[3247] | 1 | module vdifc_pluto_mod |
---|
| 2 | |
---|
| 3 | implicit none |
---|
| 4 | |
---|
| 5 | contains |
---|
| 6 | |
---|
| 7 | SUBROUTINE vdifc_pluto(ngrid,nlay,nq,ppopsk, & |
---|
| 8 | ptimestep,pcapcal,lecrit, & |
---|
| 9 | pplay,pplev,pzlay,pzlev,pz0, & |
---|
| 10 | pu,pv,ph,pq,pt,ptsrf,pemis,pqsurf, & |
---|
| 11 | pdufi,pdvfi,pdhfi,pdqfi,pdtfi,pfluxsrf, & |
---|
| 12 | pdudif,pdvdif,pdhdif,pdtsrf,pq2, & |
---|
| 13 | pdqdif,pdqsdif,qsat_ch4,qsat_ch4_l1) |
---|
| 14 | |
---|
| 15 | use comgeomfi_h |
---|
| 16 | use callkeys_mod, only: carbox, methane, condcosurf, condensn2, condmetsurf,& |
---|
| 17 | kmix_proffix, vertdiff, tracer, kmixmin |
---|
| 18 | use datafile_mod, only: datadir |
---|
| 19 | use surfdat_h, only: phisfi |
---|
[3258] | 20 | use comcstfi_mod, only: g, r, rcp, cpp |
---|
[3247] | 21 | USE tracer_h, only: igcm_ch4_gas, igcm_ch4_ice, igcm_co_gas, igcm_co_ice,& |
---|
| 22 | igcm_n2, lw_ch4, lw_co, lw_n2 |
---|
| 23 | |
---|
| 24 | implicit none |
---|
| 25 | |
---|
| 26 | !======================================================================= |
---|
| 27 | ! |
---|
| 28 | ! subject: |
---|
| 29 | ! -------- |
---|
| 30 | ! Turbulent diffusion (mixing) for potential T, U, V and tracer |
---|
| 31 | ! |
---|
| 32 | ! Shema implicite |
---|
| 33 | ! On commence par rajouter au variables x la tendance physique |
---|
| 34 | ! et on resoult en fait: |
---|
| 35 | ! x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) |
---|
| 36 | ! |
---|
| 37 | ! author: |
---|
| 38 | ! ------ |
---|
| 39 | ! Hourdin/Forget/Fournier |
---|
| 40 | !======================================================================= |
---|
| 41 | |
---|
| 42 | !----------------------------------------------------------------------- |
---|
| 43 | ! declarations: |
---|
| 44 | ! ------------- |
---|
| 45 | |
---|
| 46 | #include "dimensions.h" |
---|
| 47 | |
---|
| 48 | ! |
---|
| 49 | ! arguments: |
---|
| 50 | ! ---------- |
---|
| 51 | |
---|
| 52 | INTEGER ngrid,nlay |
---|
| 53 | REAL ptimestep |
---|
| 54 | REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 55 | REAL pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) |
---|
| 56 | REAL pu(ngrid,nlay),pv(ngrid,nlay),ph(ngrid,nlay) |
---|
| 57 | REAL ptsrf(ngrid),pemis(ngrid) |
---|
| 58 | REAL pdufi(ngrid,nlay),pdvfi(ngrid,nlay),pdhfi(ngrid,nlay) |
---|
| 59 | REAL pdtfi(ngrid,nlay) |
---|
| 60 | REAL pt(ngrid,nlay) |
---|
| 61 | REAL pfluxsrf(ngrid) |
---|
| 62 | REAL pdudif(ngrid,nlay),pdvdif(ngrid,nlay),pdhdif(ngrid,nlay) |
---|
| 63 | REAL pdtsrf(ngrid),pcapcal(ngrid) |
---|
| 64 | REAL pq2(ngrid,nlay+1) |
---|
| 65 | REAL qsat_ch4(ngrid) |
---|
| 66 | REAL qsat_co(ngrid) |
---|
| 67 | REAL qsat_ch4_l1(ngrid) |
---|
| 68 | REAL zq1temp_ch4(ngrid) |
---|
| 69 | |
---|
| 70 | ! Argument added for condensation: |
---|
| 71 | ! REAL n2ice (ngrid) |
---|
| 72 | REAL ppopsk(ngrid,nlay) |
---|
| 73 | logical lecrit |
---|
| 74 | REAL pz0 |
---|
| 75 | |
---|
| 76 | ! Traceurs : |
---|
| 77 | integer nq |
---|
| 78 | REAL pqsurf(ngrid,nq) |
---|
| 79 | real pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) |
---|
| 80 | real pdqdif(ngrid,nlay,nq) |
---|
| 81 | real pdqdifeddy(ngrid,nlay,nq) |
---|
| 82 | real pdqsdif(ngrid,nq),pdqsdif1(ngrid,nq) |
---|
| 83 | |
---|
| 84 | ! local: |
---|
| 85 | ! ------ |
---|
| 86 | |
---|
| 87 | INTEGER ilev,ig,ilay,nlev |
---|
| 88 | |
---|
| 89 | REAL z4st,zdplanck(ngrid) |
---|
| 90 | REAL zkv(ngrid,nlay+1),zkh(ngrid,nlay+1) |
---|
| 91 | REAL zcdv(ngrid),zcdh(ngrid),sat2(ngrid) |
---|
| 92 | REAL zcdv_true(ngrid),zcdh_true(ngrid) |
---|
| 93 | REAL zu(ngrid,nlay),zv(ngrid,nlay) |
---|
| 94 | REAL zh(ngrid,nlay),zt(ngrid,nlay) |
---|
| 95 | REAL ztsrf2(ngrid),sat(ngrid),sat1(ngrid) |
---|
| 96 | REAL z1(ngrid),z2(ngrid) |
---|
| 97 | REAL za(ngrid,nlay),zb(ngrid,nlay) |
---|
