1 | #! /usr/bin/env python |
---|
2 | from ppclass import pp |
---|
3 | from netCDF4 import Dataset |
---|
4 | from numpy import * |
---|
5 | import numpy as np |
---|
6 | import matplotlib.pyplot as mpl |
---|
7 | from matplotlib.cm import get_cmap |
---|
8 | import pylab |
---|
9 | from matplotlib import ticker |
---|
10 | import matplotlib.colors as mcolors |
---|
11 | import datetime |
---|
12 | from mpl_toolkits.basemap import Basemap, shiftgrid |
---|
13 | |
---|
14 | ############################ |
---|
15 | filename1="diagfi2015.nc" |
---|
16 | filename2="diagfi2015_S.nc" |
---|
17 | var="tsurf" #variable |
---|
18 | var1="ch4_ice_col" |
---|
19 | var2="phisinit" |
---|
20 | tint=["30.625","30.875","31.125","30.375"] #Time must be as written in the input file |
---|
21 | tintstr=["03:00","09:00","15:00","21:00"] #Time must be as written in the input file |
---|
22 | |
---|
23 | font=15 |
---|
24 | |
---|
25 | nc1=Dataset(filename1) |
---|
26 | nc2=Dataset(filename2) |
---|
27 | |
---|
28 | lat=nc1.variables["lat"][:] |
---|
29 | lon=nc1.variables["lon"][:] |
---|
30 | |
---|
31 | # altitdue file 2 |
---|
32 | alt=nc2.variables["altitude"][:] |
---|
33 | ############################ |
---|
34 | |
---|
35 | def getvar(filename,var,tint): |
---|
36 | myvar = pp(file=filename,var=var,t=tint,compute="nothing").getf() # get data to be changed according to selected variable |
---|
37 | print((shape(myvar))) |
---|
38 | return myvar |
---|
39 | |
---|
40 | def swinglon(myvar): |
---|
41 | # changer les longitudes pour mettre TR au centre |
---|
42 | vec=shape(myvar) |
---|
43 | myvarbis=np.zeros(vec,dtype='f') |
---|
44 | # i lat : pas de changement |
---|
45 | # j lon : |
---|
46 | for i in range(vec[0]): |
---|
47 | for j in range(vec[1]): |
---|
48 | if j < int(vec[1]/2.) : |
---|
49 | myvarbis[i,j]=myvar[i,j+int(vec[1]/2.)] |
---|
50 | # myvar2bis[i,j]=myvar2[i,j+int(vec[1]/2)] |
---|
51 | else: |
---|
52 | myvarbis[i,j]=myvar[i,j-int(vec[1]/2.)] |
---|
53 | # myvar2bis[i,j]=myvar2[i,j-int(vec[1]/2)] |
---|
54 | return myvarbis |
---|
55 | |
---|
56 | def getwinds(lon,lat,vecx,vecy): |
---|
57 | svx='None' # arrow every svx box |
---|
58 | svy='None' |
---|
59 | svx=1 |
---|
60 | svy=1 |
---|
61 | angle='uv' # 'xy' |
---|
62 | color='black' # arrow color |
---|
63 | pivot='mid' # arrow around middle of box. Alternative : tip |
---|
64 | scale=2*33 # scale arrow |
---|
65 | width=0.002 # width arrow |
---|
66 | linewidths=0.5 # epaisseur contour arrow |
---|
67 | edgecolors='k' # couleur contour arrow |
---|
68 | |
---|
69 | # *scale*: [ *None* | float ] |
---|
70 | # Data units per arrow length unit, e.g., m/s per plot width; a smaller |
---|
71 | # scale parameter makes the arrow longer. If *None*, a simple |
---|
72 | # autoscaling algorithm is used, based on the average vector length |
---|
73 | # and the number of vectors. The arrow length unit is given by |
---|
74 | # the *scale_units* parameter |
---|
75 | |
---|
76 | # *scale_units*: *None*, or any of the *units* options. |
---|
77 | # For example, if *scale_units* is 'inches', *scale* is 2.0, and |
---|
78 | # ``(u,v) = (1,0)``, then the vector will be 0.5 inches long. |
---|
79 | # If *scale_units* is 'width', then the vector will be half the width |
---|
80 | # of the axes. |
---|
81 | |
---|
82 | # If *scale_units* is 'x' then the vector will be 0.5 x-axis |
---|
83 | # units. To plot vectors in the x-y plane, with u and v having |
---|
84 | # the same units as x and y, use |
---|
85 | # "angles='xy', scale_units='xy', scale=1". |
---|
86 | |
---|
87 | x, y = np.meshgrid(lon,lat) |
---|
88 | q = mpl.quiver( x[::svy,::svx],y[::svy,::svx],\ |
---|
89 | vecx[::svy,::svx],vecy[::svy,::svx],\ |
---|
90 | angles=angle,color=color,pivot=pivot,\ |
---|
91 | scale=scale,width=width,linewidths=linewidths,edgecolors=edgecolors) |
---|
92 | |
---|
