1 | subroutine soil(ngrid,nsoil,firstcall,lastcall, |
---|
2 | & therm_i, |
---|
3 | & timestep,tsurf,tsoil, |
---|
4 | & capcal,fluxgrd) |
---|
5 | |
---|
6 | use comsoil_h, only: layer, mlayer, volcapa, inertiedat |
---|
7 | use comcstfi_mod, only: pi |
---|
8 | use time_phylmdz_mod, only: daysec |
---|
9 | use planete_mod, only: year_day |
---|
10 | use geometry_mod, only: longitude, latitude ! in radians |
---|
11 | |
---|
12 | implicit none |
---|
13 | |
---|
14 | !----------------------------------------------------------------------- |
---|
15 | ! Author: Ehouarn Millour |
---|
16 | ! |
---|
17 | ! Purpose: Compute soil temperature using an implict 1st order scheme |
---|
18 | ! |
---|
19 | ! Note: depths of layers and mid-layers, soil thermal inertia and |
---|
20 | ! heat capacity are commons in comsoil.h |
---|
21 | !----------------------------------------------------------------------- |
---|
22 | |
---|
23 | c----------------------------------------------------------------------- |
---|
24 | ! arguments |
---|
25 | ! --------- |
---|
26 | ! inputs: |
---|
27 | integer,intent(in) :: ngrid ! number of (horizontal) grid-points |
---|
28 | integer,intent(in) :: nsoil ! number of soil layers |
---|
29 | logical,intent(in) :: firstcall ! identifier for initialization call |
---|
30 | logical,intent(in) :: lastcall |
---|
31 | real,intent(in) :: therm_i(ngrid,nsoil) ! thermal inertia |
---|
32 | real,intent(in) :: timestep ! time step |
---|
33 | real,intent(in) :: tsurf(ngrid) ! surface temperature |
---|
34 | ! outputs: |
---|
35 | real,intent(out) :: tsoil(ngrid,nsoil) ! soil (mid-layer) temperature |
---|
36 | real,intent(out) :: capcal(ngrid) ! surface specific heat |
---|
37 | real,intent(out) :: fluxgrd(ngrid) ! surface diffusive heat flux |
---|
38 | |
---|
39 | ! local saved variables: |
---|
40 | real,dimension(:,:),save,allocatable :: mthermdiff ! mid-layer thermal diffusivity |
---|
41 | real,dimension(:,:),save,allocatable :: thermdiff ! inter-layer thermal diffusivity |
---|
42 | real,dimension(:),save,allocatable :: coefq ! q_{k+1/2} coefficients |
---|
43 | real,dimension(:,:),save,allocatable :: coefd ! d_k coefficients |
---|
44 | real,dimension(:,:),save,allocatable :: alph ! alpha_k coefficients |
---|
45 | real,dimension(:,:),save,allocatable :: beta ! beta_k coefficients |
---|
46 | real,save :: mu |
---|
47 | !$OMP THREADPRIVATE(mthermdiff,thermdiff,coefq,coefd,alph,beta,mu) |
---|
48 | |
---|
49 | ! local variables: |
---|
50 | integer ig,ik |
---|
51 | real :: inertia_min,inertia_max |
---|
52 | real :: diurnal_skin ! diurnal skin depth (m) |
---|
53 | real :: annual_skin ! anuual skin depth (m) |
---|
54 | |
---|
55 | ! 0. Initialisations and preprocessing step |
---|
56 | if (firstcall) then |
---|
57 | ! note: firstcall is set to .true. or .false. by the caller |
---|
58 | ! and not changed by soil.F |
---|
59 | |
---|
60 | ALLOCATE(mthermdiff(ngrid,0:nsoil-1)) ! mid-layer thermal diffusivity |
---|
61 | ALLOCATE(thermdiff(ngrid,nsoil-1)) ! inter-layer thermal diffusivity |
---|
62 | ALLOCATE(coefq(0:nsoil-1)) ! q_{k+1/2} coefficients |
---|
63 | ALLOCATE(coefd(ngrid,nsoil-1)) ! d_k coefficients |
---|