| 98 | REAL zb0(ngrid,nlay) |
---|
| 99 | REAL zc(ngrid,nlay),zd(ngrid,nlay) |
---|
| 100 | REAL zcst1 |
---|
| 101 | REAL zu2 |
---|
| 102 | |
---|
| 103 | EXTERNAL SSUM,SCOPY |
---|
| 104 | REAL SSUM |
---|
| 105 | LOGICAL firstcall |
---|
| 106 | SAVE firstcall |
---|
| 107 | |
---|
| 108 | !!read fixed profile for kmix |
---|
| 109 | integer Nfine,ifine |
---|
| 110 | parameter(Nfine=701) |
---|
| 111 | character(len=100) :: file_path |
---|
| 112 | real,save :: levdat(Nfine),kmixdat(Nfine) |
---|
| 113 | real :: kmix_z(nlay) ! kmix from kmix_proffix |
---|
| 114 | |
---|
| 115 | ! variable added for N2 condensation: |
---|
| 116 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 117 | REAL hh , zhcond(ngrid,nlay) |
---|
| 118 | ! REAL latcond,tcond1p4Pa |
---|
| 119 | REAL tcond1p4Pa |
---|
| 120 | REAL acond,bcond |
---|
| 121 | SAVE acond,bcond |
---|
| 122 | ! DATA latcond,tcond1p4Pa/2.5e5,38/ |
---|
| 123 | DATA tcond1p4Pa/38/ |
---|
| 124 | |
---|
| 125 | ! Tracers : |
---|
| 126 | ! ~~~~~~~ |
---|
| 127 | INTEGER iq |
---|
| 128 | REAL zq(ngrid,nlay,nq) |
---|
| 129 | REAL zq1temp_co(ngrid) |
---|
| 130 | REAL rho(ngrid) ! near surface air density |
---|
| 131 | DATA firstcall/.true./ |
---|
| 132 | |
---|
| 133 | ! ** un petit test de coherence |
---|
| 134 | ! -------------------------- |
---|
| 135 | |
---|
| 136 | IF (firstcall) THEN |
---|
| 137 | IF(ngrid.NE.ngrid) THEN |
---|
| 138 | write(*,*) 'STOP dans vdifc' |
---|
| 139 | write(*,*) 'probleme de dimensions :' |
---|
| 140 | write(*,*) 'ngrid =',ngrid |
---|
| 141 | write(*,*) 'ngrid =',ngrid |
---|
| 142 | STOP |
---|
| 143 | ENDIF |
---|
| 144 | ! To compute: Tcond= 1./(bcond-acond*log(.7143*p)) (p in pascal) |
---|
| 145 | write(*,*) 'In vdifc: Tcond(P=1.4Pa)=',tcond1p4Pa,' Lcond=',lw_n2 |
---|
| 146 | bcond=1./tcond1p4Pa |
---|
| 147 | acond=r/lw_n2 |
---|
| 148 | write(*,*) ' acond,bcond',acond,bcond |
---|
| 149 | |
---|
| 150 | firstcall=.false. |
---|
| 151 | |
---|
| 152 | ! If fixed profile of kmix |
---|
| 153 | IF (kmix_proffix) then |
---|
| 154 | file_path=trim(datadir)//'/gas_prop/kmix.txt' |
---|
| 155 | open(114,file=file_path,form='formatted') |
---|
| 156 | do ifine=1,Nfine |
---|
| 157 | read(114,*) levdat(ifine), kmixdat(ifine) |
---|
| 158 | enddo |
---|
| 159 | close(114) |
---|
| 160 | ENDIF |
---|
| 161 | ENDIF |
---|
| 162 | |
---|
| 163 | !----------------------------------------------------------------------- |
---|
| 164 | ! 1. initialisation |
---|
| 165 | ! ----------------- |
---|
| 166 | |
---|
| 167 | nlev=nlay+1 |
---|
| 168 | |
---|
| 169 | ! ** calcul de rho*dz et dt*rho/dz=dt*rho**2 g/dp |
---|
| 170 | ! avec rho=p/RT=p/ (R Theta) (p/ps)**kappa |
---|
| 171 | ! ---------------------------------------- |
---|
| 172 | |
---|
| 173 | DO ilay=1,nlay |
---|
| 174 | DO ig=1,ngrid |
---|
| 175 | za(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/g |
---|
| 176 | ENDDO |
---|
| 177 | ENDDO |
---|
| 178 | |
---|
| 179 | zcst1=4.*g*ptimestep/(r*r) |
---|
| 180 | DO ilev=2,nlev-1 |
---|
| 181 | DO ig=1,ngrid |
---|
| 182 | zb0(ig,ilev)=pplev(ig,ilev)* & |
---|
| 183 | (pplev(ig,1)/pplev(ig,ilev))**rcp / & |
---|
| 184 | (ph(ig,ilev-1)+ph(ig,ilev)) |
---|
| 185 | zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/ & |
---|
| 186 | (pplay(ig,ilev-1)-pplay(ig,ilev)) |
---|
| 187 | ! write(300,*)'zb0',zb0(ig,ilev) |
---|
| 188 | ENDDO |
---|
| 189 | ENDDO |
---|
| 190 | DO ig=1,ngrid |
---|
| 191 | zb0(ig,1)=ptimestep*pplev(ig,1)/(r*ptsrf(ig)) |
---|
| 192 | ENDDO |
---|
| 193 | |
---|
| 194 | ! ** diagnostique pour l'initialisation |
---|
| 195 | ! ---------------------------------- |
---|
| 196 | |
---|
| 197 | ! IF(lecrit) THEN |
---|
| 198 | ! ig=ngrid/2+1 |
---|
| 199 | ! write(*,*) 'Pression (mbar) ,altitude (km),u,v,theta, rho dz' |
---|
| 200 | ! DO ilay=1,nlay |
---|
