1 | module physiq_mod |
---|
2 | |
---|
3 | implicit none |
---|
4 | |
---|
5 | contains |
---|
6 | |
---|
7 | subroutine physiq(ngrid,nlayer,nq, & |
---|
8 | firstcall,lastcall, & |
---|
9 | pday,ptime,ptimestep, & |
---|
10 | pplev,pplay,pphi, & |
---|
11 | pu,pv,pt,pq, & |
---|
12 | flxw, & |
---|
13 | pdu,pdv,pdt,pdq,pdpsrf) |
---|
14 | |
---|
15 | !! |
---|
16 | use write_field_phy, only: Writefield_phy |
---|
17 | !! |
---|
18 | use ioipsl_getin_p_mod, only: getin_p |
---|
19 | use radinc_h, only : L_NSPECTI,L_NSPECTV,naerkind, corrkdir, banddir |
---|
20 | use generic_cloud_common_h, only : epsi_generic, Psat_generic |
---|
21 | use gases_h, only: gnom, gfrac |
---|
22 | use radcommon_h, only: sigma, glat, grav, BWNV, WNOI, DWNI, DWNV, WNOV |
---|
23 | use suaer_corrk_mod, only: suaer_corrk |
---|
24 | use radii_mod, only: su_aer_radii,haze_reffrad_fix |
---|
25 | use aerosol_mod, only: iaero_haze, i_haze, haze_prof |
---|
26 | use surfdat_h, only: phisfi, zmea, zstd, zsig, zgam, zthe, & |
---|
27 | dryness |
---|
28 | use comdiurn_h, only: coslat, sinlat, coslon, sinlon |
---|
29 | use comsaison_h, only: mu0, fract, dist_star, declin, right_ascen |
---|
30 | use comsoil_h, only: nsoilmx, layer, mlayer, inertiedat, volcapa |
---|
31 | use geometry_mod, only: latitude, longitude, cell_area |
---|
32 | USE comgeomfi_h, only: totarea, totarea_planet |
---|
33 | USE tracer_h, only: noms, mmol, radius, rho_q, qext, & |
---|
34 | igcm_n2,igcm_ch4_gas,igcm_ch4_ice,igcm_haze,& |
---|
35 | igcm_co_gas,igcm_co_ice,igcm_prec_haze,lw_n2,lw_ch4,lw_co,& |
---|
36 | alpha_lift, alpha_devil, qextrhor, & |
---|
37 | nesp, is_chim, is_condensable,constants_epsi_generic |
---|
38 | use time_phylmdz_mod, only: ecritphy, iphysiq, nday |
---|
39 | use phyetat0_mod, only: phyetat0,tab_cntrl_mod |
---|
40 | use wstats_mod, only: callstats, wstats, mkstats |
---|
41 | use phyredem, only: physdem0, physdem1 |
---|
42 | use planetwide_mod, only: planetwide_minval,planetwide_maxval,planetwide_sumval |
---|
43 | use mod_phys_lmdz_para, only : is_master |
---|
44 | use planete_mod, only: apoastr, periastr, year_day, peri_day, & |
---|
45 | obliquit, nres, z0, adjust, tpal |
---|
46 | use comcstfi_mod, only: pi, g, rcp, r, rad, mugaz, cpp |
---|
47 | use time_phylmdz_mod, only: daysec |
---|
48 | use callkeys_mod, only: albedo_spectral_mode, calladj, calldifv, & |
---|
49 | callrad, callsoil, nosurf, & |
---|
50 | callconduct,callmolvis,callmoldiff, & |
---|
51 | aerohaze, corrk, diagdtau, & |
---|
52 | diurnal, enertest, fat1au, & |
---|
53 | icetstep, intheat, iradia, kastprof, & |
---|
54 | lwrite, mass_redistrib, meanOLR, & |
---|
55 | fast,fasthaze,haze,metcloud,monoxcloud, & |
---|
56 | n2cond,nearn2cond,noseason_day,conservn2, & |
---|
57 | convergeps,kbo,triton,paleo,paleoyears,glaflow, & |
---|
58 | carbox, methane,condmetsurf,condcosurf, & |
---|
59 | oldplutovdifc,oldplutocorrk,oldplutosedim, & |
---|
60 | aerohaze,haze_proffix,haze_radproffix, & |
---|
61 | source_haze, tsurfmax, albmin_ch4, & |
---|
62 | season, sedimentation,generic_condensation, & |
---|
63 | specOLR, & |
---|
64 | startphy_file, testradtimes, & |
---|
65 | tracer, UseTurbDiff, & |
---|
66 | global1d, szangle |
---|
67 | use generic_tracer_index_mod, only: generic_tracer_index |
---|
68 | use check_fields_mod, only: check_physics_fields |
---|
69 | use conc_mod, only: rnew, cpnew, ini_conc_mod |
---|
70 | use phys_state_var_mod |
---|
71 | use callcorrk_mod, only: callcorrk |
---|
72 | use callcorrk_pluto_mod, only: callcorrk_pluto |
---|
73 | use vdifc_mod, only: vdifc |
---|
74 | use vdifc_pluto_mod, only: vdifc_pluto |
---|
75 | use turbdiff_mod, only: turbdiff |
---|
76 | use turb_mod, only : q2,sensibFlux,turb_resolved |
---|
77 | use mass_redistribution_mod, only: mass_redistribution |
---|
78 | use condensation_generic_mod, only: condensation_generic |
---|
79 | use datafile_mod, only: datadir |
---|
80 | #ifndef MESOSCALE |
---|
81 | USE vertical_layers_mod, ONLY: ap,bp,aps,bps,presnivs,pseudoalt |
---|
82 | use mod_phys_lmdz_omp_data, ONLY: is_omp_master |
---|
83 | #else |
---|
84 | use comm_wrf, only : comm_HR_SW, comm_HR_LW, & |
---|
85 | comm_CLOUDFRAC,comm_TOTCLOUDFRAC, comm_RH, & |
---|
86 | comm_HR_DYN, & |
---|
87 | comm_DQICE,comm_DQVAP,comm_ALBEQ, & |
---|
88 | comm_FLUXTOP_DN,comm_FLUXABS_SW, & |
---|
89 | comm_FLUXTOP_LW,comm_FLUXSURF_SW, & |
---|
90 | comm_FLUXSURF_LW,comm_FLXGRD, & |
---|
91 | comm_DTRAIN,comm_DTLSC, & |
---|
92 | comm_LATENT_HF |
---|
93 | |
---|
94 | #endif |
---|
95 | |
---|
96 | #ifdef CPP_XIOS |
---|
97 | use xios_output_mod, only: initialize_xios_output, & |
---|
98 | update_xios_timestep, & |
---|
99 | send_xios_field |
---|
100 | use wxios, only: wxios_context_init, xios_context_finalize |
---|
101 | #endif |
---|
102 | use write_output_mod, only: write_output |
---|
103 | |
---|
104 | implicit none |
---|
105 | |
---|
106 | |
---|
107 | !================================================================== |
---|
108 | ! |
---|
109 | ! Purpose |
---|
110 | ! ------- |
---|
111 | ! Central subroutine for all the physics parameterisations in the |
---|
112 | ! universal model. Originally adapted from the Mars LMDZ model. |
---|
113 | ! |
---|
114 | ! The model can be run without or with tracer transport |
---|
115 | ! depending on the value of "tracer" in file "callphys.def". |
---|
116 | ! |
---|
117 | ! |
---|
118 | ! It includes: |
---|
119 | ! |
---|
120 | ! I. Initialization : |
---|
121 | ! I.1 Firstcall initializations. |
---|
122 | ! I.2 Initialization for every call to physiq. |
---|
123 | ! |
---|
124 | ! II. Compute radiative transfer tendencies (longwave and shortwave) : |
---|
125 | ! II.a Option 1 : Call correlated-k radiative transfer scheme. |
---|
126 | ! II.b Option 2 : Call Newtonian cooling scheme. |
---|
127 | ! II.! Option 3 : Atmosphere has no radiative effect. |
---|
128 | ! |
---|
129 | ! III. Vertical diffusion (turbulent mixing) : |
---|
130 | ! |
---|
131 | ! IV. Convection : |
---|
132 | ! IV.a Thermal plume model |
---|
133 | ! IV.b Dry convective adjusment |
---|
134 | ! |
---|
135 | ! V. Condensation and sublimation of gases (currently just N2). |
---|
136 | ! |
---|
137 | ! VI. Tracers |
---|
138 | ! VI.1. Water and water ice. |
---|
139 | ! VI.2 Photochemistry |
---|
140 | ! VI.3. Aerosols and particles. |
---|
141 | ! VI.4. Updates (pressure variations, surface budget). |
---|
142 | ! VI.5. Slab Ocean. |
---|
143 | ! VI.6. Surface Tracer Update. |
---|
144 | ! |
---|
145 | ! VII. Surface and sub-surface soil temperature. |
---|
146 | ! |
---|
147 | ! VIII. Perform diagnostics and write output files. |
---|
148 | ! |
---|
149 | ! |
---|
150 | ! arguments |
---|
151 | ! --------- |
---|
152 | ! |
---|
153 | ! INPUT |
---|
154 | ! ----- |
---|
155 | ! |
---|
156 | ! ngrid Size of the horizontal grid. |
---|
157 | ! nlayer Number of vertical layers. |
---|
158 | ! nq Number of advected fields. |
---|
159 | ! |
---|
160 | ! firstcall True at the first call. |
---|
161 | ! lastcall True at the last call. |
---|
162 | ! |
---|
163 | ! pday Number of days counted from the North. Spring equinoxe. |
---|
164 | ! ptime Universal time (0<ptime<1): ptime=0.5 at 12:00 UT. |