64 | ALLOCATE(alph(ngrid,nsoil-1)) ! alpha_k coefficients |
---|
65 | ALLOCATE(beta(ngrid,nsoil-1)) ! beta_k coefficients |
---|
66 | |
---|
67 | ! 0.1 Build mthermdiff(:), the mid-layer thermal diffusivities |
---|
68 | do ig=1,ngrid |
---|
69 | do ik=0,nsoil-1 |
---|
70 | mthermdiff(ig,ik)=therm_i(ig,ik+1)*therm_i(ig,ik+1)/volcapa |
---|
71 | !write(*,*),'soil: ik: ',ik,' mthermdiff:',mthermdiff(ig,ik) |
---|
72 | enddo |
---|
73 | enddo |
---|
74 | |
---|
75 | ! 0.2 Build thermdiff(:), the "interlayer" thermal diffusivities |
---|
76 | do ig=1,ngrid |
---|
77 | do ik=1,nsoil-1 |
---|
78 | thermdiff(ig,ik)=((layer(ik)-mlayer(ik-1))*mthermdiff(ig,ik) |
---|
79 | & +(mlayer(ik)-layer(ik))*mthermdiff(ig,ik-1)) |
---|
80 | & /(mlayer(ik)-mlayer(ik-1)) |
---|
81 | ! write(*,*),'soil: ik: ',ik,' thermdiff:',thermdiff(ig,ik) |
---|
82 | enddo |
---|
83 | enddo |
---|
84 | |
---|
85 | ! 0.3 Build coefficients mu, q_{k+1/2}, d_k, alpha_k and capcal |
---|
86 | ! mu |
---|
87 | mu=mlayer(0)/(mlayer(1)-mlayer(0)) |
---|
88 | |
---|
89 | ! q_{1/2} |
---|
90 | coefq(0)=volcapa*layer(1)/timestep |
---|
91 | ! q_{k+1/2} |
---|
92 | do ik=1,nsoil-1 |
---|
93 | coefq(ik)=volcapa*(layer(ik+1)-layer(ik)) |
---|
94 | & /timestep |
---|
95 | enddo |
---|
96 | |
---|
97 | do ig=1,ngrid |
---|
98 | ! d_k |
---|
99 | do ik=1,nsoil-1 |
---|
100 | coefd(ig,ik)=thermdiff(ig,ik)/(mlayer(ik)-mlayer(ik-1)) |
---|
101 | enddo |
---|
102 | |
---|
103 | ! alph_{N-1} |
---|
104 | alph(ig,nsoil-1)=coefd(ig,nsoil-1)/ |
---|
105 | & (coefq(nsoil-1)+coefd(ig,nsoil-1)) |
---|
106 | ! alph_k |
---|
107 | do ik=nsoil-2,1,-1 |
---|
108 | alph(ig,ik)=coefd(ig,ik)/(coefq(ik)+coefd(ig,ik+1)* |
---|
109 | & (1.-alph(ig,ik+1))+coefd(ig,ik)) |
---|
110 | enddo |
---|
111 | |
---|
112 | ! capcal |
---|
113 | ! Cstar |
---|
114 | capcal(ig)=volcapa*layer(1)+ |
---|
115 | & (thermdiff(ig,1)/(mlayer(1)-mlayer(0)))* |
---|
116 | & (timestep*(1.-alph(ig,1))) |
---|
117 | ! Cs |
---|
118 | capcal(ig)=capcal(ig)/(1.+mu*(1.0-alph(ig,1))* |
---|
119 | & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
120 | !write(*,*)'soil: ig=',ig,' capcal(ig)=',capcal(ig) |
---|
121 | enddo ! of do ig=1,ngrid |
---|
122 | |
---|
123 | ! Additional checks: is the vertical discretization sufficient |
---|
124 | ! to resolve diurnal and annual waves? |
---|
125 | do ig=1,ngrid |
---|
126 | ! extreme inertia for this column |
---|
127 | inertia_min=minval(inertiedat(ig,:)) |
---|
128 | inertia_max=maxval(inertiedat(ig,:)) |
---|
129 | ! diurnal and annual skin depth |
---|
130 | diurnal_skin=(inertia_min/volcapa)*sqrt(daysec/pi) |
---|
131 | annual_skin=(inertia_max/volcapa)*sqrt(year_day*daysec/pi) |
---|
132 | if (0.5*diurnal_skin<layer(1)) then |
---|
133 | ! one should have the fist layer be at least half of diurnal skin depth |
---|
134 | write(*,*) "soil Error: grid point ig=",ig |
---|
135 | write(*,*) " longitude=",longitude(ig)*(180./pi) |
---|
136 | write(*,*) " latitude=",latitude(ig)*(180./pi) |
---|
137 | write(*,*) " first soil layer depth ",layer(1) |
---|
138 | write(*,*) " not small enough for a diurnal skin depth of ", |
---|
139 | & diurnal_skin |
---|
140 | write(*,*) " change soil layer distribution (comsoil_h.F90)" |
