[3184] | 1 | module turbdiff_mod |
---|
[3197] | 2 | |
---|
[3184] | 3 | implicit none |
---|
[3197] | 4 | |
---|
[3184] | 5 | contains |
---|
[3197] | 6 | |
---|
[3184] | 7 | subroutine turbdiff(ngrid,nlay,nq, & |
---|
[3197] | 8 | ptimestep,pcapcal, & |
---|
[3184] | 9 | pplay,pplev,pzlay,pzlev,pz0, & |
---|
| 10 | pu,pv,pt,ppopsk,pq,ptsrf,pemis,pqsurf, & |
---|
| 11 | pdtfi,pdqfi,pfluxsrf, & |
---|
| 12 | Pdudif,pdvdif,pdtdif,pdtsrf,sensibFlux,pq2, & |
---|
| 13 | pdqdif,pdqevap,pdqsdif,flux_u,flux_v) |
---|
| 14 | |
---|
| 15 | use radcommon_h, only : sigma, glat |
---|
| 16 | use surfdat_h, only: dryness |
---|
| 17 | use comcstfi_mod, only: rcp, g, r, cpp |
---|
| 18 | use callkeys_mod, only: tracer,nosurf,kmixmin |
---|
| 19 | use turb_mod, only : ustar |
---|
| 20 | #ifdef MESOSCALE |
---|
| 21 | use comm_wrf, only : comm_LATENT_HF |
---|
| 22 | #endif |
---|
| 23 | implicit none |
---|
| 24 | |
---|
| 25 | !================================================================== |
---|
[3197] | 26 | ! |
---|
[3184] | 27 | ! Purpose |
---|
| 28 | ! ------- |
---|
| 29 | ! Turbulent diffusion (mixing) for pot. T, U, V and tracers |
---|
[3197] | 30 | ! |
---|
[3184] | 31 | ! Implicit scheme |
---|
| 32 | ! We start by adding to variables x the physical tendencies |
---|
| 33 | ! already computed. We resolve the equation: |
---|
| 34 | ! |
---|
| 35 | ! x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) |
---|
[3197] | 36 | ! |
---|
[3184] | 37 | ! Authors |
---|
[3197] | 38 | ! ------- |
---|
[3184] | 39 | ! F. Hourdin, F. Forget, R. Fournier (199X) |
---|
| 40 | ! R. Wordsworth, B. Charnay (2010) |
---|
| 41 | ! J. Leconte (2012): To f90 |
---|
| 42 | ! - Rewritten the diffusion scheme to conserve total enthalpy |
---|
| 43 | ! by accounting for dissipation of turbulent kinetic energy. |
---|
| 44 | ! - Accounting for lost mean flow kinetic energy should come soon. |
---|
[3197] | 45 | ! |
---|
[3184] | 46 | !================================================================== |
---|
| 47 | |
---|
| 48 | !----------------------------------------------------------------------- |
---|
| 49 | ! declarations |
---|
| 50 | ! ------------ |
---|
| 51 | |
---|
| 52 | ! arguments |
---|
| 53 | ! --------- |
---|
| 54 | INTEGER,INTENT(IN) :: ngrid |
---|
| 55 | INTEGER,INTENT(IN) :: nlay |
---|
| 56 | REAL,INTENT(IN) :: ptimestep |
---|
| 57 | REAL,INTENT(IN) :: pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 58 | REAL,INTENT(IN) :: pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) |
---|
| 59 | REAL,INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) |
---|
| 60 | REAL,INTENT(IN) :: pt(ngrid,nlay),ppopsk(ngrid,nlay) |
---|
| 61 | REAL,INTENT(IN) :: ptsrf(ngrid) ! surface temperature (K) |
---|
| 62 | REAL,INTENT(IN) :: pemis(ngrid) |
---|
| 63 | REAL,INTENT(IN) :: pdtfi(ngrid,nlay) |
---|
| 64 | REAL,INTENT(IN) :: pfluxsrf(ngrid) |
---|
| 65 | REAL,INTENT(OUT) :: pdudif(ngrid,nlay),pdvdif(ngrid,nlay) |