| 201 | ! WRITE(*,'(6f11.5)') & |
---|
| 202 | ! .01*pplay(ig,ilay),.001*pzlay(ig,ilay), & |
---|
| 203 | ! pu(ig,ilay),pv(ig,ilay),ph(ig,ilay),za(ig,ilay) |
---|
| 204 | ! ENDDO |
---|
| 205 | ! write(*,*) 'Pression (mbar) ,altitude (km),zb' |
---|
| 206 | ! DO ilev=1,nlay |
---|
| 207 | ! WRITE(*,'(3f15.7)') & |
---|
| 208 | ! .01*pplev(ig,ilev),.001*pzlev(ig,ilev), & |
---|
| 209 | ! zb0(ig,ilev) |
---|
| 210 | ! ENDDO |
---|
| 211 | ! ENDIF |
---|
| 212 | |
---|
| 213 | ! Potential Condensation temperature: |
---|
| 214 | ! ----------------------------------- |
---|
| 215 | |
---|
| 216 | if (condensn2) then |
---|
| 217 | DO ilev=1,nlay |
---|
| 218 | DO ig=1,ngrid |
---|
| 219 | zhcond(ig,ilev) = & |
---|
| 220 | (1./(bcond-acond*log(.7143*pplay(ig,ilev))))/ppopsk(ig,ilev) |
---|
| 221 | END DO |
---|
| 222 | END DO |
---|
| 223 | else |
---|
| 224 | DO ilev=1,nlay |
---|
| 225 | DO ig=1,ngrid |
---|
| 226 | zhcond(ig,ilev) = 0. |
---|
| 227 | END DO |
---|
| 228 | END DO |
---|
| 229 | end if |
---|
| 230 | |
---|
| 231 | |
---|
| 232 | !----------------------------------------------------------------------- |
---|
| 233 | ! 2. ajout des tendances physiques |
---|
| 234 | ! ----------------------------- |
---|
| 235 | |
---|
| 236 | DO ilev=1,nlay |
---|
| 237 | DO ig=1,ngrid |
---|
| 238 | zt(ig,ilev)=pt(ig,ilev)+pdtfi(ig,ilev)*ptimestep |
---|
| 239 | zu(ig,ilev)=pu(ig,ilev)+pdufi(ig,ilev)*ptimestep |
---|
| 240 | zv(ig,ilev)=pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep |
---|
| 241 | zh(ig,ilev)=ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
| 242 | zh(ig,ilev)=max(zh(ig,ilev),zhcond(ig,ilev)) |
---|
| 243 | ENDDO |
---|
| 244 | ENDDO |
---|
| 245 | if(tracer) then |
---|
| 246 | DO iq =1, nq |
---|
| 247 | DO ilev=1,nlay |
---|
| 248 | DO ig=1,ngrid |
---|
| 249 | zq(ig,ilev,iq)=pq(ig,ilev,iq)+pdqfi(ig,ilev,iq)*ptimestep |
---|
| 250 | ENDDO |
---|
| 251 | ENDDO |
---|
| 252 | ENDDO |
---|
| 253 | end if |
---|
| 254 | |
---|
| 255 | !----------------------------------------------------------------------- |
---|
| 256 | ! 3. schema de turbulence |
---|
| 257 | ! -------------------- |
---|
| 258 | |
---|
| 259 | ! ** source d'energie cinetique turbulente a la surface |
---|
| 260 | ! (condition aux limites du schema de diffusion turbulente |
---|
| 261 | ! dans la couche limite |
---|
| 262 | ! --------------------- |
---|
| 263 | CALL vdif_cd( ngrid,nlay,pz0,g,pzlay,pu,pv,ptsrf,ph & |
---|
| 264 | ,zcdv_true,zcdh_true) |
---|
| 265 | DO ig=1,ngrid |
---|
| 266 | zu2=pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) |
---|
| 267 | !TB16: GCM wind for flat hemisphere |
---|
| 268 | IF (phisfi(ig).eq.0.) zu2=max(2.,zu2) |
---|
| 269 | |
---|
| 270 | zcdv(ig)=zcdv_true(ig)*sqrt(zu2) |
---|
| 271 | zcdh(ig)=zcdh_true(ig)*sqrt(zu2) |
---|
| 272 | ENDDO |
---|
| 273 | |
---|
| 274 | ! ** schema de diffusion turbulente dans la couche limite |
---|
| 275 | ! ---------------------------------------------------- |
---|
| 276 | |
---|
| 277 | CALL vdif_kc(ngrid,nlay,ptimestep,g,pzlev,pzlay & |
---|
| 278 | ,pu,pv,ph,zcdv_true & |
---|
| 279 | ,pq2,zkv,zkh) |
---|
| 280 | |
---|
| 281 | |
---|
| 282 | ! Adding eddy mixing to mimic 3D general circulation in 1D |
---|
| 283 | ! RW FF 2010 |
---|
| 284 | if ((ngrid.eq.1)) then |
---|
| 285 | !kmixmin is the minimum eddy mix coeff in 1D |
---|
| 286 | |
---|
| 287 | ! If fixed profile of kmix |
---|
| 288 | IF (kmix_proffix) then |
---|
| 289 | !! Interpolate on the model vertical grid |
---|
| 290 | CALL interp_line(levdat,kmixdat,Nfine,& |
---|
| 291 | pzlay(1,:)/1000.,kmix_z(:),nlay) |
---|
| 292 | |
---|
| 293 | do ilev=1,nlay |
---|
| 294 | zkh(1,ilev) = max(kmix_z(ilev),zkh(1,ilev)) |
---|
| 295 | zkv(1,ilev) = max(kmix_z(ilev),zkv(1,ilev)) |
---|
| 296 | !zkh(1,ilev) = kmixmin |
---|
| 297 | !zkv(1,ilev) = kmixmin |
