1 | #!/usr/bin/env python3 |
---|
2 | ############################################################## |
---|
3 | ### Python script to visualize a variable in a NetCDF file ### |
---|
4 | ############################################################## |
---|
5 | |
---|
6 | """ |
---|
7 | This script can display any numeric variable from a NetCDF file. |
---|
8 | It supports the following cases: |
---|
9 | - Scalar output |
---|
10 | - 1D time series |
---|
11 | - 1D vertical profiles |
---|
12 | - 2D latitude/longitude map |
---|
13 | - 2D cross-sections |
---|
14 | - Optionally average over latitude and plot longitude vs. time heatmap |
---|
15 | - Optionally display polar stereographic view of 2D maps |
---|
16 | - Optionally display 3D globe view of 2D maps |
---|
17 | |
---|
18 | Automatic setup from the environment file found in the "LMDZ.MARS/util" folder: |
---|
19 | 1. Make sure Conda is installed. |
---|
20 | 2. In terminal, navigate to the folder containing this script. |
---|
21 | 4. Create the environment: |
---|
22 | conda env create -f display_netcdf.yml |
---|
23 | 5. Activate the environment: |
---|
24 | conda activate my_env |
---|
25 | 6. Run the script: |
---|
26 | python display_netcdf.py |
---|
27 | |
---|
28 | Usage: |
---|
29 | 1) Command-line mode: |
---|
30 | python display_netcdf.py /path/to/your_file.nc --variable VAR_NAME [options] |
---|
31 | Options: |
---|
32 | --variable : Name of the variable to visualize. |
---|
33 | --time-index : Index along the Time dimension (0-based, ignored for purely 1D time series). |
---|
34 | --alt-index : Index along the altitude dimension (0-based), if present. |
---|
35 | --cmap : Matplotlib colormap (default: "jet"). |
---|
36 | --avg-lat : Average over latitude and plot longitude vs. time heatmap. |
---|
37 | --slice-lon-index : Fixed longitude index for altitude×longitude cross-section. |
---|
38 | --slice-lat-index : Fixed latitude index for altitude×latitude cross-section. |
---|
39 | --show-topo : Overlay MOLA topography on lat/lon maps. |
---|
40 | --show-polar : |
---|
41 | --show-3d : |
---|
42 | --output : If provided, save the figure to this filename instead of displaying. |
---|
43 | --extra-indices : JSON string to fix indices for any other dimensions. |
---|
44 | For dimensions with "slope", use 1-based numbering here. |
---|
45 | Example: '{"nslope": 1, "physical_points": 3}' |
---|
46 | |
---|
47 | 2) Interactive mode: |
---|
48 | python display_netcdf.py |
---|
49 | The script will prompt for everything. |
---|
50 | """ |
---|
51 | |
---|
52 | import os |
---|
53 | import sys |
---|
54 | import glob |
---|
55 | import readline |
---|
56 | import argparse |
---|
57 | import json |
---|
58 | import numpy as np |
---|
59 | import matplotlib.pyplot as plt |
---|
60 | import matplotlib.path as mpath |
---|
61 | import matplotlib.colors as mcolors |
---|
62 | import cartopy.crs as ccrs |
---|
63 | import pandas as pd |
---|
64 | from netCDF4 import Dataset |
---|
65 | |
---|
66 | # Attempt vedo import early for global use |
---|
67 | try: |
---|
68 | import vedo |
---|
69 | from vedo import * |
---|
70 | from scipy.interpolate import RegularGridInterpolator |
---|
71 | vedo_available = True |
---|
72 | except ImportError: |
---|
73 | vedo_available = False |
---|
74 | |
---|
75 | # Constants for recognized dimension names |
---|
76 | TIME_DIMS = ("Time", "time", "time_counter") |
---|
77 | ALT_DIMS = ("altitude",) |
---|
78 | LAT_DIMS = ("latitude", "lat") |
---|
79 | LON_DIMS = ("longitude", "lon") |
---|
80 | |
---|
81 | # Paths for MOLA data |
---|
82 | MOLA_NPY = 'MOLA_1px_per_deg.npy' |
---|
83 | MOLA_CSV = 'molaTeam_contour_31rgb_steps.csv' |
---|
84 | |
---|
85 | # Attempt to load MOLA topography |
---|
86 | try: |
---|
87 | MOLA = np.load('MOLA_1px_per_deg.npy') # shape (nlat, nlon) at 1° per pixel: lat from -90 to 90, lon from 0 to 360 |
---|
88 | nlat, nlon = MOLA.shape |
---|
89 | topo_lats = np.linspace(90 - 0.5, -90 + 0.5, nlat) |
---|
90 | topo_lons = np.linspace(-180 + 0.5, 180 - 0.5, nlon) |
---|
91 | topo_lon2d, topo_lat2d = np.meshgrid(topo_lons, topo_lats) |
---|
92 | topo_loaded = True |
---|
93 | except Exception as e: |
---|
94 | print(f"Warning: '{MOLA_NPY}' not found: {e}") |
---|
95 | topo_loaded = False |
---|
96 | |
---|
97 | |
---|
98 | # Attempt to load contour color table |
---|
99 | if os.path.isfile(MOLA_CSV): |
---|
100 | color_table = pd.read_csv(MOLA_CSV) |
---|
101 | csv_loaded = True |
---|
102 | else: |
---|
103 | print(f"Warning: '{MOLA_CSV}' not found. 3D view colors disabled.") |
---|
104 | csv_loaded = False |
---|
105 | |
---|
106 | |
---|
107 | def complete_filename(text, state): |
---|
108 | """ |
---|
109 | Tab-completion for filesystem paths. |
---|
110 | """ |
---|
111 | if "*" not in text: |
---|
112 | pattern = text + "*" |
---|
113 | else: |
---|
114 | pattern = text |