---|
| 66 | REAL,INTENT(OUT) :: pdtdif(ngrid,nlay) |
---|
| 67 | REAL,INTENT(OUT) :: pdtsrf(ngrid) ! tendency (K/s) on surface temperature |
---|
| 68 | REAL,INTENT(OUT) :: sensibFlux(ngrid) |
---|
| 69 | REAL,INTENT(IN) :: pcapcal(ngrid) |
---|
| 70 | REAL,INTENT(INOUT) :: pq2(ngrid,nlay+1) |
---|
| 71 | REAL,INTENT(OUT) :: flux_u(ngrid),flux_v(ngrid) |
---|
| 72 | |
---|
| 73 | REAL,INTENT(IN) :: pz0 |
---|
| 74 | |
---|
| 75 | ! Tracers |
---|
| 76 | ! -------- |
---|
[3197] | 77 | integer,intent(in) :: nq |
---|
[3184] | 78 | real,intent(in) :: pqsurf(ngrid,nq) |
---|
[3197] | 79 | real,intent(in) :: pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) |
---|
| 80 | real,intent(out) :: pdqdif(ngrid,nlay,nq) |
---|
| 81 | real,intent(out) :: pdqsdif(ngrid,nq) |
---|
| 82 | |
---|
[3184] | 83 | ! local |
---|
| 84 | ! ----- |
---|
| 85 | integer ilev,ig,ilay,nlev |
---|
| 86 | |
---|
| 87 | REAL z4st,zdplanck(ngrid) |
---|
| 88 | REAL zkv(ngrid,nlay+1),zkh(ngrid,nlay+1) |
---|
| 89 | REAL zcdv(ngrid),zcdh(ngrid) |
---|
| 90 | REAL zcdv_true(ngrid),zcdh_true(ngrid) |
---|
| 91 | REAL zu(ngrid,nlay),zv(ngrid,nlay) |
---|
| 92 | REAL zh(ngrid,nlay),zt(ngrid,nlay) |
---|
| 93 | REAL ztsrf(ngrid) |
---|
| 94 | REAL z1(ngrid),z2(ngrid) |
---|
| 95 | REAL zmass(ngrid,nlay) |
---|
| 96 | REAL zfluxv(ngrid,nlay),zfluxt(ngrid,nlay),zfluxq(ngrid,nlay) |
---|
| 97 | REAL zb0(ngrid,nlay) |
---|
| 98 | REAL zExner(ngrid,nlay),zovExner(ngrid,nlay) |
---|
| 99 | REAL zcv(ngrid,nlay),zdv(ngrid,nlay) !inversion coefficient for winds |
---|
| 100 | REAL zct(ngrid,nlay),zdt(ngrid,nlay) !inversion coefficient for temperature |
---|
| 101 | REAL zcq(ngrid,nlay),zdq(ngrid,nlay) !inversion coefficient for tracers |
---|
| 102 | REAL zcst1 |
---|
| 103 | REAL zu2!, a |
---|
| 104 | REAL zcq0(ngrid),zdq0(ngrid) |
---|
| 105 | REAL zx_alf1(ngrid),zx_alf2(ngrid) |
---|
| 106 | ! 1D eddy diffusion coefficient |
---|
| 107 | REAL kzz_eddy(nlay) |
---|
| 108 | REAL pmin_kzz |
---|
| 109 | |
---|
| 110 | LOGICAL,SAVE :: firstcall=.true. |
---|
| 111 | !$OMP THREADPRIVATE(firstcall) |
---|
[3197] | 112 | |
---|
[3184] | 113 | ! Tracers |
---|
| 114 | ! ------- |
---|
| 115 | INTEGER iq |
---|
| 116 | REAL zq(ngrid,nlay,nq) |
---|
| 117 | REAL zqnoevap(ngrid,nlay) !special for water case to compute where evaporated water goes. |
---|
| 118 | REAL pdqevap(ngrid,nlay) !special for water case to compute where evaporated water goes. |
---|
| 119 | REAL zdmassevap(ngrid) |
---|
| 120 | REAL rho(ngrid) ! near-surface air density |
---|
| 121 | |
---|
| 122 | ! Variables added for implicit latent heat inclusion |
---|
| 123 | ! -------------------------------------------------- |
---|
| 124 | real dqsat(ngrid),psat_temp,qsat(ngrid),psat(ngrid) |
---|
| 125 | |
---|
| 126 | integer, save :: ivap, iliq, iliq_surf,iice_surf ! also make liq for clarity on surface... |
---|
