclose( out ); |
---|
572 | |
---|
573 | } |
---|
574 | /* **************** */ |
---|
575 | /* end of time loop */ |
---|
576 | /* **************** */ |
---|
577 | |
---|
578 | /* |
---|
579 | ========================================================================== |
---|
580 | |
---|
581 | SECONDE ETAPE: |
---|
582 | =============== |
---|
583 | INVERSION LOCALE PAR BLOC ENTRE NLD ET LA SURFACE |
---|
584 | =============== |
---|
585 | */ |
---|
586 | if( NLD != 0 ) |
---|
587 | for( j = NLD-1; j >= 0; j-- ) |
---|
588 | { |
---|
589 | time = ts = 0.0e0; |
---|
590 | delta = 1.e-3; |
---|
591 | |
---|
592 | /* ++++++++++++ */ |
---|
593 | /* time loop. */ |
---|
594 | /* ++++++++++++ */ |
---|
595 | |
---|
596 | while( time < (*FIN) ) |
---|
597 | { |
---|
598 | |
---|
599 | /* init of step */ |
---|
600 | /* ------------ */ |
---|
601 | for( i = 0; i <= ST-1; i++ ) |
---|
602 | { |
---|
603 | fp[i] = fl[i] = 0.0e0; |
---|
604 | for( l = 0; l <= ST-1; l++ ) jac[i][l] = 0.0e0; |
---|
605 | } |
---|
606 | |
---|
607 | /* Chimie */ |
---|
608 | /* ------ */ |
---|
609 | |
---|
610 | /* productions et pertes chimiques */ |
---|
611 | for( i = 0; i <= ST-1; i++ ) |
---|
612 | { |
---|
613 | Y[i][j] = max(Y[i][j],1.e-30); /* minimum */ |
---|
614 | |
---|
615 | for( l = 0; l <= nom_prod[i]-1; l++ ) /* Production term */ |
---|
616 | { |
---|
617 | ireac = prod[i][l]; /* Number of the reaction involves. */ |
---|
618 | ncom1 = reactif[ireac][0]; /* First compound which reacts. */ |
---|
619 | if( reactif[ireac][1] == NC ) /* Photodissociation or relaxation */ |
---|
620 | { |
---|
621 | jac[i][ncom1] += ( KRATE[ireac][j] * NB[j] ); |
---|
622 | fp[i] += ( KRATE[ireac][j] * NB[j] * Y[ncom1][j] ); |
---|
623 | } |
---|
624 | else /* General case. */ |
---|
625 | { |
---|
626 | ncom2 = reactif[ireac][1]; /* Second compound which reacts. */ |
---|
627 | jac[i][ncom1] += ( KRATE[ireac][j] * Y[ncom2][j] ); /* Jacobian compound #1. */ |
---|
628 | jac[i][ncom2] += ( KRATE[ireac][j] * Y[ncom1][j] ); /* Jacobian compound #2. */ |
---|
629 | fp[i] += ( KRATE[ireac][j] * Y[ncom1][j] * Y[ncom2][j] ); /* Production term. */ |
---|
630 | } |
---|
631 | } |
---|
632 | |
---|
633 | for( l = 0; l <= nom_perte[i]-1; l++ ) /* Loss term. */ |
---|
634 | { |
---|
635 | ireac = perte[i][l][0]; /* Reaction number. */ |
---|
636 | ncom2 = perte[i][l][1]; /* Compound #2 reacts. */ |
---|
637 | if( reactif[ireac][1] == NC ) /* Photodissociation or relaxation */ |
---|
638 | { |
---|
639 | jac[i][i] -= ( KRATE[ireac][j] * NB[j] ); |
---|
640 | fl[i] += ( KRATE[ireac][j] * NB[j] ); |
---|
641 | } |
---|