---|
115 | matches = glob.glob(os.path.expanduser(pattern)) |
---|
116 | matches = [m + "/" if os.path.isdir(m) else m for m in matches] |
---|
117 | try: |
---|
118 | return matches[state] |
---|
119 | except IndexError: |
---|
120 | return None |
---|
121 | |
---|
122 | |
---|
123 | def make_varname_completer(varnames): |
---|
124 | """ |
---|
125 | Returns a readline completer for variable names. |
---|
126 | """ |
---|
127 | def completer(text, state): |
---|
128 | options = [name for name in varnames if name.startswith(text)] |
---|
129 | try: |
---|
130 | return options[state] |
---|
131 | except IndexError: |
---|
132 | return None |
---|
133 | return completer |
---|
134 | |
---|
135 | |
---|
136 | def find_dim_index(dims, candidates): |
---|
137 | """ |
---|
138 | Search through dims tuple for any name in candidates. |
---|
139 | Returns the index if found, else returns None. |
---|
140 | """ |
---|
141 | for idx, dim in enumerate(dims): |
---|
142 | for cand in candidates: |
---|
143 | if cand.lower() == dim.lower(): |
---|
144 | return idx |
---|
145 | return None |
---|
146 | |
---|
147 | |
---|
148 | def find_coord_var(dataset, candidates): |
---|
149 | """ |
---|
150 | Among dataset variables, return the first variable whose name matches any candidate. |
---|
151 | Returns None if none found. |
---|
152 | """ |
---|
153 | for name in dataset.variables: |
---|
154 | for cand in candidates: |
---|
155 | if cand.lower() == name.lower(): |
---|
156 | return name |
---|
157 | return None |
---|
158 | |
---|
159 | |
---|
160 | def overlay_topography(ax, transform, levels=10): |
---|
161 | """ |
---|
162 | Overlay MOLA topography contours onto a given GeoAxes. |
---|
163 | """ |
---|
164 | if not topo_loaded: |
---|
165 | return |
---|
166 | ax.contour( |
---|
167 | topo_lon2d, topo_lat2d, MOLA, |
---|
168 | levels=levels, |
---|
169 | linewidths=0.5, |
---|
170 | colors='black', |
---|
171 | transform=transform |
---|
172 | ) |
---|
173 | |
---|
174 | |
---|
175 | def plot_polar_views(lon2d, lat2d, data2d, colormap, varname, units=None, topo_overlay=True): |
---|
176 | """ |
---|
177 | Plot two polar‐stereographic views (north & south) of the same data. |
---|
178 | """ |
---|
179 | figs = [] # collect figure handles |
---|
180 | |
---|
181 | for pole in ("north", "south"): |
---|
182 | # Choose projection and extent for each pole |
---|
183 | if pole == "north": |
---|
184 | proj = ccrs.NorthPolarStereo(central_longitude=180) |
---|
185 | extent = [-180, 180, 60, 90] |
---|
186 | else: |
---|
187 | proj = ccrs.SouthPolarStereo(central_longitude=180) |
---|
188 | extent = [-180, 180, -90, -60] |
---|
189 | |
---|
190 | # Create figure and GeoAxes |
---|
191 | fig = plt.figure(figsize=(8, 6)) |
---|
192 | ax = fig.add_subplot(1, 1, 1, projection=proj, aspect=True) |
---|
193 | ax.set_global() |
---|
194 | ax.set_extent(extent, ccrs.PlateCarree()) |
---|
195 | |
---|
196 | # Draw circular boundary |
---|
197 | theta = np.linspace(0, 2 * np.pi, 100) |
---|
198 | center, radius = [0.5, 0.5], 0.5 |
---|
199 | verts = np.vstack([np.sin(theta), np.cos(theta)]).T |
---|
200 | circle = mpath.Path(verts * radius + center) |
---|
201 | ax.set_boundary(circle, transform=ax.transAxes) |
---|
202 | |
---|
203 | # Add meridians/parallels |
---|
204 | gl = ax.gridlines( |
---|
205 | draw_labels=True, |
---|
206 | color='k', |
---|
207 | xlocs=range(-180, 181, 30), |
---|
208 | ylocs=range(-90, 91, 10), |
---|
209 | linestyle='--', |
---|
210 | linewidth=0.5 |
---|
211 | ) |
---|
212 | #gl.top_labels = False |
---|
213 | #gl.right_labels = False |
---|
214 | |
---|
215 | # Plot data in PlateCarree projection |
---|
216 | cf = ax.contourf( |
---|
217 | lon2d, lat2d, data2d, |
---|
218 | levels=100, |
---|
219 | cmap=colormap, |
---|
220 | transform=ccrs.PlateCarree() |
---|
221 | ) |
---|
222 | |
---|
223 | # Optionally overlay MOLA topography |
---|
224 | if topo_overlay: |
---|
225 | overlay_topography(ax, transform=ccrs.PlateCarree(), levels=20) |
---|
226 | |
---|
227 | # Colorbar and title |
---|
228 | cbar = fig.colorbar(cf, ax=ax, pad=0.1) |
---|
229 | label = varname + (f" ({units})" if units else "") |
---|
230 | cbar.set_label(label) |
---|
231 | ax.set_title(f"{varname} — {pole.capitalize()} Pole", pad=50) |
---|
232 | |
---|
233 | figs.append(fig) |
---|
234 | |
---|
235 | # Show both figures |
---|
236 | plt.show() |
---|
237 | |
---|
238 | |
---|
239 | def plot_3D_globe(lon2d, lat2d, data2d, colormap, varname, units=None): |
---|
240 | """ |
---|
241 | Plot a 3D globe view of the data using vedo, with surface coloring based on data2d |
---|
242 | and overlaid contour lines from MOLA topography. |
---|
243 | """ |
---|
244 | if not vedo_available: |
---|
245 | print("3D view skipped: vedo missing.") |
---|
246 | return |
---|
247 | if not csv_loaded: |
---|