---|
165 | ! ptimestep timestep (s). |
---|
166 | ! |
---|
167 | ! pplay(ngrid,nlayer) Pressure at the middle of the layers (Pa). |
---|
168 | ! pplev(ngrid,nlayer+1) Intermediate pressure levels (Pa). |
---|
169 | ! pphi(ngrid,nlayer) Geopotential at the middle of the layers (m2.s-2). |
---|
170 | ! |
---|
171 | ! pu(ngrid,nlayer) u, zonal component of the wind (ms-1). |
---|
172 | ! pv(ngrid,nlayer) v, meridional component of the wind (ms-1). |
---|
173 | ! |
---|
174 | ! pt(ngrid,nlayer) Temperature (K). |
---|
175 | ! |
---|
176 | ! pq(ngrid,nlayer,nq) Advected fields. |
---|
177 | ! |
---|
178 | ! pudyn(ngrid,nlayer) \ |
---|
179 | ! pvdyn(ngrid,nlayer) \ Dynamical temporal derivative for the |
---|
180 | ! ptdyn(ngrid,nlayer) / corresponding variables. |
---|
181 | ! pqdyn(ngrid,nlayer,nq) / |
---|
182 | ! flxw(ngrid,nlayer) vertical mass flux (kg/s) at layer lower boundary |
---|
183 | ! |
---|
184 | ! OUTPUT |
---|
185 | ! ------ |
---|
186 | ! |
---|
187 | ! pdu(ngrid,nlayer) \ |
---|
188 | ! pdv(ngrid,nlayer) \ Temporal derivative of the corresponding |
---|
189 | ! pdt(ngrid,nlayer) / variables due to physical processes. |
---|
190 | ! pdq(ngrid,nlayer) / |
---|
191 | ! pdpsrf(ngrid) / |
---|
192 | ! |
---|
193 | ! |
---|
194 | ! Authors |
---|
195 | ! ------- |
---|
196 | ! Frederic Hourdin 15/10/93 |
---|
197 | ! Francois Forget 1994 |
---|
198 | ! Christophe Hourdin 02/1997 |
---|
199 | ! Subroutine completely rewritten by F. Forget (01/2000) |
---|
200 | ! Water ice clouds: Franck Montmessin (update 06/2003) |
---|
201 | ! Radiatively active tracers: J.-B. Madeleine (10/2008-06/2009) |
---|
202 | ! New correlated-k radiative scheme: R. Wordsworth (2009) |
---|
203 | ! Many specifically Martian subroutines removed: R. Wordsworth (2009) |
---|
204 | ! Improved water cycle: R. Wordsworth / B. Charnay (2010) |
---|
205 | ! To F90: R. Wordsworth (2010) |
---|
206 | ! New turbulent diffusion scheme: J. Leconte (2012) |
---|
207 | ! Loops converted to F90 matrix format: J. Leconte (2012) |
---|
208 | ! No more ngrid/nq, F90 commons and adaptation to parallel: A. Spiga (2012) |
---|
209 | ! Purge of the code : M. Turbet (2015) |
---|
210 | ! Photochemical core developped by F. Lefevre: B. Charnay (2017) |
---|
211 | ! Purge for Pluto model : A. Falco (2024) |
---|
212 | !================================================================== |
---|
213 | |
---|
214 | |
---|
215 | ! 0. Declarations : |
---|
216 | ! ------------------ |
---|
217 | |
---|
218 | include "netcdf.inc" |
---|
219 | |
---|
220 | ! Arguments : |
---|
221 | ! ----------- |
---|
222 | |
---|
223 | ! INPUTS: |
---|
224 | ! ------- |
---|
225 | |
---|
226 | integer,intent(in) :: ngrid ! Number of atmospheric columns. |
---|
227 | integer,intent(in) :: nlayer ! Number of atmospheric layers. |
---|
228 | integer,intent(in) :: nq ! Number of tracers. |
---|
229 | |
---|
230 | logical,intent(in) :: firstcall ! Signals first call to physics. |
---|
231 | logical,intent(in) :: lastcall ! Signals last call to physics. |
---|
232 | |
---|
233 | real,intent(in) :: pday ! Number of elapsed sols since reference Ls=0. |
---|
234 | real,intent(in) :: ptime ! "Universal time", given as fraction of sol (e.g.: 0.5 for noon). |
---|
235 | real,intent(in) :: ptimestep ! Physics timestep (s). |
---|
236 | real,intent(in) :: pplev(ngrid,nlayer+1) ! Inter-layer pressure (Pa). |
---|
237 | real,intent(in) :: pplay(ngrid,nlayer) ! Mid-layer pressure (Pa). |
---|
238 | real,intent(in) :: pphi(ngrid,nlayer) ! Geopotential at mid-layer (m2s-2). |
---|
239 | real,intent(in) :: pu(ngrid,nlayer) ! Zonal wind component (m/s). |
---|
240 | real,intent(in) :: pv(ngrid,nlayer) ! Meridional wind component (m/s). |
---|
241 | real,intent(in) :: pt(ngrid,nlayer) ! Temperature (K). |
---|
242 | real,intent(in) :: pq(ngrid,nlayer,nq) ! Tracers (kg/kg_of_air). |
---|
243 | real,intent(in) :: flxw(ngrid,nlayer) ! Vertical mass flux (ks/s) at lower boundary of layer |
---|
244 | |
---|
245 | ! OUTPUTS: |
---|
246 | ! -------- |
---|
247 | |
---|
248 | ! Physical tendencies : |
---|
249 | |
---|
250 | real,intent(out) :: pdu(ngrid,nlayer) ! Zonal wind tendencies (m/s/s). |
---|
251 | real,intent(out) :: pdv(ngrid,nlayer) ! Meridional wind tendencies (m/s/s). |
---|
252 | real,intent(out) :: pdt(ngrid,nlayer) ! Temperature tendencies (K/s). |
---|
253 | real,intent(out) :: pdq(ngrid,nlayer,nq) ! Tracer tendencies (kg/kg_of_air/s). |
---|
254 | real,intent(out) :: pdpsrf(ngrid) ! Surface pressure tendency (Pa/s). |
---|
255 | |
---|
256 | ! Local saved variables: |
---|
257 | ! ---------------------- |
---|
258 | integer,save :: day_ini ! Initial date of the run (sol since Ls=0). |
---|
259 | integer,save :: icount ! Counter of calls to physiq during the run. |
---|
260 | !$OMP THREADPRIVATE(day_ini,icount) |
---|
261 | |
---|
262 | !Pluto specific |
---|
263 | REAL,save :: acond,bcond |
---|
264 | REAL,save :: tcond1p4Pa |
---|
265 | DATA tcond1p4Pa/38/ |
---|
266 | |
---|
267 | |
---|
268 | |
---|
269 | ! Local variables : |
---|
270 | ! ----------------- |
---|
271 | ! Tendencies for the paleoclimate mode |
---|
272 | REAL qsurfyear(ngrid,nq) ! kg.m-2 averaged mass of ice lost/gained in the last Pluto year of the run |
---|
273 | REAL phisfinew(ngrid) ! geopotential of the bedrock (= phisfi-qsurf/1000*g) |
---|
274 | REAL qsurfpal(ngrid,nq) ! qsurf after a paleoclimate step : for physdem1 and restartfi |
---|
275 | REAL phisfipal(ngrid) ! geopotential after a paleoclimate step : for physdem1 and restartfi |
---|
276 | REAL oblipal ! change of obliquity |
---|
277 | REAL peri_daypal ! new periday |
---|
278 | REAL eccpal ! change of eccentricity |
---|
279 | REAL tpalnew ! change of time |
---|
280 | REAL adjustnew ! change in N2 ice albedo |
---|
281 | REAL pdaypal ! new pday = day_ini + step |
---|
282 | REAL zdt_tot ! time range corresponding to the flux of qsurfyear |
---|
283 | REAL massacc(nq) ! accumulated mass |
---|
284 | REAL masslost(nq) ! accumulated mass |
---|
285 | |
---|
286 | REAL globave ! globalaverage 2D ps |
---|
287 | REAL globaveice(nq) ! globalaverage 2D ice |
---|
288 | REAL globavenewice(nq) ! globalaverage 2D ice |
---|
289 | INTEGER lecttsoil ! lecture of tsoil from proftsoil |
---|
290 | REAL qsurf1(ngrid,nq) ! saving qsurf to calculate flux over long timescales kg.m-2 |
---|
291 | REAL flusurf(ngrid,nq) ! flux cond/sub kg.m-2.s-1 |
---|
292 | REAL flusurfold(ngrid,nq) ! old flux cond/sub kg.m-2.s-1 |
---|
293 | REAL zplev(ngrid,nlayer+1),zplay(ngrid,nlayer) |
---|
294 | |
---|
295 | REAL,SAVE :: ptime0 ! store the first time |
---|
296 | REAL dstep |
---|
297 | REAL,SAVE :: glastep=20 ! step in pluto day to spread glacier |
---|
298 | |
---|
299 | |
---|
300 | ! Aerosol (dust or ice) extinction optical depth at reference wavelength |
---|
301 | ! for the "naerkind" optically active aerosols: |
---|
302 | |
---|
303 | real,save,allocatable :: aerosol(:,:,:) ! Aerosols |
---|
304 | !$OMP THREADPRIVATE(aerosol) |
---|
305 | real zh(ngrid,nlayer) ! Potential temperature (K). |
---|
306 | real pw(ngrid,nlayer) ! Vertical velocity (m/s). (NOTE : >0 WHEN DOWNWARDS !!) |
---|
307 | real omega(ngrid,nlayer) ! omega velocity (Pa/s, >0 when downward) |