642 | else /* General case. */ |
---|
643 | { |
---|
644 | jac[i][ncom2] -= ( KRATE[ireac][j] * Y[i][j] ); /* Jacobian compound #1. */ |
---|
645 | jac[i][i] -= ( KRATE[ireac][j] * Y[ncom2][j] ); /* Jacobien compound #2. */ |
---|
646 | fl[i] += ( KRATE[ireac][j] * Y[ncom2][j] ); /* Loss term. */ |
---|
647 | } |
---|
648 | } |
---|
649 | } |
---|
650 | |
---|
651 | |
---|
652 | /* Aerosols */ |
---|
653 | /* -------- */ |
---|
654 | if( (*aerprod) == 1 ) |
---|
655 | { |
---|
656 | aer(corps,TEMP,NB,Y,&j,k_dep,faer, |
---|
657 | &dyc2h2,&dyhc3n,&dyhcn,&dynccn,&dych3cn,&dyc2h3cn,utilaer, |
---|
658 | mmolaer,productaer,csurn,csurh); |
---|
659 | |
---|
660 | for( i = 0; i <= 3; i++ ) |
---|
661 | { |
---|
662 | PRODAER[i][j] = productaer[i]; |
---|
663 | MAER[i][j] = mmolaer[i]; |
---|
664 | CSN[i][j] = csurn[i]; |
---|
665 | CSH[i][j] = csurh[i]; |
---|
666 | } |
---|
667 | /* DEBUG |
---|
668 | printf("AERPROD : LAT = %d - J = %d\n",(*LAT),j); |
---|
669 | if(fabs(dyc2h2*NB[j])>fabs(fp[utilaer[2]]/10.)) |
---|
670 | printf("fp(%s) =%e; dyc2h2 =%e\n",corps[utilaer[2]], |
---|
671 | fp[utilaer[2]],dyc2h2*NB[j]); |
---|
672 | if(fabs(dyhcn*NB[j])>fabs(fp[utilaer[5]]/10.)) |
---|
673 | printf("fp(%s) =%e; dyhcn =%e\n",corps[utilaer[5]], |
---|
674 | fp[utilaer[5]],dyhcn*NB[j]); |
---|
675 | if(fabs(dyhc3n*NB[j])>fabs(fp[utilaer[6]]/10.)) |
---|
676 | printf("fp(%s) =%e; dyhc3n =%e\n",corps[utilaer[6]], |
---|
677 | fp[utilaer[6]],dyhc3n*NB[j]); |
---|
678 | if(fabs(dynccn*NB[j])>fabs(fp[utilaer[13]]/10.)) |
---|
679 | printf("fp(%s) =%e; dynccn =%e\n",corps[utilaer[13]], |
---|
680 | fp[utilaer[13]],dynccn*NB[j]); |
---|
681 | if(fabs(dych3cn*NB[j])>fabs(fp[utilaer[14]]/10.)) |
---|
682 | printf("fp(%s) =%e; dych3cn=%e\n",corps[utilaer[14]], |
---|
683 | fp[utilaer[14]],dych3cn*NB[j]); |
---|
684 | if(fabs(dyc2h3cn*NB[j])>fabs(fp[utilaer[15]]/10.)) |
---|
685 | printf("fp(%s) =%e; dyc2h3cn=%e\n",corps[utilaer[15]], |
---|
686 | fp[utilaer[15]],dyc2h3cn*NB[j]); |
---|
687 | */ |
---|
688 | |
---|
689 | fp[utilaer[2]] -= ( dyc2h2 * NB[j] ); |
---|
690 | fp[utilaer[5]] -= ( dyhcn * NB[j] ); |
---|
691 | fp[utilaer[6]] -= ( dyhc3n * NB[j] ); |
---|
692 | fp[utilaer[13]]-= ( dynccn * NB[j] ); |
---|
693 | fp[utilaer[14]]-= ( dych3cn * NB[j] ); |
---|
694 | fp[utilaer[15]]-= ( dyc2h3cn * NB[j] ); |
---|
695 | if( Y[utilaer[2]][j] != 0.0 ) |
---|
696 | jac[utilaer[2]][utilaer[2]] -= ( dyc2h2 * NB[j] / Y[utilaer[2]][j] ); |
---|
697 | if( Y[utilaer[5]][j] != 0.0 ) |
---|
698 | jac[utilaer[5]][utilaer[5]] -= ( dyhcn * NB[j] / Y[utilaer[5]][j] ); |
---|
699 | if( Y[utilaer[6]][j] != 0.0 ) |
---|