248 | print("3D view skipped: color table missing.") |
---|
249 | return |
---|
250 | |
---|
251 | # Prepare MOLA grid |
---|
252 | nlat, nlon = MOLA.shape |
---|
253 | lats = np.linspace(90, -90, nlat) |
---|
254 | lons = np.linspace(-180, 180, nlon) |
---|
255 | lon_grid, lat_grid = np.meshgrid(lons, lats) |
---|
256 | |
---|
257 | # Interpolate data2d onto MOLA grid |
---|
258 | lat_data = np.linspace(-90, 90, data2d.shape[0]) |
---|
259 | lon_data = np.linspace(-180, 180, data2d.shape[1]) |
---|
260 | interp2d = RegularGridInterpolator((lat_data, lon_data), data2d, |
---|
261 | bounds_error=False, fill_value=None) |
---|
262 | newdata2d = interp2d((lat_grid, lon_grid)) |
---|
263 | |
---|
264 | # Generate contour lines from MOLA |
---|
265 | cs = plt.contour(lon_grid, lat_grid, MOLA, levels=10, linewidths=0) |
---|
266 | plt.clf() |
---|
267 | contour_lines = [] |
---|
268 | radius = 3389500 # Mars average radius [m] |
---|
269 | for segs, level in zip(cs.allsegs, cs.levels): |
---|
270 | for verts in segs: |
---|
271 | lon_c = verts[:, 0] |
---|
272 | lat_c = verts[:, 1] |
---|
273 | phi_c = np.radians(90 - lat_c) |
---|
274 | theta_c = np.radians(lon_c) |
---|
275 | elev = RegularGridInterpolator((lats, lons), MOLA, |
---|
276 | bounds_error=False, |
---|
277 | fill_value=0.0)((lat_c, lon_c)) |
---|
278 | r_cont = radius + elev * 10 |
---|
279 | x_c = r_cont * np.sin(phi_c) * np.cos(theta_c) * 1.002 |
---|
280 | y_c = r_cont * np.sin(phi_c) * np.sin(theta_c) * 1.002 |
---|
281 | z_c = r_cont * np.cos(phi_c) * 1.002 |
---|
282 | pts = np.column_stack([x_c, y_c, z_c]) |
---|
283 | if pts.shape[0] > 1: |
---|
284 | contour_lines.append(Line(pts, c='k', lw=0.5)) |
---|
285 | |
---|
286 | # Create sphere surface mesh |
---|
287 | phi = np.deg2rad(90 - lat_grid) |
---|
288 | theta = np.deg2rad(lon_grid) |
---|
289 | r = radius + MOLA * 10 |
---|
290 | x = r * np.sin(phi) * np.cos(theta) |
---|
291 | y = r * np.sin(phi) * np.sin(theta) |
---|
292 | z = r * np.cos(phi) |
---|
293 | pts = np.stack([x.ravel(), y.ravel(), z.ravel()], axis=1) |
---|
294 | |
---|
295 | # Build mesh faces |
---|
296 | faces = [] |
---|
297 | for i in range(nlat - 1): |
---|
298 | for j in range(nlon - 1): |
---|
299 | p0 = i * nlon + j |
---|
300 | p1 = p0 + 1 |
---|
301 | p2 = p0 + nlon |
---|
302 | p3 = p2 + 1 |
---|
303 | faces.extend([(p0, p2, p1), (p1, p2, p3)]) |
---|
304 | |
---|
305 | mesh = Mesh([pts, faces]) |
---|
306 | mesh.cmap(colormap, newdata2d.ravel()) |
---|
307 | mesh.add_scalarbar(title=varname + (f' [{units}]' if units else ''), c='white') |
---|
308 | mesh.lighting('default') |
---|
309 | |
---|
310 | # Geographic grid lines |
---|
311 | meridians, parallels, labels = [], [], [] |
---|
312 | zero_lon_offset = radius * 0.03 |
---|
313 | for lon in range(-150, 181, 30): |
---|
314 | lat_line = np.linspace(-90, 90, nlat) |
---|
315 | lon_line = np.full_like(lat_line, lon) |
---|
316 | phi = np.deg2rad(90 - lat_line) |
---|
317 | theta = np.deg2rad(lon_line) |
---|
318 | elev = RegularGridInterpolator((lats, lons), MOLA)((lat_line, lon_line)) |
---|
319 | rr = radius + elev * 10 |
---|
320 | pts_line = np.column_stack([ |
---|
321 | rr * np.sin(phi) * np.cos(theta), |
---|
322 | rr * np.sin(phi) * np.sin(theta), |
---|
323 | rr * np.cos(phi) |
---|
324 | ]) * 1.005 |
---|
325 | label_pos = pts_line[len(pts_line)//2] |
---|
326 | norm = np.linalg.norm(label_pos) |
---|
327 | label_pos_out = label_pos / norm * (norm + radius * 0.02) |
---|
328 | if lon == 0: |
---|
329 | label_pos_out[1] += zero_lon_offset |
---|
330 | meridians.append(Line(pts_line, c='k', lw=1)#.flagpole( |
---|
331 | #f"{lon}°", |
---|
332 | #point=label_pos_out, |
---|
333 | #offset=[0, 0, radius * 0.05], |
---|
334 | #s=radius*0.01, |
---|
335 | #c='yellow' |
---|
336 | #).follow_camera() |
---|
337 | ) |
---|
338 | |
---|
339 | for lat in range(-60, 91, 30): |
---|
340 | lon_line = np.linspace(-180, 180, nlon) |
---|
341 | lat_line = np.full_like(lon_line, lat) |
---|
342 | phi = np.deg2rad(90 - lat_line) |
---|
343 | theta = np.deg2rad(lon_line) |
---|
344 | elev = RegularGridInterpolator((lats, lons), MOLA)((lat_line, lon_line)) |
---|
345 | rr = radius + elev * 10 |
---|
346 | pts_line = np.column_stack([ |
---|
347 | rr * np.sin(phi) * np.cos(theta), |
---|
348 | rr * np.sin(phi) * np.sin(theta), |
---|
349 | rr * np.cos(phi) |
---|
350 | ]) * 1.005 |
---|
351 | label_pos = pts_line[len(pts_line)//2] |
---|
352 | norm = np.linalg.norm(label_pos) |
---|
353 | label_pos_out = label_pos / norm * (norm + radius * 0.02) |
---|
354 | parallels.append(Line(pts_line, c='k', lw=1)#.flagpole( |
---|
355 | #f"{lat}°", |
---|
356 | #point=label_pos_out, |
---|
357 | #offset=[0, 0, radius * 0.05], |
---|
358 | #s=radius*0.01, |
---|
359 | #c='yellow' |
---|
360 | #).follow_camera() |
---|
361 | ) |
---|
362 | |
---|
363 | # Create plotter |