---|
308 | |
---|
309 | integer i,l,ig,ierr,iq,nw,isoil,iesp, igcm_generic_gas, igcm_generic_ice |
---|
310 | logical call_ice_gas_generic ! to call only one time the ice/vap pair of a tracer |
---|
311 | |
---|
312 | real zls ! Solar longitude (radians). |
---|
313 | real zlss ! Sub solar point longitude (radians). |
---|
314 | real zday ! Date (time since Ls=0, calculated in sols). |
---|
315 | REAL,save :: saveday ! saved date |
---|
316 | REAL,save :: savedeclin ! saved declin |
---|
317 | real zzlay(ngrid,nlayer) ! Altitude at the middle of the atmospheric layers. |
---|
318 | real zzlev(ngrid,nlayer+1) ! Altitude at the atmospheric layer boundaries. |
---|
319 | |
---|
320 | |
---|
321 | ! VARIABLES for the thermal plume model (AF24: deleted) |
---|
322 | |
---|
323 | ! TENDENCIES due to various processes : |
---|
324 | |
---|
325 | ! For Surface Temperature : (K/s) |
---|
326 | real zdtsurf(ngrid) ! Cumulated tendencies. |
---|
327 | real zdtsurfmr(ngrid) ! Mass_redistribution routine. |
---|
328 | real zdtsurfc(ngrid) ! Condense_n2 routine. |
---|
329 | real zdtsdif(ngrid) ! Turbdiff/vdifc routines. |
---|
330 | ! real zdtsurf_hyd(ngrid) ! Hydrol routine. |
---|
331 | |
---|
332 | ! For Atmospheric Temperatures : (K/s) |
---|
333 | real dtlscale(ngrid,nlayer) ! Largescale routine. |
---|
334 | real dt_generic_condensation(ngrid,nlayer) ! condensation_generic routine. |
---|
335 | real zdtc(ngrid,nlayer) ! Condense_n2 routine. |
---|
336 | real zdtdif(ngrid,nlayer) ! Turbdiff/vdifc routines. |
---|
337 | real zdtmr(ngrid,nlayer) ! Mass_redistribution routine. |
---|
338 | real zdtsw1(ngrid,nlayer), zdtlw1(ngrid,nlayer) ! Callcorrk routine. |
---|
339 | real zdtchim(ngrid,nlayer) ! Calchim routine. |
---|
340 | |
---|
341 | ! For Surface Tracers : (kg/m2/s) |
---|
342 | real dqsurf(ngrid,nq) ! Cumulated tendencies. |
---|
343 | !real zdqsurfc(ngrid) ! Condense_n2 routine. |
---|
344 | REAL zdqsc(ngrid,nq) ! Condense_n2 routine. |
---|
345 | real zdqsdif(ngrid,nq) ! Turbdiff/vdifc routines. |
---|
346 | real zdqssed(ngrid,nq) ! Callsedim routine. |
---|
347 | real zdqsurfmr(ngrid,nq) ! Mass_redistribution routine. |
---|
348 | |
---|
349 | ! For Tracers : (kg/kg_of_air/s) |
---|
350 | real zdqc(ngrid,nlayer,nq) ! Condense_n2 routine. |
---|
351 | real zdqadj(ngrid,nlayer,nq) ! Convadj routine. |
---|
352 | real zdqdif(ngrid,nlayer,nq) ! Turbdiff/vdifc routines. |
---|
353 | real zdqevap(ngrid,nlayer) ! Turbdiff routine. |
---|
354 | real zdqsed(ngrid,nlayer,nq) ! Callsedim routine. |
---|
355 | real zdqmr(ngrid,nlayer,nq) ! Mass_redistribution routine. |
---|
356 | real dqvaplscale_generic(ngrid,nlayer,nq) ! condensation_generic routine. |
---|
357 | real dqcldlscale_generic(ngrid,nlayer,nq) ! condensation_generic routine. |
---|
358 | REAL,allocatable,save :: zdqchim(:,:,:) ! Calchim_asis routine |
---|
359 | REAL,allocatable,save :: zdqschim(:,:) ! Calchim_asis routine |
---|
360 | !$OMP THREADPRIVATE(zdqchim,zdqschim) |
---|
361 | |
---|
362 | |
---|
363 | !! PLUTO variables |
---|
364 | REAL zdqch4cloud(ngrid,nlayer,nq) |
---|
365 | REAL zdqsch4cloud(ngrid,nq) |
---|
366 | REAL zdtch4cloud(ngrid,nlayer) |
---|
367 | REAL zdqcocloud(ngrid,nlayer,nq) |
---|
368 | REAL zdqscocloud(ngrid,nq) |
---|
369 | REAL zdtcocloud(ngrid,nlayer) |
---|
370 | REAL rice_ch4(ngrid,nlayer) ! Methane ice geometric mean radius (m) |
---|
371 | REAL rice_co(ngrid,nlayer) ! CO ice geometric mean radius (m) |
---|
372 | |
---|
373 | REAL zdqsch4fast(ngrid) ! used only for fast model nogcm |
---|
374 | REAL zdqch4fast(ngrid) ! used only for fast model nogcm |
---|
375 | REAL zdqscofast(ngrid) ! used only for fast model nogcm |
---|
376 | REAL zdqcofast(ngrid) ! used only for fast model nogcm |
---|
377 | REAL zdqflow(ngrid,nq) |
---|
378 | |
---|
379 | REAL zdtconduc(ngrid,nlayer) ! (K/s) |
---|
380 | REAL zdumolvis(ngrid,nlayer) |
---|
381 | REAL zdvmolvis(ngrid,nlayer) |
---|
382 | real zdqmoldiff(ngrid,nlayer,nq) |
---|
383 | |
---|
384 | ! Haze relatated tendancies |
---|
385 | REAL zdqhaze(ngrid,nlayer,nq) |
---|
386 | REAL zdqprodhaze(ngrid,nq) |
---|
387 | REAL zdqsprodhaze(ngrid) |
---|
388 | REAL zdqhaze_col(ngrid) |
---|
389 | REAL zdqphot_prec(ngrid,nlayer) |
---|
390 | REAL zdqphot_ch4(ngrid,nlayer) |
---|
391 | REAL zdqconv_prec(ngrid,nlayer) |
---|
392 | REAL zdq_source(ngrid,nlayer,nq) |
---|
393 | ! Fast Haze relatated tendancies |
---|
394 | REAL fluxbot(ngrid) |
---|
395 | REAL gradflux(ngrid) |
---|
396 | REAL fluxlym_sol_bot(ngrid) ! Solar flux Lyman alpha ph.m-2.s-1 reaching the surface |
---|
397 | REAL fluxlym_ipm_bot(ngrid) ! IPM (Interplanetary) flux Lyman alpha ph.m-2.s-1 reaching the surface |
---|
398 | REAL flym_sol(ngrid) ! Incident Solar flux Lyman alpha ph.m-2.s-1 |
---|
399 | REAL flym_ipm(ngrid) ! Incident IPM (Interplanetary) flux Lyman alpha ph.m-2.s-1 |
---|
400 | REAL zfluxuv ! Lyman alpha flux at 1AU |
---|
401 | |
---|
402 | |
---|
403 | |
---|
404 | REAL array_zero1(ngrid) |
---|
405 | REAL array_zero2(ngrid,nlayer) |
---|
406 | |
---|
407 | ! For Winds : (m/s/s) |
---|
408 | real zdvadj(ngrid,nlayer), zduadj(ngrid,nlayer) ! Convadj routine. |
---|
409 | real zdumr(ngrid,nlayer), zdvmr(ngrid,nlayer) ! Mass_redistribution routine. |
---|
410 | real zdvdif(ngrid,nlayer), zdudif(ngrid,nlayer) ! Turbdiff/vdifc routines. |
---|
411 | real zdhdif(ngrid,nlayer) ! Turbdiff/vdifc routines. |
---|
412 | real zdhadj(ngrid,nlayer) ! Convadj routine. |
---|
413 | REAL zdvc(ngrid,nlayer),zduc(ngrid,nlayer) ! condense_n2 routine. |
---|
414 | |
---|
415 | ! For Pressure and Mass : |
---|
416 | real zdmassmr(ngrid,nlayer) ! Atmospheric Mass tendency for mass_redistribution (kg_of_air/m2/s). |
---|
417 | real zdmassmr_col(ngrid) ! Atmospheric Column Mass tendency for mass_redistribution (kg_of_air/m2/s). |
---|
418 | real zdpsrfmr(ngrid) ! Pressure tendency for mass_redistribution routine (Pa/s). |
---|
419 | |
---|
420 | |
---|
421 | |
---|
422 | ! Local variables for LOCAL CALCULATIONS: |
---|
423 | ! --------------------------------------- |
---|
424 | real zflubid(ngrid) |
---|
425 | real zplanck(ngrid),zpopsk(ngrid,nlayer) |
---|
426 | REAL zdum1(ngrid,nlayer) |
---|
427 | REAL zdum2(ngrid,nlayer) |
---|
428 | real ztim1,ztim2,ztim3, z1,z2 |
---|
429 | real ztime_fin |
---|
430 | real zdh(ngrid,nlayer) |
---|
431 | real gmplanet |
---|
432 | real taux(ngrid),tauy(ngrid) |
---|
433 | |
---|
434 | |
---|
435 | ! local variables for DIAGNOSTICS : (diagfi & stat) |
---|
436 | ! ------------------------------------------------- |
---|
437 | real ps(ngrid) ! Surface Pressure. |
---|
438 | real zt(ngrid,nlayer) ! Atmospheric Temperature. |
---|
439 | real zu(ngrid,nlayer),zv(ngrid,nlayer) ! Zonal and Meridional Winds. |
---|
440 | real zq(ngrid,nlayer,nq) ! Atmospheric Tracers. |
---|
441 | real zdtadj(ngrid,nlayer) ! Convadj Diagnostic. |
---|
442 | real zdtdyn(ngrid,nlayer) ! Dynamical Heating (K/s). |
---|
443 | real zdudyn(ngrid,nlayer) ! Dynamical Zonal Wind tendency (m.s-2). |
---|
444 | |
---|
445 | real reff(ngrid,nlayer) ! Effective dust radius (used if doubleq=T). |
---|
446 | real vmr(ngrid,nlayer) ! volume mixing ratio |
---|
447 | real time_phys |