---|
| 298 | end do |
---|
| 299 | ELSE |
---|
| 300 | do ilev=1,nlay |
---|
| 301 | zkh(1,ilev) = max(kmixmin,zkh(1,ilev)) |
---|
| 302 | zkv(1,ilev) = max(kmixmin,zkv(1,ilev)) |
---|
| 303 | !zkh(1,ilev) = kmixmin |
---|
| 304 | !zkv(1,ilev) = kmixmin |
---|
| 305 | end do |
---|
| 306 | ENDIF |
---|
| 307 | endif ! ngrid.eq.1 |
---|
| 308 | |
---|
| 309 | !! Temporary: |
---|
| 310 | ! zkh = zkh*0.1 |
---|
| 311 | ! zkv = zkv*0.1 |
---|
| 312 | |
---|
| 313 | ! ** diagnostique pour le schema de turbulence |
---|
| 314 | ! ----------------------------------------- |
---|
| 315 | |
---|
| 316 | ! IF(lecrit) THEN |
---|
| 317 | ! write(*,*) ! write(*,*) 'Diagnostic for the vertical turbulent mixing' |
---|
| 318 | ! write(*,*) 'Cd for momentum and potential temperature' |
---|
| 319 | |
---|
| 320 | ! write(*,*) zcdv(ngrid/2+1),zcdh(ngrid/2+1) |
---|
| 321 | ! write(*,*) 'Mixing coefficient for momentum and pot.temp.' |
---|
| 322 | ! DO ilev=1,nlay |
---|
| 323 | ! write(*,*) zkv(ngrid/2+1,ilev),zkh(ngrid/2+1,ilev) |
---|
| 324 | ! ENDDO |
---|
| 325 | ! ENDIF |
---|
| 326 | |
---|
| 327 | !----------------------------------------------------------------------- |
---|
| 328 | ! 4. inversion pour l'implicite sur u |
---|
| 329 | ! -------------------------------- |
---|
| 330 | |
---|
| 331 | ! ** l'equation est |
---|
| 332 | ! u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) |
---|
| 333 | ! avec |
---|
| 334 | ! /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) |
---|
| 335 | ! et |
---|
| 336 | ! dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) |
---|
| 337 | ! donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 338 | ! et /zkv/ = Ku |
---|
| 339 | |
---|
| 340 | CALL multipl((nlay-1)*ngrid,zkv(1,2),zb0(1,2),zb(1,2)) |
---|
| 341 | CALL multipl(ngrid,zcdv,zb0,zb) |
---|
| 342 | |
---|
| 343 | DO ig=1,ngrid |
---|
| 344 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 345 | zc(ig,nlay)=za(ig,nlay)*zu(ig,nlay)*z1(ig) |
---|
| 346 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 347 | ENDDO |
---|
| 348 | |
---|
| 349 | DO ilay=nlay-1,1,-1 |
---|
| 350 | DO ig=1,ngrid |
---|
| 351 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ & |
---|
| 352 | zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 353 | zc(ig,ilay)=(za(ig,ilay)*zu(ig,ilay)+ & |
---|
| 354 | zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 355 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 356 | ENDDO |
---|
| 357 | ENDDO |
---|
| 358 | |
---|
| 359 | DO ig=1,ngrid |
---|
| 360 | zu(ig,1)=zc(ig,1) |
---|
| 361 | ENDDO |
---|
| 362 | DO ilay=2,nlay |
---|
| 363 | DO ig=1,ngrid |
---|
| 364 | zu(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zu(ig,ilay-1) |
---|
| 365 | ENDDO |
---|
| 366 | ENDDO |
---|
| 367 | |
---|
| 368 | !----------------------------------------------------------------------- |
---|
| 369 | ! 5. inversion pour l'implicite sur v |
---|
| 370 | ! -------------------------------- |
---|
| 371 | |
---|
| 372 | ! ** l'equation est |
---|
| 373 | ! v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) |
---|
| 374 | ! avec |
---|
| 375 | ! /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) |
---|
| 376 | ! et |
---|
| 377 | ! dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) |
---|
| 378 | ! donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 379 | ! et /zkv/ = Kv |
---|
| 380 | |
---|
| 381 | DO ig=1,ngrid |
---|
| 382 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 383 | zc(ig,nlay)=za(ig,nlay)*zv(ig,nlay)*z1(ig) |
---|
| 384 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 385 | ENDDO |
---|
| 386 | |
---|
| 387 | DO ilay=nlay-1,1,-1 |
---|
| 388 | DO ig=1,ngrid |
---|
| 389 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ & |
---|
| 390 | zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 391 | zc(ig,ilay)=(za(ig,ilay)*zv(ig,ilay)+ & |