---|
364 | plotter = Plotter(title="3D topography view", bg="bb", axes=0) |
---|
365 | |
---|
366 | # Configure camera |
---|
367 | cam_dist = radius * 3 |
---|
368 | plotter.camera.SetPosition([cam_dist, 0, 0]) |
---|
369 | plotter.camera.SetFocalPoint([0, 0, 0]) |
---|
370 | plotter.camera.SetViewUp([0, 0, 1]) |
---|
371 | |
---|
372 | # Show the globe |
---|
373 | plotter.show(mesh, *contour_lines, *meridians, *parallels) |
---|
374 | |
---|
375 | |
---|
376 | def plot_variable(dataset, varname, time_index=None, alt_index=None, |
---|
377 | colormap="jet", output_path=None, extra_indices=None, |
---|
378 | avg_lat=False): |
---|
379 | """ |
---|
380 | Core plotting logic: reads the variable, handles masks, |
---|
381 | determines dimensionality, and creates the appropriate plot: |
---|
382 | - 1D time series |
---|
383 | - 1D profiles or physical_points maps |
---|
384 | - 2D lat×lon or generic 2D |
---|
385 | - Time×lon heatmap if avg_lat=True |
---|
386 | - Scalar printing |
---|
387 | """ |
---|
388 | var = dataset.variables[varname] |
---|
389 | dims = var.dimensions |
---|
390 | |
---|
391 | # Read full data |
---|
392 | try: |
---|
393 | data_full = var[:] |
---|
394 | except Exception as e: |
---|
395 | print(f"Error: Cannot read data for '{varname}': {e}") |
---|
396 | return |
---|
397 | if hasattr(data_full, "mask"): |
---|
398 | data_full = np.where(data_full.mask, np.nan, data_full.data) |
---|
399 | |
---|
400 | # Pure 1D time series |
---|
401 | if len(dims) == 1 and find_dim_index(dims, TIME_DIMS) is not None: |
---|
402 | time_var = find_coord_var(dataset, TIME_DIMS) |
---|
403 | tvals = (dataset.variables[time_var][:] if time_var |
---|
404 | else np.arange(data_full.shape[0])) |
---|
405 | if hasattr(tvals, "mask"): |
---|
406 | tvals = np.where(tvals.mask, np.nan, tvals.data) |
---|
407 | plt.figure() |
---|
408 | plt.plot(tvals, data_full, marker="o") |
---|
409 | plt.xlabel(time_var or "Time Index") |
---|
410 | plt.ylabel(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
411 | plt.title(f"{varname} vs {time_var or 'Index'}") |
---|
412 | if output_path: |
---|
413 | plt.savefig(output_path, bbox_inches="tight") |
---|
414 | print(f"Saved to {output_path}") |
---|
415 | else: |
---|
416 | plt.show() |
---|
417 | return |
---|
418 | |
---|
419 | # Identify dims |
---|
420 | t_idx = find_dim_index(dims, TIME_DIMS) |
---|
421 | lat_idx = find_dim_index(dims, LAT_DIMS) |
---|
422 | lon_idx = find_dim_index(dims, LON_DIMS) |
---|
423 | a_idx = find_dim_index(dims, ALT_DIMS) |
---|
424 | |
---|
425 | # Average over latitude & plot time × lon heatmap |
---|
426 | if avg_lat and t_idx is not None and lat_idx is not None and lon_idx is not None: |
---|
427 | # compute mean over lat axis |
---|
428 | data_avg = np.nanmean(data_full, axis=lat_idx) |
---|
429 | # prepare coordinates |
---|
430 | time_var = find_coord_var(dataset, TIME_DIMS) |
---|
431 | lon_var = find_coord_var(dataset, LON_DIMS) |
---|
432 | tvals = dataset.variables[time_var][:] |
---|
433 | lons = dataset.variables[lon_var][:] |
---|
434 | if hasattr(tvals, "mask"): |
---|
435 | tvals = np.where(tvals.mask, np.nan, tvals.data) |
---|
436 | if hasattr(lons, "mask"): |
---|
437 | lons = np.where(lons.mask, np.nan, lons.data) |
---|
438 | plt.figure(figsize=(10, 6)) |
---|
439 | plt.pcolormesh(lons, tvals, data_avg, shading="auto", cmap=colormap) |
---|
440 | plt.xlabel(f"Longitude ({getattr(dataset.variables[lon_var], 'units', 'deg')})") |
---|
441 | plt.ylabel(time_var) |
---|
442 | cbar = plt.colorbar() |
---|
443 | cbar.set_label(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
444 | plt.title(f"{varname} averaged over latitude") |
---|
445 | if output_path: |
---|
446 | plt.savefig(output_path, bbox_inches="tight") |
---|
447 | print(f"Saved to {output_path}") |
---|
448 | else: |
---|
449 | plt.show() |
---|
450 | return |
---|
451 | |
---|
452 | # Build slicer for other cases |
---|
453 | slicer = [slice(None)] * len(dims) |
---|
454 | if t_idx is not None: |
---|
455 | if time_index is None: |
---|
456 | print("Error: please supply a time index.") |
---|
457 | return |
---|
458 | slicer[t_idx] = time_index |
---|
459 | if a_idx is not None: |
---|
460 | if alt_index is None: |
---|
461 | print("Error: please supply an altitude index.") |
---|
462 | return |
---|
463 | slicer[a_idx] = alt_index |
---|
464 | |
---|
465 | if extra_indices is None: |
---|
466 | extra_indices = {} |
---|
467 | for dn, idx_val in extra_indices.items(): |
---|
468 | if dn in dims: |
---|
469 | slicer[dims.index(dn)] = idx_val |
---|
470 | |
---|
471 | # Extract slice |
---|
472 | try: |
---|
473 | dslice = data_full[tuple(slicer)] |
---|
474 | except Exception as e: |
---|
475 | print(f"Error slicing '{varname}': {e}") |
---|
476 | return |
---|
477 | |
---|
478 | # Scalar |
---|
479 | if np.ndim(dslice) == 0: |