---|
141 | stop |
---|
142 | endif |
---|
143 | if (2.*annual_skin>layer(nsoil)) then |
---|
144 | ! one should have the full soil be at least twice the diurnal skin depth |
---|
145 | write(*,*) "soil Error: grid point ig=",ig |
---|
146 | write(*,*) " longitude=",longitude(ig)*(180./pi) |
---|
147 | write(*,*) " latitude=",latitude(ig)*(180./pi) |
---|
148 | write(*,*) " total soil layer depth ",layer(nsoil) |
---|
149 | write(*,*) " not large enough for an annual skin depth of ", |
---|
150 | & annual_skin |
---|
151 | write(*,*) " change soil layer distribution (comsoil_h.F90)" |
---|
152 | stop |
---|
153 | endif |
---|
154 | enddo ! of do ig=1,ngrid |
---|
155 | |
---|
156 | else ! of if (firstcall) |
---|
157 | |
---|
158 | |
---|
159 | ! 1. Compute soil temperatures |
---|
160 | ! First layer: |
---|
161 | do ig=1,ngrid |
---|
162 | tsoil(ig,1)=(tsurf(ig)+mu*beta(ig,1)* |
---|
163 | & thermdiff(ig,1)/mthermdiff(ig,0))/ |
---|
164 | & (1.+mu*(1.0-alph(ig,1))* |
---|
165 | & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
166 | enddo |
---|
167 | ! Other layers: |
---|
168 | do ik=1,nsoil-1 |
---|
169 | do ig=1,ngrid |
---|
170 | tsoil(ig,ik+1)=alph(ig,ik)*tsoil(ig,ik)+beta(ig,ik) |
---|
171 | enddo |
---|
172 | enddo |
---|
173 | |
---|
174 | endif! of if (firstcall) |
---|
175 | |
---|
176 | ! 2. Compute beta coefficients (preprocessing for next time step) |
---|
177 | ! Bottom layer, beta_{N-1} |
---|
178 | do ig=1,ngrid |
---|
179 | beta(ig,nsoil-1)=coefq(nsoil-1)*tsoil(ig,nsoil) |
---|
180 | & /(coefq(nsoil-1)+coefd(ig,nsoil-1)) |
---|
181 | enddo |
---|
182 | ! Other layers |
---|
183 | do ik=nsoil-2,1,-1 |
---|
184 | do ig=1,ngrid |
---|
185 | beta(ig,ik)=(coefq(ik)*tsoil(ig,ik+1)+ |
---|
186 | & coefd(ig,ik+1)*beta(ig,ik+1))/ |
---|
187 | & (coefq(ik)+coefd(ig,ik+1)*(1.0-alph(ig,ik+1)) |
---|
188 | & +coefd(ig,ik)) |
---|
189 | enddo |
---|
190 | enddo |
---|
191 | |
---|
192 | |
---|
193 | ! 3. Compute surface diffusive flux & calorific capacity |
---|
194 | do ig=1,ngrid |
---|
195 | ! Cstar |
---|
196 | ! capcal(ig)=volcapa(ig,1)*layer(ig,1)+ |
---|
197 | ! & (thermdiff(ig,1)/(mlayer(ig,1)-mlayer(ig,0)))* |
---|
198 | ! & (timestep*(1.-alph(ig,1))) |
---|
199 | ! Fstar |
---|
200 | |
---|
201 | ! print*,'this far in soil 1' |
---|
202 | ! print*,'thermdiff=',thermdiff(ig,1) |
---|
203 | ! print*,'mlayer=',mlayer |
---|
204 | ! print*,'beta=',beta(ig,1) |
---|
205 | ! print*,'alph=',alph(ig,1) |
---|
206 | ! print*,'tsoil=',tsoil(ig,1) |
---|
207 | |
---|
208 | fluxgrd(ig)=(thermdiff(ig,1)/(mlayer(1)-mlayer(0)))* |
---|
209 | & (beta(ig,1)+(alph(ig,1)-1.0)*tsoil(ig,1)) |
---|
210 | |
---|
211 | ! mu=mlayer(ig,0)/(mlayer(ig,1)-mlayer(ig,0)) |
---|
212 | ! capcal(ig)=capcal(ig)/(1.+mu*(1.0-alph(ig,1))* |
---|
213 | ! & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
214 | ! Fs |
---|
215 | fluxgrd(ig)=fluxgrd(ig)+(capcal(ig)/timestep)* |
---|
216 | & (tsoil(ig,1)*(1.+mu*(1.0-alph(ig,1))* |
---|
217 | & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
218 | & -tsurf(ig)-mu*beta(ig,1)* |
---|
219 | & thermdiff(ig,1)/mthermdiff(ig,0)) |
---|
220 | enddo |
---|
221 | |
---|
222 | end |
---|
223 | |
---|