#! /usr/bin/env python from ppclass import pp from netCDF4 import Dataset from numpy import * import numpy as np import matplotlib.pyplot as mpl from matplotlib.cm import get_cmap import pylab from matplotlib import ticker import matplotlib.colors as colors import datetime from mpl_toolkits.basemap import Basemap, shiftgrid ############################ filename1="restart_ref/diagfi2015_A.nc" var="temperature" #variable nc1=Dataset(filename1) lat=nc1.variables["lat"][:] lon=nc1.variables["lon"][:] alt=nc1.variables["altitude"][:] tim=nc1.variables["time_counter"][:] print(('Time = ',tim)) print(('Long = ',lon)) print(('Lat = ',lat)) ############################ def findindextime(tini,lt0,lt1,p): lt180=(lt0+12)%24 # a t=0 et longitude=180 lt0p1=lt180*((p[0]+360)%360)/180 # local time a t=0 a la longitude p1 diff=lt1-lt0p1 # diff du local time a p1 a t=0 avec celui recherche indp1=tini+diff/24. # on adapte lindice pour tomber sur le bon moment # on cherche dans Time l'indice le plus proche : indt1=np.where(abs(tim[:]-indp1)==min(abs(tim[:]-indp1)))[0][0] print(('Point =',p,' Time=',tim[indt1])) return indt1 def getvar(filename,var): myvar = pp(file=filename,var=var,compute="nothing").getf() return myvar def getindex(lat,lon,mylat,mylon): indlat=np.where(abs(lat[:]-mylat)==min(abs(lat[:]-mylat)))[0][0] indlon=np.where(abs(lon[:]-mylon)==min(abs(lon[:]-mylon)))[0][0] print((lon[indlon],lat[indlat])) return indlat,indlon def main(tini,lt0,ltchoice,p): indt=findindextime(tini,lt0,ltchoice,p) indlat,indlon=getindex(lat,lon,p[1],p[0]) myvar=getvar(filename1,var)[indt,:,indlat,indlon] return myvar ############################ #points: entre -180 et 180 p1=[180, 25] # Entry p2=[180, 20] # low SP p3=[180, 15] # Burney p4=[180, 10] # SP p5=[180, 5] # BTD p6=[180, 0] # TR p7=[180, -5] # Lowell p8=[180, -10] # south pole tini=32 # choix du jour dans le diagfi lt0=0 # a t=0 et longitude=0 ltchoice=12 # local time choisi myvar1=main(tini,lt0,ltchoice,p1) #myvar2=main(tini,lt0,ltchoice,p2) myvar3=main(tini,lt0,ltchoice,p3) #myvar4=main(tini,lt0,ltchoice,p4) myvar5=main(tini,lt0,ltchoice,p5) myvar6=main(tini,lt0,ltchoice,p6) myvar7=main(tini,lt0,ltchoice,p7) #myvar8=main(tini,lt0,ltchoice,p8) mpl.figure(figsize=(10, 10)) font=23 #xticks=[-90,-60,-30,0,30,60,90] #yticks=np.linspace(0,240,9) alt=alt/1000. mpl.plot(myvar1,alt,'r',label=r'lat=25 $^\circ$') mpl.plot(myvar3,alt,'k',label=r'lat=15 $^\circ$') mpl.plot(myvar5,alt,'c',label=r'lat=5 $^\circ$') mpl.plot(myvar6,alt,'b',label=r'lat= 0 $^\circ$') mpl.plot(myvar7,alt,'y',label=r'lat=-5 $^\circ$') mpl.legend(prop={'size':20},loc='upper left') #mpl.title('Latitude ='+str(tintstr[i]),fontsize=font) mpl.ylabel('Altitude (km)',labelpad=10,fontsize=font) mpl.xlabel('Temperature (K)',labelpad=10, fontsize=font) #mpl.xticks(xticks,fontsize=font) mpl.xticks(fontsize=font) #mpl.yticks(yticks,fontsize=font) mpl.yticks(fontsize=font) mpl.grid() #mpl.legend(["Ref","Alt"]) pylab.ylim([-3,0]) pylab.xlim([35,45]) mpl.savefig('proftempNH_SP180_'+str(ltchoice)+'h.eps',dpi=200) mpl.savefig('proftempNH_SP180_'+str(ltchoice)+'h.png',dpi=200) mpl.show()