700 | jac[utilaer[6]][utilaer[6]] -= ( dyhc3n * NB[j] / Y[utilaer[6]][j] ); |
---|
701 | if( Y[utilaer[13]][j] != 0.0 ) |
---|
702 | jac[utilaer[13]][utilaer[13]] -= ( dynccn * NB[j] / Y[utilaer[13]][j] ); |
---|
703 | if( Y[utilaer[14]][j] != 0.0 ) |
---|
704 | jac[utilaer[14]][utilaer[14]] -= ( dych3cn * NB[j] / Y[utilaer[14]][j] ); |
---|
705 | if( Y[utilaer[15]][j] != 0.0 ) |
---|
706 | jac[utilaer[15]][utilaer[15]] -= (dyc2h3cn * NB[j] / Y[utilaer[15]][j] ); |
---|
707 | } |
---|
708 | |
---|
709 | |
---|
710 | /* H -> H2 on haze particles */ |
---|
711 | /* ------------------------- */ |
---|
712 | if( (*htoh2) == 1 ) |
---|
713 | { |
---|
714 | heterohtoh2(corps,TEMP,NB,Y,surfhaze,&j,&dyh,&dyh2,utilaer); |
---|
715 | /* dyh <= 0 / 1.0 en adsor., 1 en reac. */ |
---|
716 | |
---|
717 | /* DEBUG |
---|
718 | printf("HTOH2 : LAT = %d - J = %d\n",(*LAT),j); |
---|
719 | if(fabs(dyh*NB[j])>fabs(fp[utilaer[0]]/10.)) |
---|
720 | printf("fp(%s) = %e; dyh = %e\n",corps[utilaer[0]],fp[utilaer[0]],dyh*NB[j]); |
---|
721 | if(fabs(dyh2*NB[j])>fabs(fp[utilaer[1]]/10.)) |
---|
722 | printf("fp(%s) = %e; dyh2 = %e\n",corps[utilaer[1]],fp[utilaer[1]],dyh2*NB[j]); |
---|
723 | */ |
---|
724 | |
---|
725 | fp[utilaer[0]] += ( dyh * NB[j] ); |
---|
726 | /* pourquoi pas *2 ?? cf gptit dans 2da... */ |
---|
727 | |
---|
728 | fp[utilaer[1]] += ( dyh2 * NB[j] ); |
---|
729 | if( Y[utilaer[0]][j] != 0.0 ) |
---|
730 | jac[utilaer[0]][utilaer[0]] += ( dyh * NB[j] / Y[utilaer[0]][j] ); |
---|
731 | /* pourquoi pas *2 ?? cf gptit dans 2da... */ |
---|
732 | } |
---|
733 | |
---|
734 | |
---|
735 | /* Backup jacobian level j. */ |
---|
736 | /* ------------------------ */ |
---|
737 | for( i = 0; i <= ST-1; i++ ) |
---|
738 | { |
---|
739 | for( k = 0; k <= ST-1; k++ ) |
---|
740 | a[j][i][k] = jac[i][k]; |
---|
741 | f[i][j] = fp[i] - fl[i] * Y[i][j]; |
---|
742 | } |
---|
743 | |
---|
744 | |
---|
745 | /* finition pour inversion */ |
---|
746 | /* ----------------------- */ |
---|
747 | |
---|
748 | for( i = 0; i <= ST-1; i++ ) |
---|
749 | { |
---|
750 | for( k = 0; k <= ST-1; k++ ) |
---|
751 | { |
---|
752 | a[j][i][k] *= ( -THETA * delta ); /* Correction time step. */ |
---|
753 | if( k == i ) a[j][k][k] += NB[j]; /* Correction diagonal. */ |
---|
754 | } |
---|
755 | f[i][j] *= delta; |
---|
756 | } |
---|
757 | |
---|
758 | |
---|
759 | /* Inversion of matrix cf method LU */ |
---|
760 | /* -------------------------------- */ |
---|
761 | |
---|
762 | /* inversion by blocs: */ |
---|
763 | /* Hydrocarbons */ |
---|
764 | |
---|
765 | solve_b( a, f, j, 0, NHC-1 ); |
---|
766 | for( i = 0; i <= NHC-1; i++ ) |
---|