| 127 | !$OMP THREADPRIVATE(ivap,iliq,iliq_surf,iice_surf) |
---|
| 128 | |
---|
| 129 | real, parameter :: karman=0.4 |
---|
| 130 | real cd0, roughratio |
---|
| 131 | |
---|
[3197] | 132 | real dqsdif_total(ngrid) |
---|
| 133 | real zq0(ngrid) |
---|
[3184] | 134 | |
---|
| 135 | |
---|
| 136 | ! Coherence test |
---|
| 137 | ! -------------- |
---|
| 138 | |
---|
| 139 | IF (firstcall) THEN |
---|
[3228] | 140 | ivap=1 |
---|
[3198] | 141 | iliq=0 |
---|
| 142 | iliq_surf=0 |
---|
| 143 | iice_surf=0 ! simply to make the code legible |
---|
[3184] | 144 | sensibFlux(:)=0. |
---|
| 145 | firstcall=.false. |
---|
| 146 | ENDIF |
---|
| 147 | |
---|
| 148 | !----------------------------------------------------------------------- |
---|
| 149 | ! 1. Initialisation |
---|
| 150 | ! ----------------- |
---|
| 151 | |
---|
| 152 | nlev=nlay+1 |
---|
| 153 | |
---|
| 154 | ! Calculate rho*dz, (P/Ps)**(R/cp) and dt*rho/dz=dt*rho**2 g/dp |
---|
| 155 | ! with rho=p/RT=p/ (R Theta) (p/ps)**kappa |
---|
| 156 | ! --------------------------------------------- |
---|
| 157 | |
---|
| 158 | DO ilay=1,nlay |
---|
| 159 | DO ig=1,ngrid |
---|
| 160 | zmass(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/glat(ig) |
---|
| 161 | zExner(ig,ilay)=(pplev(ig,ilay)/pplev(ig,1))**rcp |
---|
| 162 | zovExner(ig,ilay)=1./ppopsk(ig,ilay) |
---|
| 163 | ENDDO |
---|
| 164 | ENDDO |
---|
| 165 | |
---|
| 166 | zcst1=4.*g*ptimestep/(R*R) |
---|
| 167 | DO ilev=2,nlev-1 |
---|
| 168 | DO ig=1,ngrid |
---|
| 169 | zb0(ig,ilev)=pplev(ig,ilev)/(pt(ig,ilev-1)+pt(ig,ilev)) |
---|
| 170 | zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/(pplay(ig,ilev-1)-pplay(ig,ilev)) |
---|
| 171 | ENDDO |
---|
| 172 | ENDDO |
---|
| 173 | DO ig=1,ngrid |
---|
| 174 | zb0(ig,1)=ptimestep*pplev(ig,1)/(R*ptsrf(ig)) |
---|
| 175 | ENDDO |
---|
| 176 | dqsdif_total(:)=0.0 |
---|
| 177 | |
---|
| 178 | !----------------------------------------------------------------------- |
---|
| 179 | ! 2. Add the physical tendencies computed so far |
---|
| 180 | ! ---------------------------------------------- |
---|
| 181 | |
---|
| 182 | DO ilev=1,nlay |
---|
| 183 | DO ig=1,ngrid |
---|
| 184 | zu(ig,ilev)=pu(ig,ilev) |
---|
| 185 | zv(ig,ilev)=pv(ig,ilev) |
---|
| 186 | zt(ig,ilev)=pt(ig,ilev)+pdtfi(ig,ilev)*ptimestep |
---|
| 187 | zh(ig,ilev)=pt(ig,ilev)*zovExner(ig,ilev) !for call vdif_kc, but could be moved and computed there |
---|
| 188 | ENDDO |
---|
| 189 | ENDDO |
---|
| 190 | if(tracer) then |
---|
| 191 | DO iq =1, nq |
---|
| 192 | DO ilev=1,nlay |
---|
| 193 | DO ig=1,ngrid |
---|
| 194 | zq(ig,ilev,iq)=pq(ig,ilev,iq) + pdqfi(ig,ilev,iq)*ptimestep |
---|
| 195 | ENDDO |
---|
| 196 | ENDDO |
---|
| 197 | ENDDO |
---|
| 198 | end if |
---|
| 199 | |
---|
| 200 | !----------------------------------------------------------------------- |
---|
| 201 | ! 3. Turbulence scheme |
---|
| 202 | ! -------------------- |
---|
| 203 | ! |
---|