---|
| 392 | zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 393 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 394 | ENDDO |
---|
| 395 | ENDDO |
---|
| 396 | |
---|
| 397 | DO ig=1,ngrid |
---|
| 398 | zv(ig,1)=zc(ig,1) |
---|
| 399 | ENDDO |
---|
| 400 | DO ilay=2,nlay |
---|
| 401 | DO ig=1,ngrid |
---|
| 402 | zv(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zv(ig,ilay-1) |
---|
| 403 | ENDDO |
---|
| 404 | ENDDO |
---|
| 405 | |
---|
| 406 | !----------------------------------------------------------------------- |
---|
| 407 | ! 6. inversion pour l'implicite sur h sans oublier le couplage |
---|
| 408 | ! avec le sol (conduction) |
---|
| 409 | ! ------------------------ |
---|
| 410 | |
---|
| 411 | ! ** l'equation est |
---|
| 412 | ! h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) |
---|
| 413 | ! avec |
---|
| 414 | ! /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) |
---|
| 415 | ! et |
---|
| 416 | ! dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) |
---|
| 417 | ! donc les entrees sont /zcdh/ pour la condition de raccord au sol |
---|
| 418 | ! et /zkh/ = Kh |
---|
| 419 | ! ------------- |
---|
| 420 | |
---|
| 421 | CALL multipl((nlay-1)*ngrid,zkh(1,2),zb0(1,2),zb(1,2)) |
---|
| 422 | CALL multipl(ngrid,zcdh,zb0,zb) |
---|
| 423 | |
---|
| 424 | DO ig=1,ngrid |
---|
| 425 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 426 | zc(ig,nlay)=za(ig,nlay)*zh(ig,nlay)*z1(ig) |
---|
| 427 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 428 | ENDDO |
---|
| 429 | |
---|
| 430 | DO ilay=nlay-1,1,-1 |
---|
| 431 | DO ig=1,ngrid |
---|
| 432 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ & |
---|
| 433 | zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 434 | zc(ig,ilay)=(za(ig,ilay)*zh(ig,ilay)+ & |
---|
| 435 | zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 436 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 437 | ENDDO |
---|
| 438 | ENDDO |
---|
| 439 | |
---|
| 440 | ! ** calcul de (d Planck / dT) a la temperature d'interface |
---|
| 441 | ! ------------------------------------------------------ |
---|
| 442 | |
---|
| 443 | z4st=4.*5.67e-8*ptimestep |
---|
| 444 | DO ig=1,ngrid |
---|
| 445 | zdplanck(ig)=z4st*pemis(ig)*ptsrf(ig)*ptsrf(ig)*ptsrf(ig) |
---|
| 446 | ENDDO |
---|
| 447 | |
---|
| 448 | ! ** calcul de la temperature_d'interface et de sa tendance. |
---|
| 449 | ! on ecrit que la somme des flux est nulle a l'interface |
---|
| 450 | ! a t + \delta t, |
---|
| 451 | ! !'est a dire le flux radiatif a {t + \delta t} |
---|
| 452 | ! + le flux turbulent a {t + \delta t} & |
---|
| 453 | ! qui 'ecrit K (T1-Tsurf) avec T1 = d1 Tsurf + c1 |
---|
| 454 | ! (notation K dt = /cpp*b/) |
---|
| 455 | ! + le flux dans le sol a t |
---|
| 456 | ! + l'evolution du flux dans le sol lorsque la temperature d'interface |
---|
| 457 | ! passe de sa valeur a t a sa valeur a {t + \delta t}. |
---|
| 458 | ! ---------------------------------------------------- |
---|
| 459 | |
---|
| 460 | DO ig=1,ngrid |
---|
| 461 | z1(ig)=pcapcal(ig)*ptsrf(ig)+cpp*zb(ig,1)*zc(ig,1) & |
---|
| 462 | +zdplanck(ig)*ptsrf(ig)+ pfluxsrf(ig)*ptimestep |
---|
| 463 | z2(ig)= pcapcal(ig)+cpp*zb(ig,1)*(1.-zd(ig,1))+zdplanck(ig) |
---|
| 464 | ztsrf2(ig)=z1(ig)/z2(ig) |
---|
| 465 | pdtsrf(ig)=(ztsrf2(ig)-ptsrf(ig))/ptimestep |
---|
| 466 | |
---|
| 467 | ! Modif speciale N2 condensation: |
---|
| 468 | ! tconds = 1./(bcond-acond*log(.7143*pplev(ig,1))) |
---|
| 469 | ! if ((condensn2).and. & |
---|
| 470 | ! ((n2ice(ig).ne.0).or.(ztsrf2(ig).lt.tconds)))then |
---|
| 471 | ! zh(ig,1)=zc(ig,1)+zd(ig,1)*tconds |
---|
| 472 | ! else |
---|
| 473 | zh(ig,1)=zc(ig,1)+zd(ig,1)*ztsrf2(ig) |
---|
| 474 | ! end if |
---|
| 475 | ENDDO |
---|
| 476 | |
---|
| 477 | ! ** et a partir de la temperature au sol on remonte |