---|
480 | print(f"Scalar '{varname}': {float(dslice)}") |
---|
481 | return |
---|
482 | |
---|
483 | # 1D: vector, profile, or physical_points |
---|
484 | if dslice.ndim == 1: |
---|
485 | rem = [(i, name) for i, name in enumerate(dims) if slicer[i] == slice(None)] |
---|
486 | if rem: |
---|
487 | di, dname = rem[0] |
---|
488 | # physical_points → interpolated map |
---|
489 | if dname.lower() == "physical_points": |
---|
490 | latv = find_coord_var(dataset, LAT_DIMS) |
---|
491 | lonv = find_coord_var(dataset, LON_DIMS) |
---|
492 | if latv and lonv: |
---|
493 | lats = dataset.variables[latv][:] |
---|
494 | lons = dataset.variables[lonv][:] |
---|
495 | |
---|
496 | # Unmask |
---|
497 | if hasattr(lats, "mask"): |
---|
498 | lats = np.where(lats.mask, np.nan, lats.data) |
---|
499 | if hasattr(lons, "mask"): |
---|
500 | lons = np.where(lons.mask, np.nan, lons.data) |
---|
501 | |
---|
502 | # Convert radians to degrees if needed |
---|
503 | lats_deg = np.round(np.degrees(lats), 6) |
---|
504 | lons_deg = np.round(np.degrees(lons), 6) |
---|
505 | |
---|
506 | # Build regular grid |
---|
507 | uniq_lats = np.unique(lats_deg) |
---|
508 | uniq_lons = np.unique(lons_deg) |
---|
509 | nlon = len(uniq_lons) |
---|
510 | |
---|
511 | data2d = [] |
---|
512 | for lat_val in uniq_lats: |
---|
513 | mask = lats_deg == lat_val |
---|
514 | slice_vals = dslice[mask] |
---|
515 | lons_at_lat = lons_deg[mask] |
---|
516 | if len(slice_vals) == 1: |
---|
517 | row = np.full(nlon, slice_vals[0]) |
---|
518 | else: |
---|
519 | order = np.argsort(lons_at_lat) |
---|
520 | row = np.full(nlon, np.nan) |
---|
521 | row[: len(slice_vals)] = slice_vals[order] |
---|
522 | data2d.append(row) |
---|
523 | data2d = np.array(data2d) |
---|
524 | |
---|
525 | # Wrap longitude if needed |
---|
526 | if -180.0 in uniq_lons: |
---|
527 | idx = np.where(np.isclose(uniq_lons, -180.0))[0][0] |
---|
528 | data2d = np.hstack([data2d, data2d[:, [idx]]]) |
---|
529 | uniq_lons = np.append(uniq_lons, 180.0) |
---|
530 | |
---|
531 | # Plot interpolated map |
---|
532 | proj = ccrs.PlateCarree() |
---|
533 | fig, ax = plt.subplots(subplot_kw=dict(projection=proj), figsize=(8, 6)) |
---|
534 | lon2d, lat2d = np.meshgrid(uniq_lons, uniq_lats) |
---|
535 | lon_ticks = np.arange(-180, 181, 30) |
---|
536 | lat_ticks = np.arange(-90, 91, 30) |
---|
537 | ax.set_xticks(lon_ticks, crs=ccrs.PlateCarree()) |
---|
538 | ax.set_yticks(lat_ticks, crs=ccrs.PlateCarree()) |
---|
539 | ax.tick_params( |
---|
540 | axis='x', which='major', |
---|
541 | length=4, |
---|
542 | direction='out', |
---|
543 | pad=2, |
---|
544 | labelsize=8 |
---|
545 | ) |
---|
546 | ax.tick_params( |
---|
547 | axis='y', which='major', |
---|
548 | length=4, |
---|
549 | direction='out', |
---|
550 | pad=2, |
---|
551 | labelsize=8 |
---|
552 | ) |
---|
553 | cf = ax.contourf( |
---|
554 | lon2d, lat2d, data2d, |
---|
555 | levels=100, |
---|
556 | cmap=colormap, |
---|
557 | transform=proj |
---|
558 | ) |
---|
559 | |
---|
560 | # Overlay MOLA topography |
---|
561 | overlay_topography(ax, transform=proj, levels=10) |
---|
562 | |
---|
563 | # Colorbar & labels |
---|
564 | cbar = fig.colorbar(cf, ax=ax, pad=0.02) |
---|
565 | cbar.set_label(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
566 | ax.set_title(f"{varname} (interpolated map over physical_points)") |
---|
567 | ax.set_xlabel(f"Longitude ({getattr(dataset.variables[lonv], 'units', 'deg')})") |
---|
568 | ax.set_ylabel(f"Latitude ({getattr(dataset.variables[latv], 'units', 'deg')})") |
---|
569 | |
---|
570 | # Prompt for polar-stereo views if interactive |
---|
571 | if input("Display polar-stereo views? [y/n]: ").strip().lower() == "y": |
---|
572 | units = getattr(dataset.variables[varname], "units", None) |
---|
573 | plot_polar_views(lon2d, lat2d, data2d, colormap, varname, units) |
---|
574 | |
---|
575 | # Prompt for 3D globe view if interactive |
---|
576 | if input("Display 3D globe view? [y/n]: ").strip().lower() == "y": |
---|
577 | units = getattr(dataset.variables[varname], "units", None) |
---|
578 | plot_3D_globe(lon2d, lat2d, data2d, colormap, varname, units) |
---|
579 | |
---|
580 | if output_path: |
---|
581 | plt.savefig(output_path, bbox_inches="tight") |
---|
582 | print(f"Saved to {output_path}") |
---|
583 | else: |
---|
584 | plt.show() |
---|
585 | return |
---|
586 | # vertical profile? |
---|
587 | coord = None |
---|
588 | if dname.lower() == "subsurface_layers" and "soildepth" in dataset.variables: |
---|
589 | coord = "soildepth" |
---|
590 | elif dname in dataset.variables: |
---|
591 | coord = dname |
---|
592 | if coord: |
---|
593 | coords = dataset.variables[coord][:] |
---|
594 | if hasattr(coords, "mask"): |
---|
595 | coords = np.where(coords.mask, np.nan, coords.data) |
---|
596 | plt.figure() |
---|