---|
448 | |
---|
449 | real ISR,ASR,OLR,GND,DYN,GSR,Ts1,Ts2,Ts3,TsS ! for Diagnostic. |
---|
450 | |
---|
451 | real qcol(ngrid,nq) ! Tracer Column Mass (kg/m2). |
---|
452 | |
---|
453 | ! Pluto adding variables |
---|
454 | real vmr_ch4(ngrid) ! vmr ch4 |
---|
455 | real vmr_co(ngrid) ! vmr co |
---|
456 | real rho(ngrid,nlayer) ! density |
---|
457 | real zrho_ch4(ngrid,nlayer) ! density methane kg.m-3 |
---|
458 | real zrho_co(ngrid,nlayer) ! density CO kg.m-3 |
---|
459 | real zrho_haze(ngrid,nlayer) ! density haze kg.m-3 |
---|
460 | real zdqrho_photprec(ngrid,nlayer) !photolysis rate kg.m-3.s-1 |
---|
461 | real zq1temp_ch4(ngrid) ! |
---|
462 | real qsat_ch4(ngrid) ! |
---|
463 | real qsat_ch4_l1(ngrid) ! |
---|
464 | ! CHARACTER(LEN=20) :: txt ! to temporarly store text for eddy tracers |
---|
465 | real profmmr(ngrid,nlayer) ! fixed profile of haze if haze_proffix |
---|
466 | real sensiblehf1(ngrid) ! sensible heat flux |
---|
467 | real sensiblehf2(ngrid) ! sensible heat flux |
---|
468 | |
---|
469 | ! included by RW for H2O Manabe scheme |
---|
470 | real rneb_man(ngrid,nlayer) ! H2O cloud fraction (moistadj). |
---|
471 | real rneb_lsc(ngrid,nlayer) ! H2O cloud fraction (large scale). |
---|
472 | |
---|
473 | |
---|
474 | ! to test energy conservation (RW+JL) |
---|
475 | real mass(ngrid,nlayer),massarea(ngrid,nlayer) |
---|
476 | real dEtot, dEtots, AtmToSurf_TurbFlux |
---|
477 | real,save :: dEtotSW, dEtotsSW, dEtotLW, dEtotsLW |
---|
478 | !$OMP THREADPRIVATE(dEtotSW, dEtotsSW, dEtotLW, dEtotsLW) |
---|
479 | |
---|
480 | !JL12 conservation test for mean flow kinetic energy has been disabled temporarily |
---|
481 | |
---|
482 | real dtmoist_max,dtmoist_min |
---|
483 | real dItot, dItot_tmp, dVtot, dVtot_tmp |
---|
484 | |
---|
485 | |
---|
486 | real dWtot, dWtot_tmp, dWtots, dWtots_tmp |
---|
487 | |
---|
488 | real psat_tmp ! AF24: to remove? |
---|
489 | |
---|
490 | real qsat_generic(ngrid,nlayer,nq) ! generic condensable tracers (GCS) specific concentration at saturation (kg/kg_of_air). |
---|
491 | real RH_generic(ngrid,nlayer,nq) ! generic condensable tracers (GCS) Relative humidity. |
---|
492 | real rneb_generic(ngrid,nlayer,nq) ! GCS cloud fraction (generic condensation). |
---|
493 | real psat_tmp_generic |
---|
494 | real, save :: metallicity ! metallicity of planet --- is not used here, but necessary to call function Psat_generic |
---|
495 | !$OMP THREADPRIVATE(metallicity) |
---|
496 | |
---|
497 | real reffrad_generic_zeros_for_wrf(ngrid,nlayer) ! !!! this is temporary, it is only a list of zeros, it will be replaced when a generic aerosol will be implemented |
---|
498 | |
---|
499 | ! For Clear Sky Case. (AF24: deleted) |
---|
500 | |
---|
501 | real nconsMAX, vdifcncons(ngrid), cadjncons(ngrid) ! Vdfic water conservation test. By RW |
---|
502 | |
---|
503 | real muvar(ngrid,nlayer+1) ! For Runaway Greenhouse 1D study. By RW |
---|
504 | |
---|
505 | real,save,allocatable :: reffcol(:,:) |
---|
506 | !$OMP THREADPRIVATE(reffcol) |
---|
507 | |
---|
508 | ! Non-oro GW tendencies |
---|
509 | REAL d_u_hin(ngrid,nlayer), d_v_hin(ngrid,nlayer) |
---|
510 | REAL d_t_hin(ngrid,nlayer) |
---|
511 | ! Diagnostics 2D of gw_nonoro |
---|
512 | REAL zustrhi(ngrid), zvstrhi(ngrid) |
---|
513 | |
---|
514 | |
---|
515 | real :: tsurf2(ngrid) |
---|
516 | !! real :: flux_o(ngrid),flux_g(ngrid) |
---|
517 | real :: flux_g(ngrid) |
---|
518 | real :: flux_sens_lat(ngrid) |
---|
519 | real :: qsurfint(ngrid,nq) |
---|
520 | #ifdef MESOSCALE |
---|
521 | REAL :: lsf_dt(nlayer) |
---|
522 | REAL :: lsf_dq(nlayer) |
---|
523 | #endif |
---|
524 | |
---|
525 | ! local variables for skin depth check |
---|
526 | real :: inertia_min,inertia_max |
---|
527 | real :: diurnal_skin ! diurnal skin depth (m) |
---|
528 | real :: annual_skin ! anuual skin depth (m) |
---|
529 | |
---|
530 | ! when no startfi file is asked for init |
---|
531 | real alpha,lay1 ! coefficients for building layers |
---|
532 | integer iloop |
---|
533 | |
---|
534 | ! flags to trigger extra sanity checks |
---|
535 | logical, save :: check_physics_inputs=.false. |
---|
536 | logical, save :: check_physics_outputs=.false. |
---|
537 | !$OPM THREADPRIVATE(check_physics_inputs,check_physics_outputs) |
---|
538 | |
---|
539 | ! Misc |
---|
540 | character*2 :: str2 |
---|
541 | character(len=10) :: tmp1 |
---|
542 | character(len=10) :: tmp2 |
---|
543 | !================================================================================================== |
---|
544 | |
---|
545 | ! ----------------- |
---|
546 | ! I. INITIALISATION |
---|
547 | ! ----------------- |
---|
548 | |
---|
549 | ! -------------------------------- |
---|
550 | ! I.1 First Call Initialisation. |
---|
551 | ! -------------------------------- |
---|
552 | if (firstcall) then |
---|
553 | call getin_p("check_physics_inputs", check_physics_inputs) |
---|
554 | call getin_p("check_physics_outputs", check_physics_outputs) |
---|
555 | |
---|
556 | ! Allocate saved arrays (except for 1D model, where this has already |
---|
557 | ! been done) |
---|
558 | #ifndef MESOSCALE |
---|
559 | if (ngrid>1) call phys_state_var_init(nq) |
---|
560 | #endif |
---|
561 | |
---|
562 | ! Variables set to 0 |
---|
563 | ! ~~~~~~~~~~~~~~~~~~ |
---|
564 | dtrad(:,:) = 0.0 |
---|
565 | fluxrad(:) = 0.0 |
---|
566 | tau_col(:) = 0.0 |
---|
567 | zdtsw(:,:) = 0.0 |
---|
568 | zdtlw(:,:) = 0.0 |
---|
569 | |
---|
570 | ! Initialize tracer names, indexes and properties. |
---|
571 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
572 | IF (.NOT.ALLOCATED(noms)) ALLOCATE(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on) |
---|
573 | if (tracer) then |
---|
574 | call initracer(ngrid,nq) |
---|
575 | ! if(photochem) then !AF24: removed |
---|
576 | endif |
---|
577 | ! Initialize aerosol indexes. |
---|
578 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
579 | ! call iniaerosol |
---|
580 | ! allocate related local arrays |
---|
581 | ! (need be allocated instead of automatic because of "naerkind") |
---|
582 | allocate(aerosol(ngrid,nlayer,naerkind)) |
---|
583 | allocate(reffcol(ngrid,naerkind)) |
---|
584 | |
---|
585 | #ifdef CPP_XIOS |
---|
586 | ! Initialize XIOS context |
---|
587 | write(*,*) "physiq: call wxios_context_init" |
---|
588 | CALL wxios_context_init |
---|
589 | #endif |
---|
590 | |
---|
591 | ! Read 'startfi.nc' file. |
---|
592 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
593 | #ifndef MESOSCALE |
---|
594 | call phyetat0(startphy_file, & |
---|
595 | ngrid,nlayer,"startfi.nc",0,0,nsoilmx,nq, & |
---|
596 | day_ini,time_phys,tsurf,tsoil,emis,q2,qsurf,inertiedat) |
---|
597 | |
---|
598 | #else |
---|
599 | |
---|
600 | day_ini = pday |
---|
601 | #endif |
---|
602 | |
---|
603 | #ifndef MESOSCALE |
---|
604 | if (.not.startphy_file) then |
---|
605 | ! starting without startfi.nc and with callsoil |
---|
606 | ! is not yet possible as soildepth default is not defined |
---|
607 | if (callsoil) then |
---|
608 | ! default mlayer distribution, following a power law: |
---|
609 | ! mlayer(k)=lay1*alpha**(k-1/2) |
---|
610 | lay1=2.e-4 |
---|
611 | alpha=2 |
---|
612 | do iloop=0,nsoilmx-1 |
---|