| 204 | ! Source of turbulent kinetic energy at the surface |
---|
[3197] | 205 | ! ------------------------------------------------- |
---|
[3184] | 206 | ! Formula is Cd_0 = (karman / log[1+z1/z0])^2 |
---|
| 207 | |
---|
| 208 | DO ig=1,ngrid |
---|
| 209 | roughratio = 1. + pzlay(ig,1)/pz0 |
---|
| 210 | cd0 = karman/log(roughratio) |
---|
| 211 | cd0 = cd0*cd0 |
---|
| 212 | zcdv_true(ig) = cd0 |
---|
| 213 | zcdh_true(ig) = cd0 |
---|
| 214 | if(nosurf)then |
---|
| 215 | zcdv_true(ig)=0.D+0 !JL12 disable atm/surface momentum flux |
---|
[3197] | 216 | zcdh_true(ig)=0.D+0 !JL12 disable sensible heat flux |
---|
[3184] | 217 | endif |
---|
| 218 | ENDDO |
---|
| 219 | |
---|
| 220 | DO ig=1,ngrid |
---|
| 221 | zu2=pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) |
---|
| 222 | zcdv(ig)=zcdv_true(ig)*sqrt(zu2) |
---|
| 223 | zcdh(ig)=zcdh_true(ig)*sqrt(zu2) |
---|
| 224 | ENDDO |
---|
| 225 | |
---|
| 226 | ! Turbulent diffusion coefficients in the boundary layer |
---|
[3197] | 227 | ! ------------------------------------------------------ |
---|
[3184] | 228 | |
---|
[3197] | 229 | call vdif_kc(ngrid,nlay,ptimestep,g,pzlev,pzlay,pu,pv,zh,zcdv_true,pq2,zkv,zkh) !JL12 why not call vdif_kc with updated winds and temperature |
---|
| 230 | |
---|
[3184] | 231 | ! Adding eddy mixing to mimic 3D general circulation in 1D |
---|
| 232 | ! R. Wordsworth & F. Forget (2010) |
---|
| 233 | if ((ngrid.eq.1)) then |
---|
| 234 | ! kmixmin minimum eddy mix coeff in 1D |
---|
| 235 | ! set up in inifis_mod.F90 - default value 1.0e-2 |
---|
| 236 | do ilev=1,nlay |
---|
| 237 | |
---|
| 238 | ! Here to code your specific eddy mix coeff in 1D |
---|
| 239 | ! Earth example that can be uncommented below |
---|
| 240 | ! ------------------------------------------------- |
---|
| 241 | ! *====== Earth kzz from Zahnle et al. 2006 ======* |
---|
| 242 | ! ------------------------------------------------- |
---|
| 243 | ! if(pzlev(1,ilev).le.11.0e3) then |
---|
| 244 | ! kzz_eddy(ilev)=10.0 |
---|
| 245 | ! pmin_kzz=pplev(1,ilev)*exp((pzlev(1,ilev)-11.0e3)*g/(r*zt(1,ilev))) |
---|
| 246 | ! else |
---|
| 247 | ! kzz_eddy(ilev)=0.1*(pplev(1,ilev)/pmin_kzz)**(-0.5) |
---|
| 248 | ! kzz_eddy(ilev)=min(kzz_eddy(ilev),100.0) |
---|
| 249 | ! endif |
---|
| 250 | ! do ig=1,ngrid |
---|
| 251 | ! zkh(ig,ilev) = max(kzz_eddy(ilev),zkh(ig,ilev)) |
---|
[3197] | 252 | ! zkv(ig,ilev) = max(kzz_eddy(ilev),zkv(ig,ilev)) |
---|
[3184] | 253 | ! end do |
---|
| 254 | |
---|
| 255 | do ig=1,ngrid |
---|
| 256 | zkh(ig,ilev) = max(kmixmin,zkh(ig,ilev)) |
---|
[3197] | 257 | zkv(ig,ilev) = max(kmixmin,zkv(ig,ilev)) |
---|
[3184] | 258 | end do |
---|
| 259 | end do |
---|
| 260 | end if |
---|
| 261 | |
---|
| 262 | !JL12 change zkv at the surface by zcdv to calculate the surface momentum flux properly |
---|
| 263 | DO ig=1,ngrid |
---|
| 264 | zkv(ig,1)=zcdv(ig) |
---|
| 265 | ENDDO |
---|