597 | plt.plot(dslice, coords, marker="o") |
---|
598 | if dname.lower() == "subsurface_layers": |
---|
599 | plt.gca().invert_yaxis() |
---|
600 | plt.xlabel(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
601 | plt.ylabel(coord + (f" ({dataset.variables[coord].units})" if hasattr(dataset.variables[coord], "units") else "")) |
---|
602 | plt.title(f"{varname} vs {coord}") |
---|
603 | if output_path: |
---|
604 | plt.savefig(output_path, bbox_inches="tight") |
---|
605 | print(f"Saved to {output_path}") |
---|
606 | else: |
---|
607 | plt.show() |
---|
608 | return |
---|
609 | # generic 1D |
---|
610 | plt.figure() |
---|
611 | plt.plot(dslice, marker="o") |
---|
612 | plt.xlabel("Index") |
---|
613 | plt.ylabel(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
614 | plt.title(f"{varname} (1D)") |
---|
615 | if output_path: |
---|
616 | plt.savefig(output_path, bbox_inches="tight") |
---|
617 | print(f"Saved to {output_path}") |
---|
618 | else: |
---|
619 | plt.show() |
---|
620 | return |
---|
621 | |
---|
622 | # if dslice.ndim == 2: |
---|
623 | lat_idx2 = find_dim_index(dims, LAT_DIMS) |
---|
624 | lon_idx2 = find_dim_index(dims, LON_DIMS) |
---|
625 | |
---|
626 | # Geographic lat×lon slice |
---|
627 | if lat_idx2 is not None and lon_idx2 is not None: |
---|
628 | latv = find_coord_var(dataset, LAT_DIMS) |
---|
629 | lonv = find_coord_var(dataset, LON_DIMS) |
---|
630 | lats = dataset.variables[latv][:] |
---|
631 | lons = dataset.variables[lonv][:] |
---|
632 | |
---|
633 | # Handle masked arrays |
---|
634 | if hasattr(lats, "mask"): |
---|
635 | lats = np.where(lats.mask, np.nan, lats.data) |
---|
636 | if hasattr(lons, "mask"): |
---|
637 | lons = np.where(lons.mask, np.nan, lons.data) |
---|
638 | |
---|
639 | # Create map projection |
---|
640 | proj = ccrs.PlateCarree() |
---|
641 | fig, ax = plt.subplots(figsize=(10, 6), subplot_kw=dict(projection=proj)) |
---|
642 | |
---|
643 | # Make meshgrid and plot |
---|
644 | lon2d, lat2d = np.meshgrid(lons, lats) |
---|
645 | cf = ax.contourf( |
---|
646 | lon2d, lat2d, dslice, |
---|
647 | levels=100, |
---|
648 | cmap=colormap, |
---|
649 | transform=proj |
---|
650 | ) |
---|
651 | |
---|
652 | # Overlay topography |
---|
653 | overlay_topography(ax, transform=proj, levels=10) |
---|
654 | |
---|
655 | # Colorbar and labels |
---|
656 | lon_ticks = np.arange(-180, 181, 30) |
---|
657 | lat_ticks = np.arange(-90, 91, 30) |
---|
658 | ax.set_xticks(lon_ticks, crs=ccrs.PlateCarree()) |
---|
659 | ax.set_yticks(lat_ticks, crs=ccrs.PlateCarree()) |
---|
660 | ax.tick_params( |
---|
661 | axis='x', which='major', |
---|
662 | length=4, |
---|
663 | direction='out', |
---|
664 | pad=2, |
---|
665 | labelsize=8 |
---|
666 | ) |
---|
667 | ax.tick_params( |
---|
668 | axis='y', which='major', |
---|
669 | length=4, |
---|
670 | direction='out', |
---|
671 | pad=2, |
---|
672 | labelsize=8 |
---|
673 | ) |
---|
674 | cbar = fig.colorbar(cf, ax=ax, orientation="vertical", pad=0.02) |
---|
675 | cbar.set_label(varname + (f" ({dataset.variables[varname].units})" |
---|
676 | if hasattr(dataset.variables[varname], "units") else "")) |
---|
677 | ax.set_title(f"{varname} (lat × lon)") |
---|
678 | ax.set_xlabel(f"Longitude ({getattr(dataset.variables[lonv], 'units', 'deg')})") |
---|
679 | ax.set_ylabel(f"Latitude ({getattr(dataset.variables[latv], 'units', 'deg')})") |
---|
680 | |
---|
681 | # Prompt for polar-stereo views if interactive |
---|
682 | if sys.stdin.isatty() and input("Display polar-stereo views? [y/n]: ").strip().lower() == "y": |
---|
683 | units = getattr(dataset.variables[varname], "units", None) |
---|
684 | plot_polar_views(lon2d, lat2d, dslice, colormap, varname, units) |
---|
685 | |
---|
686 | # Prompt for 3D globe view if interactive |
---|
687 | if sys.stdin.isatty() and input("Display 3D globe view? [y/n]: ").strip().lower() == "y": |
---|
688 | units = getattr(dataset.variables[varname], "units", None) |
---|
689 | plot_3D_globe(lon2d, lat2d, dslice, colormap, varname, units) |
---|
690 | |
---|
691 | if output_path: |
---|
692 | plt.savefig(output_path, bbox_inches="tight") |
---|
693 | print(f"Saved to {output_path}") |
---|
694 | else: |
---|
695 | plt.show() |
---|
696 | return |
---|
697 | |
---|
698 | # Generic 2D |
---|
699 | plt.figure(figsize=(8, 6)) |
---|
700 | plt.imshow(dslice, aspect="auto") |
---|
701 | plt.colorbar(label=varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
702 | plt.xlabel("Dim 2 index") |
---|
703 | plt.ylabel("Dim 1 index") |
---|
704 | plt.title(f"{varname} (2D)") |
---|
705 | if output_path: |
---|
706 | plt.savefig(output_path, bbox_inches="tight") |
---|
707 | print(f"Saved to {output_path}") |
---|
708 | else: |
---|
709 | plt.show() |
---|
710 | return |
---|
711 | |
---|
712 | print(f"Error: ndim={dslice.ndim} not supported.") |
---|
713 | |
---|
714 | |
---|