767 | { |
---|
768 | Y[i][j] += f[i][j]; |
---|
769 | if( Y[i][j] <= 1.0e-30 ) Y[i][j] = 0.0e0; |
---|
770 | } |
---|
771 | |
---|
772 | /* Nitriles */ |
---|
773 | |
---|
774 | solve_b( a, f, j, NHC, ST-1 ); |
---|
775 | for( i = NHC+1; i <= ST-1; i++ ) |
---|
776 | { |
---|
777 | Y[i][j] += f[i][j]; |
---|
778 | if( Y[i][j] <= 1.0e-30 ) Y[i][j] = 0.0e0; |
---|
779 | } |
---|
780 | |
---|
781 | /* end inversion by blocs: */ |
---|
782 | |
---|
783 | /* CH4 au sol */ |
---|
784 | /* ---------- */ |
---|
785 | for( i = 0; i <= ST-1; i++ ) |
---|
786 | if( ( strcmp(corps[i], "CH4") == 0 ) && (j==0) && ( Y[i][0] < *botCH4 ) ) |
---|
787 | { |
---|
788 | fluxCH4 += (*botCH4 - Y[i][0]); |
---|
789 | Y[i][0] = *botCH4; |
---|
790 | } |
---|
791 | |
---|
792 | /* ------------------ */ |
---|
793 | /* Tests et evolution */ |
---|
794 | /* ------------------ */ |
---|
795 | |
---|
796 | /* Calcul deviation */ |
---|
797 | /* ---------------- */ |
---|
798 | |
---|
799 | for( i = 0; i <= ST-1; i++ ) |
---|
800 | { |
---|
801 | test = 1.0e-15; |
---|
802 | if( ( Y[i][j] > test ) && ( ym1[i][j] > test ) ) |
---|
803 | { |
---|
804 | conv = fabs( Y[i][j] - ym1[i][j] ) / ym1[i][j]; |
---|
805 | |
---|
806 | if( conv > ts ) |
---|
807 | { |
---|
808 | /* |
---|
809 | if( conv >= 0.1 ) |
---|
810 | { |
---|
811 | out = fopen( outlog, "a" ); |
---|
812 | fprintf( out, "Lat no %d; declin:%e;", (*LAT)+1, (*DECLIN) ); |
---|
813 | fprintf(out, " alt:%e; %s %e %e ; %e %e\n",(RA[j]-R0),corps[i],ym1[i],Y[i][j],time,delta); |
---|
814 | fclose( out ); |
---|
815 | } |
---|
816 | */ |
---|
817 | ts = conv; |
---|
818 | } |
---|
819 | } |
---|
820 | } |
---|
821 | |
---|
822 | /* test deviation */ |
---|
823 | /* -------------- */ |
---|
824 | |
---|
825 | if( ts < 0.1e0 ) |
---|
826 | { |
---|
827 | for( i = 0; i <= ST-1; i++ ) |
---|
828 | if( (Y[i][j] >= 0.5e0) && (strcmp(corps[i],"N2") != 0) ) |
---|
829 | { |
---|
830 | out = fopen( outlog, "a" ); |
---|
831 | fprintf( out, "WARNING %s mixing ratio is %e %e at %d\n", |
---|
832 | corps[i], ym1[i][j], Y[i][j], j ); |
---|
833 | for( k = 0; k <= NLEV-1; k++ ) fprintf( out, "%d %e %e\n",k,ym1[i][j],Y[i][k] ); |
---|
834 | fclose( out ); |
---|
835 | // exit(0); |
---|
836 | Y[i][j] = 1.e-20; |
---|
837 | } |
---|
838 | for( i = 0; i <= NC-1; i++ ) ym1[i][j] = max(Y[i][j],1.e-30); |
---|
839 | time += delta; |
---|
840 | if( ts < 1.00e-5 ) delta *= 1.0e2; |
---|
841 | if( ( ts > 1.00e-5 ) && ( ts < 1.0e-4 ) ) delta *= 1.0e1; |
---|
842 | if( ( ts > 1.00e-4 ) && ( ts < 1.0e-3 ) ) delta *= 5.0e0; |
---|
843 | if( ( ts > 0.001e0 ) && ( ts < 0.01e0 ) ) delta *= 3.0e0; |