613 | mlayer(iloop)=lay1*(alpha**(iloop-0.5)) |
---|
614 | enddo |
---|
615 | lay1=sqrt(mlayer(0)*mlayer(1)) |
---|
616 | alpha=mlayer(1)/mlayer(0) |
---|
617 | do iloop=1,nsoilmx |
---|
618 | layer(iloop)=lay1*(alpha**(iloop-1)) |
---|
619 | enddo |
---|
620 | endif |
---|
621 | ! additionnal "academic" initialization of physics |
---|
622 | if (is_master) write(*,*) "Physiq: initializing tsurf(:) to pt(:,1) !!" |
---|
623 | tsurf(:)=pt(:,1) |
---|
624 | if (is_master) write(*,*) "Physiq: initializing tsoil(:) to pt(:,1) !!" |
---|
625 | do isoil=1,nsoilmx |
---|
626 | tsoil(1:ngrid,isoil)=tsurf(1:ngrid) |
---|
627 | enddo |
---|
628 | if (is_master) write(*,*) "Physiq: initializing day_ini to pday !" |
---|
629 | day_ini=pday |
---|
630 | endif |
---|
631 | #endif |
---|
632 | if (pday.ne.day_ini) then |
---|
633 | write(*,*) "ERROR in physiq.F90:" |
---|
634 | write(*,*) "bad synchronization between physics and dynamics" |
---|
635 | write(*,*) "dynamics day: ",pday |
---|
636 | write(*,*) "physics day: ",day_ini |
---|
637 | stop |
---|
638 | endif |
---|
639 | |
---|
640 | write (*,*) 'In physiq day_ini =', day_ini |
---|
641 | |
---|
642 | ! Initialize albedo calculation. |
---|
643 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
644 | albedo(:,:)=0.0 |
---|
645 | albedo_bareground(:)=0.0 |
---|
646 | albedo_snow_SPECTV(:)=0.0 |
---|
647 | albedo_n2_ice_SPECTV(:)=0.0 |
---|
648 | |
---|
649 | ptime0=ptime |
---|
650 | write (*,*) 'In physiq ptime0 =', ptime |
---|
651 | |
---|
652 | call surfini(ngrid,nq,qsurf,albedo,albedo_bareground,albedo_snow_SPECTV,albedo_n2_ice_SPECTV) |
---|
653 | |
---|
654 | ! Initialize orbital calculation. |
---|
655 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
656 | call iniorbit(apoastr,periastr,year_day,peri_day,obliquit) |
---|
657 | |
---|
658 | savedeclin=0. |
---|
659 | saveday=pday |
---|
660 | adjust=0. ! albedo adjustment for convergeps |
---|
661 | |
---|
662 | ! Initialize soil. |
---|
663 | ! ~~~~~~~~~~~~~~~~ |
---|
664 | if (callsoil) then |
---|
665 | call soil(ngrid,nsoilmx,firstcall,lastcall,inertiedat, & |
---|
666 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
667 | else ! else of 'callsoil'. |
---|
668 | print*,'WARNING! Thermal conduction in the soil turned off' |
---|
669 | capcal(:)=1.e6 |
---|
670 | fluxgrd(:)=intheat |
---|
671 | print*,'Flux from ground = ',intheat,' W m^-2' |
---|
672 | endif ! end of 'callsoil'. |
---|
673 | |
---|
674 | icount=1 |
---|
675 | |
---|
676 | ! Initialize surface history variable. |
---|
677 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
678 | qsurf_hist(:,:)=qsurf(:,:) |
---|
679 | |
---|
680 | !! call WriteField_phy("post_qsurf_hist_qsurf",qsurf(1:ngrid,igcm_h2o_gas),1) |
---|
681 | |
---|
682 | ! Initialize variable for dynamical heating and zonal wind tendency diagnostic |
---|
683 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
684 | ztprevious(:,:)=pt(:,:) |
---|
685 | zuprevious(:,:)=pu(:,:) |
---|
686 | |
---|
687 | ! Set temperature just above condensation temperature (for Early Mars) |
---|
688 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
689 | if(nearn2cond) then |
---|
690 | write(*,*)' WARNING! Starting at Tcond+1K' |
---|
691 | do l=1, nlayer |
---|
692 | do ig=1,ngrid |
---|
693 | pdt(ig,l)= ((-3167.8)/(log(.01*pplay(ig,l))-23.23)+4 & |
---|
694 | -pt(ig,l)) / ptimestep |
---|
695 | enddo |
---|
696 | enddo |
---|
697 | endif |
---|
698 | |
---|
699 | if(meanOLR)then |
---|
700 | call system('rm -f rad_bal.out') ! to record global radiative balance. |
---|
701 | call system('rm -f tem_bal.out') ! to record global mean/max/min temperatures. |
---|
702 | call system('rm -f h2o_bal.out') ! to record global hydrological balance. |
---|
703 | endif |
---|
704 | |
---|
705 | |
---|
706 | !! Initialize variables for water cycle ! AF24: removed |
---|
707 | |
---|
708 | ! Set metallicity for GCS |
---|
709 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
710 | metallicity=0.0 ! default value --- is not used here but necessary to call function Psat_generic |
---|
711 | call getin_p("metallicity",metallicity) ! --- is not used here but necessary to call function Psat_generic |
---|
712 | |
---|
713 | ! Set some parameters for the thermal plume model !AF24: removed |
---|
714 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
715 | |
---|
716 | #ifndef MESOSCALE |
---|
717 | if (ngrid.ne.1) then ! Note : no need to create a restart file in 1d. |
---|
718 | call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid,nlayer,nq, & |
---|
719 | ptimestep,pday+nday,time_phys,cell_area, & |
---|
720 | albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe) |
---|
721 | endif |
---|
722 | |
---|
723 | !! call WriteField_phy("post_physdem_qsurf",qsurf(1:ngrid,igcm_h2o_gas),1) |
---|
724 | #endif |
---|
725 | if (corrk) then |
---|
726 | ! We initialise the spectral grid here instead of |
---|
727 | ! at firstcall of callcorrk so we can output XspecIR, XspecVI |
---|
728 | ! when using Dynamico |
---|
729 | if (is_master) print*, "physiq_mod: Correlated-k data base folder:",trim(datadir) |
---|
730 | call getin_p("corrkdir",corrkdir) |
---|
731 | if (is_master) print*,"corrkdir = ", corrkdir |
---|
732 | write (tmp1, '(i4)') L_NSPECTI |
---|
733 | write (tmp2, '(i4)') L_NSPECTV |
---|
734 | banddir=trim(trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2))) |
---|
735 | banddir=trim(trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir))) |
---|
736 | call setspi !Basic infrared properties. |
---|
737 | call setspv ! Basic visible properties. |
---|
738 | call sugas_corrk ! Set up gaseous absorption properties. |
---|
739 | if (aerohaze) then |
---|
740 | call suaer_corrk ! Set up aerosol optical properties. |
---|
741 | endif |
---|
742 | endif |
---|
743 | |
---|
744 | !! call WriteField_phy("post_corrk_firstcall_qsurf",qsurf(1:ngrid,igcm_h2o_gas),1) |
---|
745 | ! XIOS outputs |
---|
746 | #ifdef CPP_XIOS |
---|
747 | |
---|
748 | if (is_master) write(*,*) "physiq: call initialize_xios_output" |
---|
749 | call initialize_xios_output(pday,ptime,ptimestep,daysec,year_day, & |
---|
750 | presnivs,pseudoalt,mlayer,WNOI,WNOV) |
---|
751 | #endif |
---|
752 | |
---|
753 | !! call WriteField_phy("post_xios_qsurf",qsurf(1:ngrid,igcm_h2o_gas),1) |
---|
754 | |
---|
755 | write(*,*) "physiq: end of firstcall" |
---|
756 | endif ! end of 'firstcall' |
---|
757 | |
---|
758 | !! call WriteField_phy("post_firstcall_qsurf",qsurf(1:ngrid,igcm_h2o_gas),1) |
---|
759 | !! call writediagfi(ngrid,"firstcall_post_qsurf"," "," ",2,qsurf(1:ngrid,igcm_h2o_gas)) |
---|
760 | |
---|
761 | if (check_physics_inputs) then |
---|
762 | !check the validity of input fields coming from the dynamics |
---|
763 | call check_physics_fields("begin physiq:", pt, pu, pv, pplev, pq) |
---|
764 | endif |
---|
765 | |
---|
766 | ! call writediagfi(ngrid,"pre_physical_rnat"," "," ",2,rnat) |
---|
767 | ! call writediagfi(ngrid,"pre_physical_capcal"," "," ",2,capcal) |
---|
768 | |
---|
769 | ! ------------------------------------------------------ |
---|
770 | ! I.2 Initializations done at every physical timestep: |
---|
771 | ! ------------------------------------------------------ |
---|