715 | def visualize_variable_interactive(nc_path=None): |
---|
716 | """ |
---|
717 | Interactive loop: keep prompting for variables to plot until user quits. |
---|
718 | """ |
---|
719 | # Open dataset |
---|
720 | if nc_path: |
---|
721 | path = nc_path |
---|
722 | else: |
---|
723 | readline.set_completer(complete_filename) |
---|
724 | readline.parse_and_bind("tab: complete") |
---|
725 | path = input("Enter path to NetCDF file: ").strip() |
---|
726 | |
---|
727 | if not os.path.isfile(path): |
---|
728 | print(f"Error: '{path}' not found.") |
---|
729 | return |
---|
730 | |
---|
731 | ds = Dataset(path, "r") |
---|
732 | var_list = list(ds.variables.keys()) |
---|
733 | if not var_list: |
---|
734 | print("No variables found in file.") |
---|
735 | ds.close() |
---|
736 | return |
---|
737 | |
---|
738 | # Enable interactive mode |
---|
739 | plt.ion() |
---|
740 | |
---|
741 | while True: |
---|
742 | # Enable tab-completion for variable names |
---|
743 | readline.set_completer(make_varname_completer(var_list)) |
---|
744 | readline.parse_and_bind("tab: complete") |
---|
745 | |
---|
746 | print("\nAvailable variables:") |
---|
747 | for name in var_list: |
---|
748 | print(f" - {name}") |
---|
749 | varname = input("\nEnter variable name to plot (or 'q' to quit): ").strip() |
---|
750 | if varname.lower() in ("q", "quit", "exit"): |
---|
751 | print("Exiting.") |
---|
752 | break |
---|
753 | if varname not in ds.variables: |
---|
754 | print(f"Variable '{varname}' not found. Try again.") |
---|
755 | continue |
---|
756 | |
---|
757 | # Display dimensions and size |
---|
758 | var = ds.variables[varname] |
---|
759 | dims, shape = var.dimensions, var.shape |
---|
760 | print(f"\nVariable '{varname}' has dimensions:") |
---|
761 | for dim, size in zip(dims, shape): |
---|
762 | print(f" - {dim}: size {size}") |
---|
763 | print() |
---|
764 | |
---|
765 | # Prepare slicing parameters |
---|
766 | time_index = None |
---|
767 | alt_index = None |
---|
768 | avg = False |
---|
769 | extra_indices = {} |
---|
770 | |
---|
771 | # Time index |
---|
772 | t_idx = find_dim_index(dims, TIME_DIMS) |
---|
773 | if t_idx is not None: |
---|
774 | if shape[t_idx] > 1: |
---|
775 | while True: |
---|
776 | idx = input(f"Enter time index [1–{shape[t_idx]}] (press Enter for all): ").strip() |
---|
777 | if idx == '': |
---|
778 | time_index = None |
---|
779 | break |
---|
780 | if idx.isdigit(): |
---|
781 | i = int(idx) |
---|
782 | if 1 <= i <= shape[t_idx]: |
---|
783 | time_index = i - 1 |
---|
784 | break |
---|
785 | print("Invalid entry. Please enter a valid number or press Enter.") |
---|
786 | else: |
---|
787 | time_index = 0 |
---|
788 | |
---|
789 | # Altitude index |
---|
790 | a_idx = find_dim_index(dims, ALT_DIMS) |
---|
791 | if a_idx is not None: |
---|
792 | if shape[a_idx] > 1: |
---|
793 | while True: |
---|
794 | idx = input(f"Enter altitude index [1–{shape[a_idx]}] (press Enter for all): ").strip() |
---|
795 | if idx == '': |
---|
796 | alt_index = None |
---|
797 | break |
---|
798 | if idx.isdigit(): |
---|
799 | i = int(idx) |
---|
800 | if 1 <= i <= shape[a_idx]: |
---|
801 | alt_index = i - 1 |
---|
802 | break |
---|
803 | print("Invalid entry. Please enter a valid number or press Enter.") |
---|
804 | else: |
---|
805 | alt_index = 0 |
---|
806 | |
---|
807 | # Average over latitude? |
---|
808 | lat_idx = find_dim_index(dims, LAT_DIMS) |
---|
809 | lon_idx = find_dim_index(dims, LON_DIMS) |
---|
810 | if (t_idx is not None and lat_idx is not None and lon_idx is not None and |
---|
811 | shape[t_idx] > 1 and shape[lat_idx] > 1 and shape[lon_idx] > 1): |
---|
812 | resp = input("Average over latitude and plot lon vs time? [y/n]: ").strip().lower() |
---|
813 | avg = (resp == 'y') |
---|
814 | |
---|
815 | # Other dimensions |
---|
816 | for i, dname in enumerate(dims): |
---|
817 | if i in (t_idx, a_idx): |
---|
818 | continue |
---|
819 | size = shape[i] |
---|
820 | if size == 1: |
---|
821 | extra_indices[dname] = 0 |
---|
822 | continue |
---|
823 | while True: |
---|
824 | idx = input(f"Enter index [1–{size}] for '{dname}' (press Enter for all): ").strip() |
---|
825 | if idx == '': |
---|
826 | # keep all values |
---|
827 | break |
---|
828 | if idx.isdigit(): |
---|
829 | j = int(idx) |
---|
830 | if 1 <= j <= size: |
---|
831 | extra_indices[dname] = j - 1 |
---|
832 | break |
---|
833 | print("Invalid entry. Please enter a valid number or press Enter.") |
---|
834 | |
---|
835 | # Plot the variable |
---|
836 | plot_variable( |
---|
837 | ds, varname, |
---|
838 | time_index = time_index, |
---|
839 | alt_index = alt_index, |
---|
840 | colormap = 'jet', |
---|
841 | output_path = None, |
---|
842 | extra_indices = extra_indices, |
---|
843 | avg_lat = avg |
---|
844 | ) |
---|
845 | |
---|
846 | ds.close() |
---|
847 | |
---|
848 | |
---|