| 266 | !we treat only winds, energy and tracers coefficients will be computed with upadted winds |
---|
| 267 | !JL12 calculate the flux coefficients (tables multiplied elements by elements) |
---|
| 268 | zfluxv(1:ngrid,1:nlay)=zkv(1:ngrid,1:nlay)*zb0(1:ngrid,1:nlay) |
---|
[3197] | 269 | |
---|
[3184] | 270 | !----------------------------------------------------------------------- |
---|
| 271 | ! 4. Implicit inversion of u |
---|
| 272 | ! -------------------------- |
---|
| 273 | |
---|
| 274 | ! u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) |
---|
| 275 | ! avec |
---|
| 276 | ! /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) |
---|
| 277 | ! et |
---|
| 278 | ! dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) |
---|
| 279 | ! donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 280 | ! et /zkv/ = Ku |
---|
| 281 | |
---|
| 282 | DO ig=1,ngrid |
---|
| 283 | z1(ig)=1./(zmass(ig,nlay)+zfluxv(ig,nlay)) |
---|
| 284 | zcv(ig,nlay)=zmass(ig,nlay)*zu(ig,nlay)*z1(ig) |
---|
| 285 | zdv(ig,nlay)=zfluxv(ig,nlay)*z1(ig) |
---|
| 286 | ENDDO |
---|
| 287 | |
---|
| 288 | DO ilay=nlay-1,1,-1 |
---|
| 289 | DO ig=1,ngrid |
---|
| 290 | z1(ig)=1./(zmass(ig,ilay)+zfluxv(ig,ilay) + zfluxv(ig,ilay+1)*(1.-zdv(ig,ilay+1))) |
---|
| 291 | zcv(ig,ilay)=(zmass(ig,ilay)*zu(ig,ilay)+zfluxv(ig,ilay+1)*zcv(ig,ilay+1))*z1(ig) |
---|
| 292 | zdv(ig,ilay)=zfluxv(ig,ilay)*z1(ig) |
---|
| 293 | ENDDO |
---|
| 294 | ENDDO |
---|
| 295 | |
---|
| 296 | DO ig=1,ngrid |
---|
| 297 | zu(ig,1)=zcv(ig,1) |
---|
| 298 | ENDDO |
---|
| 299 | DO ilay=2,nlay |
---|
| 300 | DO ig=1,ngrid |
---|
| 301 | zu(ig,ilay)=zcv(ig,ilay)+zdv(ig,ilay)*zu(ig,ilay-1) |
---|
| 302 | ENDDO |
---|
| 303 | ENDDO |
---|
| 304 | |
---|
| 305 | !----------------------------------------------------------------------- |
---|
| 306 | ! 5. Implicit inversion of v |
---|
| 307 | ! -------------------------- |
---|
| 308 | |
---|
| 309 | ! v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) |
---|
| 310 | ! avec |
---|
| 311 | ! /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) |
---|
| 312 | ! et |
---|
| 313 | ! dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) |
---|
| 314 | ! donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 315 | ! et /zkv/ = Kv |
---|
| 316 | |
---|
| 317 | DO ig=1,ngrid |
---|
[3197] | 318 | z1(ig)=1./(zmass(ig,nlay)+zfluxv(ig,nlay)) |
---|
[3184] | 319 | zcv(ig,nlay)=zmass(ig,nlay)*zv(ig,nlay)*z1(ig) |
---|
| 320 | zdv(ig,nlay)=zfluxv(ig,nlay)*z1(ig) |
---|
| 321 | ENDDO |
---|
| 322 | |
---|
| 323 | DO ilay=nlay-1,1,-1 |
---|
| 324 | DO ig=1,ngrid |
---|
| 325 | z1(ig)=1./(zmass(ig,ilay)+zfluxv(ig,ilay)+zfluxv(ig,ilay+1)*(1.-zdv(ig,ilay+1))) |
---|
| 326 | zcv(ig,ilay)=(zmass(ig,ilay)*zv(ig,ilay)+zfluxv(ig,ilay+1)*zcv(ig,ilay+1))*z1(ig) |
---|
| 327 | zdv(ig,ilay)=zfluxv(ig,ilay)*z1(ig) |
---|
| 328 | ENDDO |
---|
| 329 | ENDDO |
---|
| 330 | |
---|
| 331 | DO ig=1,ngrid |
---|
| 332 | zv(ig,1)=zcv(ig,1) |