---|
| 478 | ! ----------------------------------------------- |
---|
| 479 | |
---|
| 480 | DO ilay=2,nlay |
---|
| 481 | DO ig=1,ngrid |
---|
| 482 | hh = max( zh(ig,ilay-1) , zhcond(ig,ilay-1) ) ! modif n2cond |
---|
| 483 | zh(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*hh |
---|
| 484 | ENDDO |
---|
| 485 | ENDDO |
---|
| 486 | |
---|
| 487 | |
---|
| 488 | !----------------------------------------------------------------------- |
---|
| 489 | ! TRACERS |
---|
| 490 | ! ------- |
---|
| 491 | |
---|
| 492 | if(tracer) then |
---|
| 493 | |
---|
| 494 | ! Using the wind modified by friction for lifting and sublimation |
---|
| 495 | ! ---------------------------------------------------------------- |
---|
| 496 | ! This is computed above |
---|
| 497 | |
---|
| 498 | ! DO ig=1,ngrid |
---|
| 499 | ! zu2=zu(ig,1)*zu(ig,1)+zv(ig,1)*zv(ig,1) |
---|
| 500 | ! zcdv(ig)=zcdv_true(ig)*sqrt(zu2) |
---|
| 501 | ! zcdh(ig)=zcdh_true(ig)*sqrt(zu2) |
---|
| 502 | ! ENDDO |
---|
| 503 | |
---|
| 504 | ! Calcul flux vertical au bas de la premiere couche (cf dust on Mars) |
---|
| 505 | ! ----------------------------------------------------------- |
---|
| 506 | do ig=1,ngrid |
---|
| 507 | rho(ig) = zb0(ig,1) /ptimestep |
---|
| 508 | ! zb(ig,1) = 0. |
---|
| 509 | end do |
---|
| 510 | |
---|
| 511 | pdqsdif(:,:) = 0 |
---|
| 512 | pdqdif(:,:,:)=0. |
---|
| 513 | |
---|
| 514 | |
---|
| 515 | ! TB: Eddy lifting of tracers : |
---|
| 516 | ! **************************************************************** |
---|
| 517 | ! DO ig=1,ngrid |
---|
| 518 | !! option : injection only on an equatorial band |
---|
| 519 | !! if (abs(lati(ig))*180./pi.le.25.) then |
---|
| 520 | ! pdqsdif(ig,igcm_eddy1e6) =-1.e-12 |
---|
| 521 | ! pdqsdif(ig,igcm_eddy1e7) =-1.e-12 |
---|
| 522 | ! pdqsdif(ig,igcm_eddy5e7) =-1.e-12 |
---|
| 523 | ! pdqsdif(ig,igcm_eddy1e8) =-1.e-12 |
---|
| 524 | ! pdqsdif(ig,igcm_eddy5e8) =-1.e-12 |
---|
| 525 | ! endif |
---|
| 526 | ! ENDDO |
---|
| 527 | |
---|
| 528 | ! pdqdifeddy(:,:,:)=0. |
---|
| 529 | ! injection a 50 km |
---|
| 530 | ! DO ig=1,ngrid |
---|
| 531 | ! pdqdifeddy(ig,17,igcm_eddy1e6)=1e-12 |
---|
| 532 | ! pdqdifeddy(ig,17,igcm_eddy1e7)=1e-12 |
---|
| 533 | ! pdqdifeddy(ig,17,igcm_eddy5e7)=1e-12 |
---|
| 534 | ! pdqdifeddy(ig,17,igcm_eddy1e8)=1e-12 |
---|
| 535 | ! pdqdifeddy(ig,17,igcm_eddy5e8)=1e-12 |
---|
| 536 | ! ENDDO |
---|
| 537 | |
---|
| 538 | ! Inversion pour l'implicite sur q |
---|
| 539 | ! -------------------------------- |
---|
| 540 | do iq=1,nq |
---|
| 541 | CALL multipl((nlay-1)*ngrid,zkh(1,2),zb0(1,2),zb(1,2)) |
---|
| 542 | |
---|
| 543 | if ((methane).and.(iq.eq.igcm_ch4_gas)) then |
---|
| 544 | ! This line is required to account for turbulent transport |
---|
| 545 | ! from surface (e.g. ice) to mid-layer of atmosphere: |
---|
| 546 | CALL multipl(ngrid,zcdv,zb0,zb(1,1)) |
---|
| 547 | else if ((carbox).and.(iq.eq.igcm_co_gas)) then |
---|
| 548 | CALL multipl(ngrid,zcdv,zb0,zb(1,1)) |
---|
| 549 | else ! (re)-initialize zb(:,1) |
---|
| 550 | zb(1:ngrid,1)=0 |
---|
| 551 | end if |
---|
| 552 | |
---|
| 553 | DO ig=1,ngrid |
---|
| 554 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 555 | zc(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
| 556 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 557 | ENDDO |
---|
| 558 | |
---|
| 559 | DO ilay=nlay-1,2,-1 |
---|
| 560 | DO ig=1,ngrid |
---|
| 561 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ & |
---|
| 562 | zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 563 | zc(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ & |
---|
| 564 | zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 565 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 566 | ENDDO |
---|
| 567 | ENDDO |
---|
| 568 | |
---|
| 569 | ! special case for methane and CO ice tracer: do not include |