---|
844 | if( ( ts > 0.010e0 ) && ( ts < 0.05e0 ) ) delta *= 1.5e0; |
---|
845 | |
---|
846 | delta = min( deltamax, delta ); |
---|
847 | } |
---|
848 | else |
---|
849 | { |
---|
850 | for( i = 0; i <= NC-1; i++ ) Y[i][j] = ym1[i][j]; |
---|
851 | |
---|
852 | if( ts > 0.8 ) delta *= 1.e-6; |
---|
853 | if( ( ts > 0.6 ) && ( ts <= 0.8 ) ) delta *= 1.e-4; |
---|
854 | if( ( ts > 0.4 ) && ( ts <= 0.6 ) ) delta *= 1.e-2; |
---|
855 | if( ( ts > 0.3 ) && ( ts <= 0.4 ) ) delta *= 0.1; |
---|
856 | if( ( ts > 0.2 ) && ( ts <= 0.3 ) ) delta *= 0.2; |
---|
857 | if( ( ts > 0.1 ) && ( ts <= 0.2 ) ) delta *= 0.3; |
---|
858 | } |
---|
859 | ts = 0.0e0; |
---|
860 | /* |
---|
861 | out = fopen( outlog, "a" ); |
---|
862 | fprintf(out, " alt:%e; delta:%e; time:%e; fin:%e\n",(RA[j]-R0),delta,time,(*FIN)); |
---|
863 | fclose( out ); |
---|
864 | */ |
---|
865 | } |
---|
866 | |
---|
867 | /* +++++++++++++++++++ */ |
---|
868 | /* end of time loop. */ |
---|
869 | /* +++++++++++++++++++ */ |
---|
870 | |
---|
871 | for( i = 0; i <= ST-1; i++ ) |
---|
872 | if( ( strcmp(corps[i],"CH4") == 0 ) && ( j == 0 ) ) |
---|
873 | fluxCH4 *= ( MASS[i]/(6.022e23*time) ); |
---|
874 | |
---|
875 | } /* boucle j */ |
---|
876 | |
---|
877 | |
---|
878 | /* |
---|
879 | ========================================================================== |
---|
880 | |
---|
881 | FINALISATION: |
---|
882 | =============== |
---|
883 | */ |
---|
884 | for( i = 0; i <= ST-1; i++ ) |
---|
885 | if( strcmp(corps[i],"CH4") == 0 ) |
---|
886 | fluxCH4 *= ( MASS[i]/(6.022e23*time) ); |
---|
887 | |
---|
888 | /* Niveau de N2 */ |
---|
889 | /* ------------ */ |
---|
890 | |
---|
891 | for( j = 0; j <= NLEV-1; j++ ) |
---|
892 | { |
---|
893 | conv = 0.0e0; |
---|
894 | for( i = 0; i <= ST-1; i++ ) |
---|
895 | if( strcmp(corps[i],"N2") != 0 ) conv += Y[i][j]; |
---|
896 | for( i = 0; i <= ST-1; i++ ) |
---|
897 | if( strcmp(corps[i],"N2") == 0 ) Y[i][j] = 1. - conv; |
---|
898 | } |
---|
899 | |
---|
900 | if( (*aerprod) == 1 ) |
---|
901 | { |
---|
902 | fdm2d( k_dep, 1, 5, 1 ); |
---|
903 | fdm2d( faer, 1, 5, 1 ); |
---|
904 | fdm1d( productaer, 0 ); |
---|
905 | fdm1d( mmolaer, 0 ); |
---|
906 | fdm1d( csurn, 0 ); |
---|
907 | fdm1d( csurh, 0 ); |
---|
908 | } |
---|
909 | |
---|
910 | fdm1d( fl, 0 ); |
---|
911 | fdm1d( fp, 0 ); |
---|
912 | fdm1d( mu, 0 ); |
---|
913 | fdm2d( ym1, 0, NC-1, 0 ); |
---|
914 | fdm2d( f, 0, NC-1, 0 ); |
---|
915 | fdm2d( jac, 0, NC-1, 0 ); |
---|
916 | fdm2d( c, 0, NLEV-1, 0 ); |
---|
917 | fdm3d( a, 0, NLEV-1, 0, NC-1, 0 ); |
---|
918 | fdm3d( b, 0, NLEV-1, 0, NC-1, 1 ); |
---|
919 | } |
---|