772 | |
---|
773 | #ifdef CPP_XIOS |
---|
774 | ! update XIOS time/calendar |
---|
775 | call update_xios_timestep |
---|
776 | #endif |
---|
777 | |
---|
778 | ! Initialize various variables |
---|
779 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
780 | |
---|
781 | if ( .not.nearn2cond ) then |
---|
782 | pdt(1:ngrid,1:nlayer) = 0.0 |
---|
783 | endif |
---|
784 | zdtsurf(1:ngrid) = 0.0 |
---|
785 | pdq(1:ngrid,1:nlayer,1:nq) = 0.0 |
---|
786 | dqsurf(1:ngrid,1:nq)= 0.0 |
---|
787 | pdu(1:ngrid,1:nlayer) = 0.0 |
---|
788 | pdv(1:ngrid,1:nlayer) = 0.0 |
---|
789 | pdpsrf(1:ngrid) = 0.0 |
---|
790 | zflubid(1:ngrid) = 0.0 |
---|
791 | flux_sens_lat(1:ngrid) = 0.0 |
---|
792 | taux(1:ngrid) = 0.0 |
---|
793 | tauy(1:ngrid) = 0.0 |
---|
794 | |
---|
795 | if (conservn2) then |
---|
796 | write(*,*) 'conservn2 iniloop' |
---|
797 | call testconservmass(ngrid,nlayer,pplev(:,1),qsurf(:,1)) |
---|
798 | endif |
---|
799 | |
---|
800 | zday=pday+ptime ! Compute time, in sols (and fraction thereof). |
---|
801 | |
---|
802 | ! Compute Stellar Longitude (Ls), and orbital parameters. |
---|
803 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
804 | if (season) then |
---|
805 | call stellarlong(zday,zls) |
---|
806 | else |
---|
807 | call stellarlong(noseason_day,zls) |
---|
808 | end if |
---|
809 | |
---|
810 | |
---|
811 | ! Get Lyman alpha flux at specific Ls |
---|
812 | if (haze) then |
---|
813 | call lymalpha(zls,zfluxuv) |
---|
814 | print*, 'Haze lyman-alpha zls,zfluxuv=',zls,zfluxuv |
---|
815 | end if |
---|
816 | |
---|
817 | |
---|
818 | IF (triton) then |
---|
819 | CALL orbitetriton(zls,zday,dist_star,declin) |
---|
820 | ELSE |
---|
821 | call orbite(zls,dist_star,declin,right_ascen) |
---|
822 | ENDIF |
---|
823 | |
---|
824 | |
---|
825 | if (diurnal) then |
---|
826 | zlss=-2.*pi*(zday-.5) |
---|
827 | else if(diurnal .eqv. .false.) then |
---|
828 | zlss=9999. |
---|
829 | endif |
---|
830 | |
---|
831 | |
---|
832 | glat(:) = g !AF24: removed oblateness |
---|
833 | |
---|
834 | ! Compute geopotential between layers. |
---|
835 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
836 | zzlay(1:ngrid,1:nlayer)=pphi(1:ngrid,1:nlayer) |
---|
837 | do l=1,nlayer |
---|
838 | zzlay(1:ngrid,l)= zzlay(1:ngrid,l)/glat(1:ngrid) |
---|
839 | enddo |
---|
840 | |
---|
841 | zzlev(1:ngrid,1)=0. |
---|
842 | |
---|
843 | do l=2,nlayer |
---|
844 | do ig=1,ngrid |
---|
845 | z1=(pplay(ig,l-1)+pplev(ig,l))/(pplay(ig,l-1)-pplev(ig,l)) |
---|
846 | z2=(pplev(ig,l)+pplay(ig,l))/(pplev(ig,l)-pplay(ig,l)) |
---|
847 | zzlev(ig,l)=(z1*zzlay(ig,l-1)+z2*zzlay(ig,l))/(z1+z2) |
---|
848 | enddo |
---|
849 | enddo |
---|
850 | |
---|
851 | !Altitude of top interface (nlayer+1), using the thicknesss of the level below the top one. LT22 |
---|
852 | |
---|
853 | zzlev(1:ngrid,nlayer+1) = 2*zzlev(1:ngrid,nlayer)-zzlev(1:ngrid,nlayer-1) |
---|
854 | |
---|
855 | ! Compute potential temperature |
---|
856 | ! Note : Potential temperature calculation may not be the same in physiq and dynamic... |
---|
857 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
858 | do l=1,nlayer |
---|
859 | do ig=1,ngrid |
---|
860 | zpopsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**rcp |
---|
861 | zh(ig,l)=pt(ig,l)/zpopsk(ig,l) |
---|
862 | mass(ig,l) = (pplev(ig,l) - pplev(ig,l+1))/glat(ig) |
---|
863 | massarea(ig,l)=mass(ig,l)*cell_area(ig) |
---|
864 | enddo |
---|
865 | enddo |
---|
866 | |
---|
867 | ! Compute vertical velocity (m/s) from vertical mass flux |
---|
868 | ! w = F / (rho*area) and rho = P/(r*T) |
---|
869 | ! But first linearly interpolate mass flux to mid-layers |
---|
870 | if (.not.fast) then |
---|
871 | do l=1,nlayer-1 |
---|
872 | pw(1:ngrid,l)=0.5*(flxw(1:ngrid,l)+flxw(1:ngrid,l+1)) |
---|
873 | enddo |
---|
874 | pw(1:ngrid,nlayer)=0.5*flxw(1:ngrid,nlayer) ! since flxw(nlayer+1)=0 |
---|
875 | do l=1,nlayer |
---|
876 | pw(1:ngrid,l)=(pw(1:ngrid,l)*r*pt(1:ngrid,l)) / & |
---|
877 | (pplay(1:ngrid,l)*cell_area(1:ngrid)) |
---|
878 | enddo |
---|
879 | ! omega in Pa/s |
---|
880 | do l=1,nlayer-1 |
---|
881 | omega(1:ngrid,l)=0.5*(flxw(1:ngrid,l)+flxw(1:ngrid,l+1)) |
---|
882 | enddo |
---|
883 | omega(1:ngrid,nlayer)=0.5*flxw(1:ngrid,nlayer) ! since flxw(nlayer+1)=0 |
---|
884 | do l=1,nlayer |
---|
885 | omega(1:ngrid,l)=g*omega(1:ngrid,l)/cell_area(1:ngrid) |
---|
886 | enddo |
---|
887 | endif |
---|
888 | |
---|
889 | if (conservn2) then |
---|
890 | write(*,*) 'conservn2 thermo' |
---|
891 | call testconservmass(ngrid,nlayer,pplev(:,1),qsurf(:,1)) |
---|
892 | endif |
---|
893 | |
---|
894 | |
---|
895 | |
---|
896 | ! -------------------------------------------------------- |
---|
897 | ! 1.3 thermosphere |
---|
898 | ! -------------------------------------------------------- |
---|
899 | |
---|
900 | ! ajout de la conduction depuis la thermosphere |
---|
901 | IF (callconduct) THEN |
---|
902 | |
---|
903 | call conduction (ngrid,nlayer,ptimestep, & |
---|
904 | pplay,pt,zzlay,zzlev,zdtconduc,tsurf) |
---|
905 | DO l=1,nlayer |
---|
906 | DO ig=1,ngrid |
---|
907 | pdt(ig,l)=pdt(ig,l)+ zdtconduc(ig,l) |
---|
908 | ENDDO |
---|
909 | ENDDO |
---|
910 | |
---|
911 | ENDIF |
---|
912 | |
---|
913 | ! ajout de la viscosite moleculaire |
---|
914 | IF (callmolvis) THEN |
---|
915 | call molvis(ngrid,nlayer,ptimestep, & |
---|
916 | pplay,pt,zzlay,zzlev, & |
---|
917 | zdtconduc,pu,tsurf,zdumolvis) |
---|
918 | call molvis(ngrid,nlayer,ptimestep, & |
---|
919 | pplay,pt,zzlay,zzlev, & |
---|
920 | zdtconduc,pv,tsurf,zdvmolvis) |
---|
921 | |
---|
922 | DO l=1,nlayer |
---|
923 | DO ig=1,ngrid |
---|
924 | ! pdt(ig,l)=pdt(ig,l)+ zdtconduc(ig,l) |
---|
925 | pdv(ig,l)=pdv(ig,l)+zdvmolvis(ig,l) |
---|
926 | pdu(ig,l)=pdu(ig,l)+zdumolvis(ig,l) |
---|
927 | ENDDO |
---|
928 | ENDDO |
---|
929 | ENDIF |
---|
930 | |
---|
931 | IF (callmoldiff) THEN |
---|
932 | call moldiff_red(ngrid,nlayer,nq, & |
---|
933 | pplay,pplev,pt,pdt,pq,pdq,ptimestep, & |
---|
934 | zzlay,zdtconduc,zdqmoldiff) |
---|
935 | |
---|
936 | DO l=1,nlayer |
---|
937 | DO ig=1,ngrid |
---|
938 | DO iq=1, nq |
---|
939 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdqmoldiff(ig,l,iq) |
---|
940 | ENDDO |
---|
941 | ENDDO |
---|
942 | ENDDO |
---|
943 | ENDIF |
---|
944 | |
---|
945 | if (conservn2) then |
---|
946 | write(*,*) 'conservn2 thermo' |
---|
947 | call testconservmass(ngrid,nlayer,pplev(:,1),qsurf(:,1)) |
---|
948 | endif |
---|
949 | |
---|
950 | |
---|
951 | !--------------------------------- |
---|
952 | ! II. Compute radiative tendencies |
---|
953 | !--------------------------------- |
---|
954 | ! Saving qsurf to compute paleo flux condensation/sublimation |
---|
955 | DO iq=1, nq |
---|
956 | DO ig=1,ngrid |
---|
957 | IF (qsurf(ig,iq).lt.0.) then |
---|
958 | qsurf(ig,iq)=0. |
---|
959 | ENDIF |
---|
960 | qsurf1(ig,iq)=qsurf(ig,iq) |
---|
961 | ENDDO |
---|
962 | ENDDO |
---|
963 | |
---|
964 | |
---|
965 | ! Compute local stellar zenith angles |
---|
966 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
967 | fract = 0 |
---|
968 | if (diurnal) then |
---|
969 | ztim1=SIN(declin) |
---|
970 | ztim2=COS(declin)*COS(2.*pi*(zday-.5)) |
---|
971 | ztim3=-COS(declin)*SIN(2.*pi*(zday-.5)) |