93 | # make vector key. |
---|
94 | #keyh = 1.025 ; keyv = 1.05 # upper right corner over colorbar |
---|
95 | keyh = 0.97 ; keyv = 1.06 |
---|
96 | keyh = 0.03 ; keyv = 1.07 |
---|
97 | #keyh = -0.03 ; keyv = 1.08 # upper left corner |
---|
98 | labelpos='E' # position label compared to arrow : N S E W |
---|
99 | p = mpl.quiverkey(q,keyh,keyv,\ |
---|
100 | 5.0,r'$5 m/s$',\ |
---|
101 | fontproperties={'size': font,'weight': 'bold'},\ |
---|
102 | color='black',labelpos=labelpos,labelsep = 0.07) |
---|
103 | |
---|
104 | def getfigvar(nbfig,nbrow,nbcol,i): |
---|
105 | mpl.subplot(nbrow,nbcol,i+1) |
---|
106 | pal=get_cmap(name="PuBu") |
---|
107 | newlon=lon+180 |
---|
108 | |
---|
109 | mymin=0.1 |
---|
110 | mymax=50 |
---|
111 | |
---|
112 | # log |
---|
113 | norm=mcolors.LogNorm() |
---|
114 | lvls=np.logspace(np.log10(mymin),np.log10(mymax),15) |
---|
115 | #titi=[1.e-14,1.e-13,1.e-12,1.e-11] |
---|
116 | CF=mpl.contourf(newlon, lat, cloud,levels=lvls,norm=norm,cmap=pal) |
---|
117 | ''' |
---|
118 | # lin |
---|
119 | lev=np.linspace(mymin,mymax,6) |
---|
120 | CF=mpl.contourf(newlon, lat, cloud,lev,cmap=pal,extend='both') |
---|
121 | ''' |
---|
122 | yticks=[-90,-60,-30,0,30,60,90] |
---|
123 | xticks=[0,60,120,180,240,300,360] |
---|
124 | cbar=mpl.colorbar(CF,shrink=1, format="%1.1f") |
---|
125 | cbar.ax.set_title("1E-6 kg/m2",y=1.04,fontsize=font) |
---|
126 | |
---|
127 | for t in cbar.ax.get_yticklabels(): |
---|
128 | t.set_fontsize(font) |
---|
129 | |
---|
130 | vect=[47] |
---|
131 | print(('shape=',shape(newlon),shape(lat),shape(tmp))) |
---|
132 | CS=mpl.contour(newlon,lat,tmp,colors='k',linewidths=0.5) |
---|
133 | #### inline=1 : values over the line |
---|
134 | mpl.clabel(CS, inline=1, fontsize=20, fmt='%1.1f',inline_spacing=1) |
---|
135 | |
---|
136 | mpl.title('Local Time (180E) ='+str(tintstr[i]),fontsize=font) |
---|
137 | mpl.ylabel('Latitude (deg)',labelpad=10,fontsize=font) |
---|
138 | mpl.xlabel('Longitude (deg)',labelpad=10, fontsize=font) |
---|
139 | mpl.xticks(xticks,fontsize=font) |
---|
140 | mpl.yticks(yticks,fontsize=font) |
---|
141 | #getwinds(newlon,lat,u,v) |
---|
142 | |
---|
143 | def getnumalt(choicealt,alt): |
---|
144 | numalt=np.where(abs(alt-choicealt)==min(abs(alt-choicealt))) |
---|
145 | numalt=numalt[0][0] |
---|
146 | return numalt |
---|
147 | |
---|
148 | ####################### |
---|
149 | |
---|
150 | nbfig=size(tint) |
---|
151 | nbrow=2 |
---|
152 | nbcol=2 |
---|
153 | mpl.figure(figsize=(30, 15)) |
---|
154 | choicealt=30 #m |
---|
155 | |
---|
156 | |
---|
157 | for i in range(nbfig): |
---|
158 | numalt=getnumalt(choicealt,alt) |
---|
159 | print((numalt,'alt=',alt[numalt],'m')) |
---|
160 | mycloud=getvar(filename1,var1,tint[i])[0,0,:,:] |
---|
161 | mytmp=getvar(filename1,var2,tint[i])[0,0,:,:] |
---|
162 | #myvar=getvar(filename2,var,tint[i])[0,0,:,:] |
---|
163 | |
---|
164 | cloud=swinglon(mycloud) |
---|
165 | cloud=cloud*1.e6 |
---|
166 | tmp=swinglon(mytmp) |
---|
167 | #myvarbis=swinglon(myvar) |
---|
168 | |
---|
169 | getfigvar(nbfig,nbrow,nbcol,i) |
---|
170 | |
---|
171 | left = None # the left side of the subplots of the figure |
---|
172 | right = None # the right side of the subplots of the figure |
---|
173 | bottom = None # the bottom of the subplots of the figure |
---|
174 | top = None # the top of the subplots of the figure |
---|
175 | wspace = None # the amount of width reserved for blank space between subplots |
---|
176 | hspace = None # the amount of height reserved for white space between subplots |
---|
177 | #mpl.subplots_adjust(left, bottom, right, top, wspace, hspace) |
---|
178 | #mpl.subplots_adjust(hspace = .1) |
---|
179 | |
---|
180 | mpl.savefig('mapch4cloud.eps',dpi=200) |
---|
181 | mpl.savefig('mapch4cloud.png',dpi=200) |
---|
182 | |
---|
183 | #mpl.show() |
---|
184 | |
---|
185 | |
---|
186 | |
---|
187 | |
---|