---|
| 333 | ENDDO |
---|
| 334 | DO ilay=2,nlay |
---|
| 335 | DO ig=1,ngrid |
---|
| 336 | zv(ig,ilay)=zcv(ig,ilay)+zdv(ig,ilay)*zv(ig,ilay-1) |
---|
| 337 | ENDDO |
---|
| 338 | ENDDO |
---|
| 339 | |
---|
| 340 | ! Calcul of wind stress |
---|
| 341 | |
---|
| 342 | DO ig=1,ngrid |
---|
| 343 | flux_u(ig) = zfluxv(ig,1)/ptimestep*zu(ig,1) |
---|
| 344 | flux_v(ig) = zfluxv(ig,1)/ptimestep*zv(ig,1) |
---|
| 345 | ENDDO |
---|
| 346 | |
---|
| 347 | |
---|
| 348 | !---------------------------------------------------------------------------- |
---|
| 349 | ! 6. Implicit inversion of h, not forgetting the coupling with the ground |
---|
| 350 | |
---|
| 351 | ! h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) |
---|
| 352 | ! avec |
---|
| 353 | ! /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) |
---|
| 354 | ! et |
---|
| 355 | ! dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) |
---|
| 356 | ! donc les entrees sont /zcdh/ pour la condition de raccord au sol |
---|
| 357 | ! et /zkh/ = Kh |
---|
| 358 | |
---|
| 359 | ! Using the wind modified by friction for lifting and sublimation |
---|
| 360 | ! --------------------------------------------------------------- |
---|
| 361 | DO ig=1,ngrid |
---|
| 362 | zu2 = zu(ig,1)*zu(ig,1)+zv(ig,1)*zv(ig,1) |
---|
| 363 | zcdv(ig) = zcdv_true(ig)*sqrt(zu2) |
---|
| 364 | zcdh(ig) = zcdh_true(ig)*sqrt(zu2) |
---|
| 365 | zkh(ig,1)= zcdh(ig) |
---|
| 366 | ustar(ig)=sqrt(zcdv_true(ig))*sqrt(zu2) |
---|
| 367 | ENDDO |
---|
| 368 | |
---|
| 369 | |
---|
| 370 | ! JL12 calculate the flux coefficients (tables multiplied elements by elements) |
---|
| 371 | ! --------------------------------------------------------------- |
---|
| 372 | zfluxq(1:ngrid,1:nlay)=zkh(1:ngrid,1:nlay)*zb0(1:ngrid,1:nlay) !JL12 we save zfluxq which doesn't need the Exner factor |
---|
| 373 | zfluxt(1:ngrid,1:nlay)=zfluxq(1:ngrid,1:nlay)*zExner(1:ngrid,1:nlay) |
---|
| 374 | |
---|
| 375 | DO ig=1,ngrid |
---|
| 376 | z1(ig)=1./(zmass(ig,nlay)+zfluxt(ig,nlay)*zovExner(ig,nlay)) |
---|
| 377 | zct(ig,nlay)=zmass(ig,nlay)*zt(ig,nlay)*z1(ig) |
---|
| 378 | zdt(ig,nlay)=zfluxt(ig,nlay)*zovExner(ig,nlay-1)*z1(ig) |
---|
| 379 | ENDDO |
---|
| 380 | |
---|
| 381 | DO ilay=nlay-1,2,-1 |
---|
| 382 | DO ig=1,ngrid |
---|
| 383 | z1(ig)=1./(zmass(ig,ilay)+zfluxt(ig,ilay)*zovExner(ig,ilay)+ & |
---|
| 384 | zfluxt(ig,ilay+1)*(zovExner(ig,ilay)-zdt(ig,ilay+1)*zovExner(ig,ilay+1))) |
---|
| 385 | zct(ig,ilay)=(zmass(ig,ilay)*zt(ig,ilay)+zfluxt(ig,ilay+1)*zct(ig,ilay+1)*zovExner(ig,ilay+1))*z1(ig) |
---|
| 386 | zdt(ig,ilay)=zfluxt(ig,ilay)*z1(ig)*zovExner(ig,ilay-1) |
---|
| 387 | ENDDO |
---|
| 388 | ENDDO |
---|
| 389 | |
---|
| 390 | !JL12 we treat last point afterward because zovExner(ig,ilay-1) does not exist there |
---|
| 391 | DO ig=1,ngrid |
---|
| 392 | z1(ig)=1./(zmass(ig,1)+zfluxt(ig,1)*zovExner(ig,1)+ & |
---|
| 393 | zfluxt(ig,2)*(zovExner(ig,1)-zdt(ig,2)*zovExner(ig,2))) |