---|
| 570 | ! ice tracer from surface (which is set when handling |
---|
| 571 | ! vapour case (see further down). |
---|
| 572 | if (methane.and.(iq.eq.igcm_ch4_ice)) then |
---|
| 573 | DO ig=1,ngrid |
---|
| 574 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ & |
---|
| 575 | zb(ig,2)*(1.-zd(ig,2))) |
---|
| 576 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ & |
---|
| 577 | zb(ig,2)*zc(ig,2)) *z1(ig) |
---|
| 578 | ENDDO |
---|
| 579 | else if (carbox.and.(iq.eq.igcm_co_ice)) then |
---|
| 580 | DO ig=1,ngrid |
---|
| 581 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ & |
---|
| 582 | zb(ig,2)*(1.-zd(ig,2))) |
---|
| 583 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ & |
---|
| 584 | zb(ig,2)*zc(ig,2)) *z1(ig) |
---|
| 585 | ENDDO |
---|
| 586 | |
---|
| 587 | else ! general case |
---|
| 588 | DO ig=1,ngrid |
---|
| 589 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ & |
---|
| 590 | zb(ig,2)*(1.-zd(ig,2))) |
---|
| 591 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ & |
---|
| 592 | zb(ig,2)*zc(ig,2) + & |
---|
| 593 | (-pdqsdif(ig,iq)) *ptimestep) *z1(ig) !tracer flux from surface |
---|
| 594 | ENDDO |
---|
| 595 | endif ! of if (methane.and.(iq.eq.igcm_ch4_ice)) |
---|
| 596 | |
---|
| 597 | ! Calculation for turbulent exchange with the surface (for ice) |
---|
| 598 | IF (methane.and.(iq.eq.igcm_ch4_gas)) then |
---|
| 599 | |
---|
| 600 | !! calcul de la valeur de q a la surface : |
---|
| 601 | call methanesat(ngrid,ptsrf,pplev(1,1), & |
---|
| 602 | qsat_ch4(:),pqsurf(:,igcm_n2)) |
---|
| 603 | |
---|
| 604 | !! For output: |
---|
| 605 | call methanesat(ngrid,zt(:,1),pplev(1,1), & |
---|
| 606 | qsat_ch4_l1(:),pqsurf(:,igcm_n2)) |
---|
| 607 | |
---|
| 608 | !! Prevent CH4 condensation at the surface |
---|
| 609 | if (.not.condmetsurf) then |
---|
| 610 | qsat_ch4=qsat_ch4*1.e6 |
---|
| 611 | endif |
---|
| 612 | |
---|
| 613 | DO ig=1,ngrid |
---|
| 614 | zd(ig,1)=zb(ig,1)*z1(ig) |
---|
| 615 | zq1temp_ch4(ig)=zc(ig,1)+ zd(ig,1)*qsat_ch4(ig) |
---|
| 616 | pdqsdif(ig,igcm_ch4_ice)=rho(ig)*zcdv(ig) & |
---|
| 617 | *(zq1temp_ch4(ig)-qsat_ch4(ig)) |
---|
| 618 | END DO |
---|
| 619 | |
---|
| 620 | DO ig=1,ngrid |
---|
| 621 | if ((-pdqsdif(ig,igcm_ch4_ice)*ptimestep) & |
---|
| 622 | .gt.(pqsurf(ig,igcm_ch4_ice))) then |
---|
| 623 | |
---|
| 624 | pdqsdif(ig,igcm_ch4_ice)= & |
---|
| 625 | -pqsurf(ig,igcm_ch4_ice)/ptimestep |
---|
| 626 | |
---|
| 627 | z1(ig)=1./(za(ig,1)+ zb(ig,2)*(1.-zd(ig,2))) |
---|
| 628 | |
---|
| 629 | zc(ig,1)=(za(ig,1)*zq(ig,1,igcm_ch4_gas)+ & |
---|
| 630 | zb(ig,2)*zc(ig,2) + & |
---|
| 631 | (-pdqsdif(ig,igcm_ch4_ice)) *ptimestep) *z1(ig) |
---|
| 632 | |
---|
| 633 | zq1temp_ch4(ig)=zc(ig,1) |
---|
| 634 | endif |
---|
| 635 | |
---|
| 636 | zq(ig,1,igcm_ch4_gas)=zq1temp_ch4(ig) |
---|
| 637 | |
---|
| 638 | ! TB: MODIF speciale pour CH4 |
---|
| 639 | pdtsrf(ig)=pdtsrf(ig)+ & |
---|
| 640 | lw_ch4*pdqsdif(ig,igcm_ch4_ice)/pcapcal(ig) |
---|
| 641 | |
---|
| 642 | |
---|
| 643 | ENDDO ! of DO ig=1,ngrid |
---|
| 644 | |
---|
| 645 | ELSE IF (carbox.and.(iq.eq.igcm_co_gas)) then |
---|
| 646 | |
---|
| 647 | ! calcul de la valeur de q a la surface : |
---|
| 648 | call cosat(ngrid,ptsrf,pplev(1,1),qsat_co, & |
---|
| 649 | pqsurf(:,igcm_n2),pqsurf(:,igcm_ch4_ice)) |
---|
| 650 | |
---|
| 651 | !! Prevent CO condensation at the surface |
---|
| 652 | if (.not.condcosurf) then |
---|
| 653 | qsat_co=qsat_co*1.e6 |
---|
| 654 | endif |
---|
| 655 | |
---|
| 656 | DO ig=1,ngrid |
---|
| 657 | zd(ig,1)=zb(ig,1)*z1(ig) |
---|
| 658 | zq1temp_co(ig)=zc(ig,1)+ zd(ig,1)*qsat_co(ig) |
---|
| 659 | pdqsdif(ig,igcm_co_ice)=rho(ig)*zcdv(ig) & |
---|
| 660 | *(zq1temp_co(ig)-qsat_co(ig)) |
---|
| 661 | END DO |
---|
| 662 | |
---|
| 663 | |
---|
| 664 | DO ig=1,ngrid |
---|