---|
972 | |
---|
973 | call stelang(ngrid,sinlon,coslon,sinlat,coslat, & |
---|
974 | ztim1,ztim2,ztim3,mu0,fract) |
---|
975 | else if(diurnal .eqv. .false.) then |
---|
976 | |
---|
977 | call mucorr(ngrid,declin,latitude,mu0,fract,10000.,rad) |
---|
978 | ! WARNING: this function appears not to work in 1D |
---|
979 | |
---|
980 | if ((ngrid.eq.1).and.(global1d)) then ! Fixed zenith angle 'szangle' in 1D simulations w/ globally-averaged sunlight. |
---|
981 | mu0 = cos(pi*szangle/180.0) |
---|
982 | fract= 1/(4*mu0) ! AF24: from pluto.old |
---|
983 | endif |
---|
984 | |
---|
985 | endif |
---|
986 | |
---|
987 | |
---|
988 | ! Pluto albedo /IT changes depending on surface ices (only in 3D) |
---|
989 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
990 | if (ngrid.ne.1) then |
---|
991 | |
---|
992 | !! Specific to change albedo of N2 so that Psurf |
---|
993 | !! converges toward 1.4 Pa in "1989" seasons for Triton |
---|
994 | !! converges toward 1.1 Pa in "2015" seasons for Pluto |
---|
995 | if (convergeps) then |
---|
996 | if (triton) then |
---|
997 | ! 1989 declination |
---|
998 | if (declin*180./pi.gt.-46..and.declin*180./pi.lt.-45. & |
---|
999 | .and.zday.gt.saveday+1000. & |
---|
1000 | .and.declin.lt.savedeclin) then |
---|
1001 | call globalaverage2d(ngrid,pplev(:,1),globave) |
---|
1002 | if (globave.gt.1.5) then |
---|
1003 | adjust=adjust+0.005 |
---|
1004 | else if (globave.lt.1.3) then |
---|
1005 | adjust=adjust-0.005 |
---|
1006 | endif |
---|
1007 | saveday=zday |
---|
1008 | endif |
---|
1009 | else |
---|
1010 | ! Pluto : 2015 declination current epoch |
---|
1011 | if (declin*180./pi.gt.50.and.declin*180./pi.lt.51. & |
---|
1012 | .and.zday.gt.saveday+10000. & |
---|
1013 | .and.declin.gt.savedeclin) then |
---|
1014 | call globalaverage2d(ngrid,pplev(:,1),globave) |
---|
1015 | if (globave.gt.1.2) then |
---|
1016 | adjust=adjust+0.005 |
---|
1017 | else if (globave.lt.1.) then |
---|
1018 | adjust=adjust-0.005 |
---|
1019 | endif |
---|
1020 | saveday=zday |
---|
1021 | endif |
---|
1022 | endif |
---|
1023 | end if |
---|
1024 | end if ! if ngrid ne 1 |
---|
1025 | |
---|
1026 | call surfprop(ngrid,nq,fract,qsurf,tsurf, & |
---|
1027 | capcal,adjust,dist_star,flusurfold,ptimestep,zls,& |
---|
1028 | albedo,emis,inertiedat) |
---|
1029 | ! do i=2,ngrid |
---|
1030 | ! albedo(i,:) = albedo(1,:) |
---|
1031 | ! enddo |
---|
1032 | |
---|
1033 | if (firstcall.and.callsoil) then |
---|
1034 | ! AF24 Originally in soil.F, but inertiedat is modified by surfprop |
---|
1035 | ! Additional checks: is the vertical discretization sufficient |
---|
1036 | ! to resolve diurnal and annual waves? |
---|
1037 | do ig=1,ngrid |
---|
1038 | ! extreme inertia for this column |
---|
1039 | inertia_min=minval(inertiedat(ig,:)) |
---|
1040 | inertia_max=maxval(inertiedat(ig,:)) |
---|
1041 | ! diurnal and annual skin depth |
---|
1042 | diurnal_skin=(inertia_min/volcapa)*sqrt(daysec/pi) |
---|
1043 | annual_skin=(inertia_max/volcapa)*sqrt(year_day*daysec/pi) |
---|
1044 | if (0.5*diurnal_skin<layer(1)) then |
---|
1045 | ! one should have the fist layer be at least half of diurnal skin depth |
---|
1046 | write(*,*) "soil Error: grid point ig=",ig |
---|
1047 | write(*,*) " longitude=",longitude(ig)*(180./pi) |
---|
1048 | write(*,*) " latitude=",latitude(ig)*(180./pi) |
---|
1049 | write(*,*) " first soil layer depth ",layer(1) |
---|
1050 | write(*,*) " not small enough for a diurnal skin depth of ", & |
---|
1051 | diurnal_skin |
---|
1052 | write(*,*) " change soil layer distribution (comsoil_h.F90)" |
---|
1053 | call abort_physic("soil","change soil layer distribution (comsoil_h.F90)",1) |
---|
1054 | endif |
---|
1055 | if (2.*annual_skin>layer(nsoilmx)) then |
---|
1056 | ! one should have the full soil be at least twice the diurnal skin depth |
---|
1057 | write(*,*) "soil Error: grid point ig=",ig |
---|
1058 | write(*,*) " longitude=",longitude(ig)*(180./pi) |
---|
1059 | write(*,*) " latitude=",latitude(ig)*(180./pi) |
---|
1060 | write(*,*) " total soil layer depth ",layer(nsoilmx) |
---|
1061 | write(*,*) " not large enough for an annual skin depth of ", & |
---|
1062 | annual_skin |
---|
1063 | write(*,*) " change soil layer distribution (comsoil_h.F90)" |
---|
1064 | call abort_physic("soil","change soil layer distribution (comsoil_h.F90)",1) |
---|
1065 | endif |
---|
1066 | enddo ! of do ig=1,ngrid |
---|
1067 | |
---|
1068 | end if ! callsoil |
---|
1069 | |
---|
1070 | if (callrad) then |
---|
1071 | if( mod(icount-1,iradia).eq.0.or.lastcall) then |
---|
1072 | |
---|
1073 | ! Eclipse incoming sunlight !AF24: removed |
---|
1074 | |
---|
1075 | !! call writediagfi(ngrid,"corrk_pre_dqsurf"," "," ",2,dqsurf(1:ngrid,igcm_h2o_gas)) |
---|
1076 | !! call writediagfi(ngrid,"corrk_pre_qsurf"," "," ",2,qsurf(1:ngrid,igcm_h2o_gas)) |
---|
1077 | |
---|
1078 | |
---|
1079 | if (corrk) then |
---|
1080 | |
---|
1081 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1082 | ! II.a Call correlated-k radiative transfer scheme |
---|
1083 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1084 | if(kastprof)then |
---|
1085 | print*,'kastprof should not = true here' |
---|
1086 | call abort |
---|
1087 | endif |
---|
1088 | ! if(water) then !AF24: removed |
---|
1089 | |
---|
1090 | if(generic_condensation) then |
---|
1091 | do iq=1,nq |
---|
1092 | |
---|
1093 | call generic_tracer_index(nq,iq,igcm_generic_gas,igcm_generic_ice,call_ice_gas_generic) |
---|
1094 | |
---|
1095 | if (call_ice_gas_generic) then ! to call only one time the ice/vap pair of a tracer |
---|
1096 | |
---|
1097 | epsi_generic=constants_epsi_generic(iq) |
---|
1098 | |
---|
1099 | muvar(1:ngrid,1:nlayer)=mugaz/(1.e0+(1.e0/epsi_generic-1.e0)*pq(1:ngrid,1:nlayer,igcm_generic_gas)) |
---|
1100 | muvar(1:ngrid,nlayer+1)=mugaz/(1.e0+(1.e0/epsi_generic-1.e0)*pq(1:ngrid,nlayer,igcm_generic_gas)) |
---|
1101 | |
---|
1102 | endif |
---|
1103 | end do ! do iq=1,nq loop on tracers |
---|
1104 | ! take into account generic condensable specie (GCS) effect on mean molecular weight |
---|
1105 | |
---|
1106 | else |
---|
1107 | muvar(1:ngrid,1:nlayer+1)=mugaz |
---|
1108 | endif |
---|
1109 | |
---|
1110 | ! if(ok_slab_ocean) then !AF24: removed |
---|
1111 | |
---|
1112 | ! standard callcorrk |
---|
1113 | if (oldplutocorrk) then |
---|
1114 | call callcorrk_pluto(icount,ngrid,nlayer,pq,nq,qsurf, & |
---|
1115 | albedo(:,1),emis,mu0,pplev,pplay,pt, & |
---|
1116 | zzlay,tsurf,fract,dist_star,aerosol, & |
---|
1117 | zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw,fluxtop_lw, & |
---|
1118 | fluxabs_sw,fluxtop_dn,reffrad,tau_col,ptime,pday, & |
---|
1119 | cloudfrac,totcloudfrac,.false., & |
---|
1120 | firstcall,lastcall) |
---|
1121 | albedo_equivalent(1:ngrid)=albedo(1:ngrid,1) |
---|
1122 | fluxrad_sky(1:ngrid)=emis(1:ngrid)*fluxsurf_lw(1:ngrid)+ & |
---|
1123 | fluxsurf_sw(1:ngrid)*(1.-albedo(1:ngrid,1)) |
---|
1124 | else |
---|
1125 | call callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
1126 | albedo,albedo_equivalent,emis,mu0,pplev,pplay,pt, & |
---|
1127 | zzlay,tsurf,fract,dist_star,aerosol,muvar, & |
---|
1128 | zdtlw,zdtsw,fluxsurf_lw,fluxsurf_sw, & |
---|