---|
| 394 | zct(ig,1)=(zmass(ig,1)*zt(ig,1)+zfluxt(ig,2)*zct(ig,2)*zovExner(ig,2))*z1(ig) |
---|
| 395 | zdt(ig,1)=zfluxt(ig,1)*z1(ig) |
---|
| 396 | ENDDO |
---|
| 397 | |
---|
| 398 | |
---|
| 399 | ! Calculate (d Planck / dT) at the interface temperature |
---|
| 400 | ! ------------------------------------------------------ |
---|
| 401 | |
---|
| 402 | z4st=4.0*sigma*ptimestep |
---|
| 403 | DO ig=1,ngrid |
---|
| 404 | zdplanck(ig)=z4st*pemis(ig)*ptsrf(ig)*ptsrf(ig)*ptsrf(ig) |
---|
| 405 | ENDDO |
---|
| 406 | |
---|
| 407 | ! Calculate temperature tendency at the interface (dry case) |
---|
| 408 | ! ---------------------------------------------------------- |
---|
| 409 | ! Sum of fluxes at interface at time t + \delta t gives change in T: |
---|
| 410 | ! radiative fluxes |
---|
| 411 | ! turbulent convective (sensible) heat flux |
---|
| 412 | ! flux (if any) from subsurface |
---|
| 413 | |
---|
| 414 | ! if(.not.water) then |
---|
| 415 | |
---|
| 416 | DO ig=1,ngrid |
---|
| 417 | z1(ig)=pcapcal(ig)*ptsrf(ig)+cpp*zfluxt(ig,1)*zct(ig,1)*zovExner(ig,1) & |
---|
[3197] | 418 | + pfluxsrf(ig)*ptimestep + zdplanck(ig)*ptsrf(ig) |
---|
| 419 | z2(ig) = pcapcal(ig)+zdplanck(ig)+cpp*zfluxt(ig,1)*(1.-zovExner(ig,1)*zdt(ig,1)) |
---|
[3184] | 420 | ztsrf(ig) = z1(ig) / z2(ig) |
---|
| 421 | pdtsrf(ig) = (ztsrf(ig) - ptsrf(ig))/ptimestep |
---|
| 422 | zt(ig,1) = zct(ig,1) + zdt(ig,1)*ztsrf(ig) |
---|
| 423 | ENDDO |
---|
[3197] | 424 | ! JL12 note that the black body radiative flux emitted by the surface has been updated by the implicit scheme |
---|
[3184] | 425 | |
---|
| 426 | |
---|
| 427 | ! Recalculate temperature to top of atmosphere, starting from ground |
---|
| 428 | ! ------------------------------------------------------------------ |
---|
| 429 | |
---|
| 430 | DO ilay=2,nlay |
---|
| 431 | DO ig=1,ngrid |
---|
| 432 | zt(ig,ilay)=zct(ig,ilay)+zdt(ig,ilay)*zt(ig,ilay-1) |
---|
| 433 | ENDDO |
---|
| 434 | ENDDO |
---|
| 435 | |
---|
| 436 | ! endif ! not water |
---|
| 437 | |
---|
| 438 | !----------------------------------------------------------------------- |
---|
| 439 | ! TRACERS (no vapour) |
---|
| 440 | ! ------- |
---|
| 441 | |
---|
| 442 | if(tracer) then |
---|
| 443 | |
---|
| 444 | ! Calculate vertical flux from the bottom to the first layer (dust) |
---|
| 445 | ! ----------------------------------------------------------------- |
---|
| 446 | do ig=1,ngrid |
---|
| 447 | rho(ig) = zb0(ig,1) /ptimestep |
---|
| 448 | end do |
---|
| 449 | |
---|
| 450 | pdqsdif(:,:)=0. |
---|
| 451 | |
---|
| 452 | ! Implicit inversion of q |
---|
| 453 | ! ----------------------- |
---|
[3197] | 454 | do iq=1,nq |
---|
[3184] | 455 | |
---|
| 456 | if (iq.ne.ivap) then |
---|
| 457 | |
---|
| 458 | DO ig=1,ngrid |
---|
| 459 | z1(ig)=1./(zmass(ig,nlay)+zfluxq(ig,nlay)) |
---|
| 460 | zcq(ig,nlay)=zmass(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