849 | def visualize_variable_cli(nc_file, varname, time_index, alt_index, |
---|
850 | colormap, output_path, extra_json, avg_lat): |
---|
851 | """ |
---|
852 | Command-line mode: visualize directly, parsing the --extra-indices argument (JSON string). |
---|
853 | """ |
---|
854 | if not os.path.isfile(nc_file): |
---|
855 | print(f"Error: '{nc_file}' not found.") |
---|
856 | return |
---|
857 | ds = Dataset(nc_file, "r") |
---|
858 | if varname not in ds.variables: |
---|
859 | print(f"Variable '{varname}' not in file.") |
---|
860 | ds.close() |
---|
861 | return |
---|
862 | |
---|
863 | # Display dimensions and size |
---|
864 | dims = ds.variables[varname].dimensions |
---|
865 | shape = ds.variables[varname].shape |
---|
866 | print(f"\nVariable '{varname}' has {len(dims)} dimensions:") |
---|
867 | for name, size in zip(dims, shape): |
---|
868 | print(f" - {name}: size {size}") |
---|
869 | print() |
---|
870 | |
---|
871 | # Special case: time-only → plot directly |
---|
872 | t_idx = find_dim_index(dims, TIME_DIMS) |
---|
873 | if ( |
---|
874 | t_idx is not None and shape[t_idx] > 1 and |
---|
875 | all(shape[i] == 1 for i in range(len(dims)) if i != t_idx) |
---|
876 | ): |
---|
877 | print("Detected single-point spatial dims; plotting time series…") |
---|
878 | var_obj = ds.variables[varname] |
---|
879 | data = var_obj[:].squeeze() |
---|
880 | time_var = find_coord_var(ds, TIME_DIMS) |
---|
881 | if time_var: |
---|
882 | tvals = ds.variables[time_var][:] |
---|
883 | else: |
---|
884 | tvals = np.arange(data.shape[0]) |
---|
885 | if hasattr(data, "mask"): |
---|
886 | data = np.where(data.mask, np.nan, data.data) |
---|
887 | if hasattr(tvals, "mask"): |
---|
888 | tvals = np.where(tvals.mask, np.nan, tvals.data) |
---|
889 | plt.figure() |
---|
890 | plt.plot(tvals, data, marker="o") |
---|
891 | plt.xlabel(time_var or "Time Index") |
---|
892 | plt.ylabel(varname + (f" ({var_obj.units})" if hasattr(var_obj, "units") else "")) |
---|
893 | plt.title(f"{varname} vs {time_var or 'Index'}") |
---|
894 | if output_path: |
---|
895 | plt.savefig(output_path, bbox_inches="tight") |
---|
896 | print(f"Saved to {output_path}") |
---|
897 | else: |
---|
898 | plt.show() |
---|
899 | ds.close() |
---|
900 | return |
---|
901 | |
---|
902 | # if --avg-lat but lat/lon/Time not compatible → disable |
---|
903 | lat_idx = find_dim_index(dims, LAT_DIMS) |
---|
904 | lon_idx = find_dim_index(dims, LON_DIMS) |
---|
905 | if avg_lat and not ( |
---|
906 | t_idx is not None and shape[t_idx] > 1 and |
---|
907 | lat_idx is not None and shape[lat_idx] > 1 and |
---|
908 | lon_idx is not None and shape[lon_idx] > 1 |
---|
909 | ): |
---|
910 | print("Note: disabling --avg-lat (requires Time, lat & lon each >1).") |
---|
911 | avg_lat = False |
---|
912 | |
---|
913 | # Parse extra indices JSON |
---|
914 | extra = {} |
---|
915 | if extra_json: |
---|
916 | try: |
---|
917 | parsed = json.loads(extra_json) |
---|
918 | for k, v in parsed.items(): |
---|
919 | if isinstance(v, int): |
---|
920 | if "slope" in k.lower(): |
---|
921 | extra[k] = v - 1 |
---|
922 | else: |
---|
923 | extra[k] = v |
---|
924 | except: |
---|
925 | print("Warning: bad extra-indices.") |
---|
926 | |
---|
927 | plot_variable(ds, varname, time_index, alt_index, |
---|
928 | colormap, output_path, extra, avg_lat) |
---|
929 | ds.close() |
---|
930 | |
---|
931 | |
---|
932 | def main(): |
---|
933 | parser = argparse.ArgumentParser() |
---|
934 | parser.add_argument('nc_file', nargs='?', help='NetCDF file (omit for interactive)') |
---|
935 | parser.add_argument('-v','--variable', help='Variable name') |
---|
936 | parser.add_argument('-t','--time-index', type=int, help='Time index (0-based)') |
---|
937 | parser.add_argument('-a','--alt-index', type=int, help='Altitude index (0-based)') |
---|
938 | parser.add_argument('-c','--cmap', default='jet', help='Colormap') |
---|
939 | parser.add_argument('--avg-lat', action='store_true', help='Average over latitude') |
---|
940 | parser.add_argument('--show-polar', action='store_true', help='Enable polar-stereo views') |
---|
941 | parser.add_argument('--show-3d', action='store_true', help='Enable 3D globe view') |
---|
942 | parser.add_argument('-o','--output', help='Save figure path') |
---|
943 | parser.add_argument('-e','--extra-indices', help='JSON string for other dims') |
---|
944 | args = parser.parse_args() |
---|
945 | |
---|
946 | if args.nc_file and args.variable: |
---|
947 | visualize_variable_cli( |
---|
948 | args.nc_file, args.variable, |
---|
949 | args.time_index, args.alt_index, |
---|
950 | args.cmap, args.output, |
---|
951 | args.extra_indices, args.avg_lat |
---|
952 | ) |
---|
953 | else: |
---|
954 | visualize_variable_interactive(args.nc_file) |
---|
955 | |
---|
956 | |
---|
957 | if __name__ == "__main__": |
---|
958 | main() |
---|
959 | |
---|