| 665 | ! ------------------------------------------------------------- |
---|
| 666 | ! TEMPORAIRE : pour initialiser CO si glacier N2 |
---|
| 667 | ! meme si il n'y a pas de CO disponible |
---|
| 668 | ! if (pqsurf(ig,igcm_n2).le.10.) then |
---|
| 669 | ! ------------------------------------------------------------- |
---|
| 670 | ! |
---|
| 671 | if ((-pdqsdif(ig,igcm_co_ice)*ptimestep) & |
---|
| 672 | .gt.(pqsurf(ig,igcm_co_ice))) then |
---|
| 673 | pdqsdif(ig,igcm_co_ice)= & |
---|
| 674 | -pqsurf(ig,igcm_co_ice)/ptimestep |
---|
| 675 | z1(ig)=1./(za(ig,1)+ zb(ig,2)*(1.-zd(ig,2))) |
---|
| 676 | zc(ig,1)=(za(ig,1)*zq(ig,1,igcm_co_gas)+ & |
---|
| 677 | zb(ig,2)*zc(ig,2) + & |
---|
| 678 | (-pdqsdif(ig,igcm_co_ice)) *ptimestep) *z1(ig) |
---|
| 679 | zq1temp_co(ig)=zc(ig,1) |
---|
| 680 | endif |
---|
| 681 | ! endif |
---|
| 682 | |
---|
| 683 | zq(ig,1,igcm_co_gas)=zq1temp_co(ig) |
---|
| 684 | |
---|
| 685 | ! MODIF speciale pour CO / corrected by FF 2016 |
---|
| 686 | pdtsrf(ig)=pdtsrf(ig)+ & |
---|
| 687 | lw_co*pdqsdif(ig,igcm_co_ice)/pcapcal(ig) |
---|
| 688 | |
---|
| 689 | ENDDO ! of DO ig=1,ngrid |
---|
| 690 | |
---|
| 691 | ELSE ! if (methane) |
---|
| 692 | |
---|
| 693 | DO ig=1,ngrid |
---|
| 694 | zq(ig,1,iq)=zc(ig,1) |
---|
| 695 | ENDDO |
---|
| 696 | |
---|
[3258] | 697 | END IF ! of IF ((methane).and.(iq.eq.igcm_ch4_gas)) |
---|
[3247] | 698 | |
---|
| 699 | !! Diffusion verticale : shut down vertical transport of vertdiff = false |
---|
| 700 | if (vertdiff) then |
---|
| 701 | DO ilay=2,nlay |
---|
| 702 | DO ig=1,ngrid |
---|
| 703 | zq(ig,ilay,iq)=zc(ig,ilay)+zd(ig,ilay)*zq(ig,ilay-1,iq) |
---|
| 704 | ENDDO |
---|
| 705 | ENDDO |
---|
| 706 | endif |
---|
| 707 | |
---|
| 708 | enddo ! of do iq=1,nq |
---|
| 709 | end if ! of if(tracer) |
---|
| 710 | |
---|
| 711 | !----------------------------------------------------------------------- |
---|
| 712 | ! 8. calcul final des tendances de la diffusion verticale |
---|
| 713 | ! ---------------------------------------------------- |
---|
| 714 | DO ilev = 1, nlay |
---|
| 715 | DO ig=1,ngrid |
---|
| 716 | pdudif(ig,ilev)=( zu(ig,ilev)- & |
---|
| 717 | (pu(ig,ilev)+pdufi(ig,ilev)*ptimestep) )/ptimestep |
---|
| 718 | pdvdif(ig,ilev)=( zv(ig,ilev)- & |
---|
| 719 | (pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep) )/ptimestep |
---|
| 720 | hh = max(ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep , & |
---|
| 721 | zhcond(ig,ilev)) ! modif n2cond |
---|
| 722 | pdhdif(ig,ilev)=( zh(ig,ilev)- hh )/ptimestep |
---|
| 723 | ENDDO |
---|
| 724 | ENDDO |
---|
| 725 | |
---|
| 726 | if (tracer) then |
---|
| 727 | DO iq = 1, nq |
---|
| 728 | DO ilev = 1, nlay |
---|
| 729 | DO ig=1,ngrid |
---|
| 730 | pdqdif(ig,ilev,iq)=(zq(ig,ilev,iq)- & |
---|
| 731 | (pq(ig,ilev,iq) + pdqfi(ig,ilev,iq)*ptimestep))/ptimestep |
---|
| 732 | ! pdqdif(ig,ilev,iq)=pdqdifeddy(ig,ilev,iq)+(zq(ig,ilev,iq)- & |
---|
| 733 | ! (pq(ig,ilev,iq) + pdqfi(ig,ilev,iq)*ptimestep))/ptimestep |
---|
| 734 | ENDDO |
---|
| 735 | ENDDO |
---|
| 736 | ENDDO |
---|
| 737 | end if |
---|
| 738 | |
---|
| 739 | ! ** diagnostique final |
---|
| 740 | ! ------------------ |
---|
| 741 | |
---|
| 742 | IF(lecrit) THEN |
---|
| 743 | write(*,*) 'In vdif' |
---|
| 744 | write(*,*) 'Ts (t) and Ts (t+st)' |
---|
| 745 | WRITE(*,'(a10,3a15)') & |
---|
| 746 | 'theta(t)','theta(t+dt)','u(t)','u(t+dt)' |
---|
| 747 | write(*,*) ptsrf(ngrid/2+1),ztsrf2(ngrid/2+1) |
---|
| 748 | DO ilev=1,nlay |
---|
| 749 | WRITE(*,'(4f15.7)') & |
---|
| 750 | ph(ngrid/2+1,ilev),zh(ngrid/2+1,ilev), & |
---|
| 751 | pu(ngrid/2+1,ilev),zu(ngrid/2+1,ilev) |
---|
| 752 | |
---|
| 753 | ENDDO |
---|
| 754 | ENDIF |
---|
| 755 | |
---|
| 756 | RETURN |
---|
| 757 | ! END |
---|
| 758 | |
---|
| 759 | end subroutine vdifc_pluto |
---|
| 760 | |
---|
| 761 | end module vdifc_pluto_mod |
---|