| 461 | zdq(ig,nlay)=zfluxq(ig,nlay)*z1(ig) |
---|
[3197] | 462 | ENDDO |
---|
| 463 | |
---|
[3184] | 464 | DO ilay=nlay-1,2,-1 |
---|
| 465 | DO ig=1,ngrid |
---|
| 466 | z1(ig)=1./(zmass(ig,ilay)+zfluxq(ig,ilay)+zfluxq(ig,ilay+1)*(1.-zdq(ig,ilay+1))) |
---|
| 467 | zcq(ig,ilay)=(zmass(ig,ilay)*zq(ig,ilay,iq)+zfluxq(ig,ilay+1)*zcq(ig,ilay+1))*z1(ig) |
---|
| 468 | zdq(ig,ilay)=zfluxq(ig,ilay)*z1(ig) |
---|
| 469 | ENDDO |
---|
| 470 | ENDDO |
---|
| 471 | |
---|
[3197] | 472 | do ig=1,ngrid |
---|
| 473 | z1(ig)=1./(zmass(ig,1)+zfluxq(ig,2)*(1.-zdq(ig,2))) |
---|
| 474 | zcq(ig,1)=(zmass(ig,1)*zq(ig,1,iq)+zfluxq(ig,2)*zcq(ig,2)+(-pdqsdif(ig,iq))*ptimestep)*z1(ig) |
---|
| 475 | ! tracer flux from surface |
---|
| 476 | ! currently pdqsdif always zero here, |
---|
| 477 | ! so last line is superfluous |
---|
| 478 | enddo |
---|
| 479 | |
---|
[3184] | 480 | ! Starting upward calculations for simple tracer mixing (e.g., dust) |
---|
| 481 | do ig=1,ngrid |
---|
| 482 | zq(ig,1,iq)=zcq(ig,1) |
---|
| 483 | end do |
---|
| 484 | |
---|
| 485 | do ilay=2,nlay |
---|
| 486 | do ig=1,ngrid |
---|
| 487 | zq(ig,ilay,iq)=zcq(ig,ilay)+zdq(ig,ilay)*zq(ig,ilay-1,iq) |
---|
| 488 | end do |
---|
| 489 | end do |
---|
| 490 | |
---|
| 491 | endif ! if (iq.ne.ivap) |
---|
| 492 | end do ! of do iq=1,nq |
---|
| 493 | |
---|
| 494 | ! Revmoed (AF24): Calculate temperature tendency including latent heat term |
---|
| 495 | ! and assuming an infinite source of water on the ground |
---|
| 496 | ! ------------------------------------------------------------------ |
---|
[3197] | 497 | |
---|
[3184] | 498 | endif ! tracer |
---|
| 499 | |
---|
| 500 | |
---|
| 501 | !----------------------------------------------------------------------- |
---|
| 502 | ! 8. Final calculation of the vertical diffusion tendencies |
---|
| 503 | ! ----------------------------------------------------------------- |
---|
| 504 | |
---|
| 505 | do ilev = 1, nlay |
---|
| 506 | do ig=1,ngrid |
---|
| 507 | pdudif(ig,ilev)=(zu(ig,ilev)-(pu(ig,ilev)))/ptimestep |
---|
| 508 | pdvdif(ig,ilev)=(zv(ig,ilev)-(pv(ig,ilev)))/ptimestep |
---|
| 509 | pdtdif(ig,ilev)=( zt(ig,ilev)- pt(ig,ilev))/ptimestep-pdtfi(ig,ilev) |
---|
| 510 | enddo |
---|
| 511 | enddo |
---|
[3197] | 512 | |
---|
[3184] | 513 | DO ig=1,ngrid ! computing sensible heat flux (atm => surface) |
---|
| 514 | sensibFlux(ig)=cpp*zfluxt(ig,1)/ptimestep*(zt(ig,1)*zovExner(ig,1)-ztsrf(ig)) |
---|
| 515 | ENDDO |
---|
| 516 | |
---|
| 517 | if (tracer) then |
---|
| 518 | do iq = 1, nq |
---|
| 519 | do ilev = 1, nlay |
---|
| 520 | do ig=1,ngrid |
---|
| 521 | pdqdif(ig,ilev,iq)=(zq(ig,ilev,iq)-(pq(ig,ilev,iq)+pdqfi(ig,ilev,iq)*ptimestep))/ptimestep |
---|
| 522 | enddo |
---|
| 523 | enddo |
---|
| 524 | enddo |
---|
[3197] | 525 | endif |
---|
[3184] | 526 | end subroutine turbdiff |
---|
[3197] | 527 | |
---|
[3184] | 528 | end module turbdiff_mod |
---|