1129 | fluxsurfabs_sw,fluxtop_lw, & |
---|
1130 | fluxabs_sw,fluxtop_dn,OLR_nu,OSR_nu,GSR_nu, & |
---|
1131 | int_dtaui,int_dtauv, & |
---|
1132 | tau_col,cloudfrac,totcloudfrac, & |
---|
1133 | .false.,firstcall,lastcall) |
---|
1134 | ! Radiative flux from the sky absorbed by the surface (W.m-2). |
---|
1135 | GSR=0.0 |
---|
1136 | fluxrad_sky(1:ngrid)=emis(1:ngrid)*fluxsurf_lw(1:ngrid)+ & |
---|
1137 | fluxsurfabs_sw(1:ngrid) |
---|
1138 | endif ! oldplutocorrk |
---|
1139 | !GG (feb2021): Option to "artificially" decrease the raditive time scale in |
---|
1140 | !the deep atmosphere press > 0.1 bar. Suggested by MT. |
---|
1141 | !! COEFF_RAD to be "tuned" to facilitate convergence of tendency |
---|
1142 | |
---|
1143 | !coeff_rad=0. ! 0 values, it doesn't accelerate the convergence |
---|
1144 | !coeff_rad=0.5 |
---|
1145 | !coeff_rad=1. |
---|
1146 | !do l=1, nlayer |
---|
1147 | ! do ig=1,ngrid |
---|
1148 | ! if(pplay(ig,l).ge.1.d4) then |
---|
1149 | ! zdtsw(ig,l)=zdtsw(ig,l)*(pplay(ig,l)/1.d4)**coeff_rad |
---|
1150 | ! zdtlw(ig,l)=zdtlw(ig,l)*(pplay(ig,l)/1.d4)**coeff_rad |
---|
1151 | ! endif |
---|
1152 | ! enddo |
---|
1153 | !enddo |
---|
1154 | |
---|
1155 | ! AF24: removed CLFvarying Option |
---|
1156 | |
---|
1157 | |
---|
1158 | !if(noradsurf)then ! no lower surface; SW flux just disappears |
---|
1159 | ! GSR = SUM(fluxsurf_sw(1:ngrid)*cell_area(1:ngrid))/totarea |
---|
1160 | ! fluxrad_sky(1:ngrid)=emis(1:ngrid)*fluxsurf_lw(1:ngrid) |
---|
1161 | ! print*,'SW lost in deep atmosphere = ',GSR,' W m^-2' |
---|
1162 | !endif |
---|
1163 | |
---|
1164 | ! Net atmospheric radiative heating rate (K.s-1) |
---|
1165 | dtrad(1:ngrid,1:nlayer)=zdtsw(1:ngrid,1:nlayer)+zdtlw(1:ngrid,1:nlayer) |
---|
1166 | |
---|
1167 | ! Late initialization of the Ice Spectral Albedo. We needed the visible bands to do that ! |
---|
1168 | if (firstcall .and. albedo_spectral_mode) then |
---|
1169 | call spectral_albedo_calc(albedo_snow_SPECTV) |
---|
1170 | endif |
---|
1171 | |
---|
1172 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1173 | ! II.b Call Newtonian cooling scheme !AF24: removed |
---|
1174 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1175 | else |
---|
1176 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1177 | ! II.! Atmosphere has no radiative effect |
---|
1178 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1179 | fluxtop_dn(1:ngrid) = fract(1:ngrid)*mu0(1:ngrid)*Fat1AU/dist_star**2 |
---|
1180 | if(ngrid.eq.1)then ! / by 4 globally in 1D case... |
---|
1181 | fluxtop_dn(1) = fract(1)*Fat1AU/dist_star**2/2.0 |
---|
1182 | endif |
---|
1183 | fluxsurf_sw(1:ngrid) = fluxtop_dn(1:ngrid) |
---|
1184 | print*,'------------WARNING---WARNING------------' ! by MT2015. |
---|
1185 | print*,'You are in corrk=false mode, ' |
---|
1186 | print*,'and the surface albedo is taken equal to the first visible spectral value' |
---|
1187 | |
---|
1188 | albedo_equivalent(1:ngrid)=albedo(1:ngrid,1) |
---|
1189 | fluxsurfabs_sw(1:ngrid) = fluxtop_dn(1:ngrid)*(1.-albedo(1:ngrid,1)) |
---|
1190 | fluxabs_sw(1:ngrid)=fluxsurfabs_sw(1:ngrid) |
---|
1191 | fluxrad_sky(1:ngrid) = fluxsurfabs_sw(1:ngrid) |
---|
1192 | fluxtop_lw(1:ngrid) = emis(1:ngrid)*sigma*tsurf(1:ngrid)**4 |
---|
1193 | |
---|
1194 | dtrad(1:ngrid,1:nlayer)=0.0 ! no atmospheric radiative heating |
---|
1195 | |
---|
1196 | endif ! end of corrk |
---|
1197 | |
---|
1198 | endif ! of if(mod(icount-1,iradia).eq.0) |
---|
1199 | |
---|
1200 | |
---|
1201 | ! Transformation of the radiative tendencies |
---|
1202 | ! ------------------------------------------ |
---|
1203 | zplanck(1:ngrid)=tsurf(1:ngrid)*tsurf(1:ngrid) |
---|
1204 | zplanck(1:ngrid)=emis(1:ngrid)*sigma*zplanck(1:ngrid)*zplanck(1:ngrid) |
---|
1205 | fluxrad(1:ngrid)=fluxrad_sky(1:ngrid)-zplanck(1:ngrid) |
---|
1206 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer)+dtrad(1:ngrid,1:nlayer) |
---|
1207 | |
---|
1208 | ! Test of energy conservation |
---|
1209 | !---------------------------- |
---|
1210 | if(enertest)then |
---|
1211 | call planetwide_sumval(cpp*massarea(:,:)*zdtsw(:,:)/totarea_planet,dEtotSW) |
---|
1212 | call planetwide_sumval(cpp*massarea(:,:)*zdtlw(:,:)/totarea_planet,dEtotLW) |
---|
1213 | !call planetwide_sumval(fluxsurf_sw(:)*(1.-albedo_equivalent(:))*cell_area(:)/totarea_planet,dEtotsSW) !JL13 carefull, albedo can have changed since the last time we called corrk |
---|
1214 | call planetwide_sumval(fluxsurfabs_sw(:)*cell_area(:)/totarea_planet,dEtotsSW) !JL13 carefull, albedo can have changed since the last time we called corrk |
---|
1215 | call planetwide_sumval((fluxsurf_lw(:)*emis(:)-zplanck(:))*cell_area(:)/totarea_planet,dEtotsLW) |
---|
1216 | dEzRadsw(:,:)=cpp*mass(:,:)*zdtsw(:,:) |
---|
1217 | dEzRadlw(:,:)=cpp*mass(:,:)*zdtlw(:,:) |
---|
1218 | if (is_master) then |
---|
1219 | print*,'---------------------------------------------------------------' |
---|
1220 | print*,'In corrk SW atmospheric heating =',dEtotSW,' W m-2' |
---|
1221 | print*,'In corrk LW atmospheric heating =',dEtotLW,' W m-2' |
---|
1222 | print*,'atmospheric net rad heating (SW+LW) =',dEtotLW+dEtotSW,' W m-2' |
---|
1223 | print*,'In corrk SW surface heating =',dEtotsSW,' W m-2' |
---|
1224 | print*,'In corrk LW surface heating =',dEtotsLW,' W m-2' |
---|
1225 | print*,'surface net rad heating (SW+LW) =',dEtotsLW+dEtotsSW,' W m-2' |
---|
1226 | endif |
---|
1227 | endif ! end of 'enertest' |
---|
1228 | |
---|
1229 | endif ! of if (callrad) |
---|
1230 | |
---|
1231 | !! call writediagfi(ngrid,"vdifc_pre_dqsurf"," "," ",2,dqsurf(1:ngrid,igcm_h2o_gas)) |
---|
1232 | !! call writediagfi(ngrid,"vdifc_pre_qsurf"," "," ",2,qsurf(1:ngrid,igcm_h2o_gas)) |
---|
1233 | |
---|
1234 | if (conservn2) then |
---|
1235 | write(*,*) 'conservn2 radiat' |
---|
1236 | call testconservmass(ngrid,nlayer,pplev(:,1),qsurf(:,1)) |
---|
1237 | endif |
---|
1238 | |
---|
1239 | ! -------------------------------------------- |
---|
1240 | ! III. Vertical diffusion (turbulent mixing) : |
---|
1241 | ! -------------------------------------------- |
---|
1242 | |
---|
1243 | if (calldifv) then |
---|
1244 | |
---|
1245 | zflubid(1:ngrid)=fluxrad(1:ngrid)+fluxgrd(1:ngrid) |
---|
1246 | |
---|
1247 | if (oldplutovdifc) then |
---|
1248 | zdum1(:,:) = 0 |
---|
1249 | zdum2(:,:) = 0 |
---|
1250 | zdh(:,:)=pdt(:,:)/zpopsk(:,:) |
---|
1251 | |
---|
1252 | ! Calling vdif (Martian version WITH N2 condensation) |
---|
1253 | CALL vdifc_pluto(ngrid,nlayer,nq,zpopsk, & |
---|
1254 | ptimestep,capcal,lwrite, & |
---|
1255 | pplay,pplev,zzlay,zzlev,z0, & |
---|
1256 | pu,pv,zh,pq,pt,tsurf,emis,qsurf, & |
---|
1257 | zdum1,zdum2,zdh,pdq,pdt,zflubid, & |
---|
1258 | zdudif,zdvdif,zdhdif,zdtsdif,q2, & |
---|
1259 | zdqdif,zdqsdif,qsat_ch4,qsat_ch4_l1) !,zq1temp_ch4,qsat_ch4) |
---|
1260 | |
---|
1261 | zdtdif(1:ngrid,1:nlayer)=zdhdif(1:ngrid,1:nlayer)*zpopsk(1:ngrid,1:nlayer) ! for diagnostic only |
---|
1262 | |
---|
1263 | bcond=1./tcond1p4Pa |
---|
1264 | acond=r/lw_n2 |
---|
1265 | |
---|
1266 | !------------------------------------------------------------------ |
---|
1267 | ! test methane conservation |
---|
1268 | ! if(methane)then |
---|
1269 | ! call testconserv(ngrid,nlayer,nq,igcm_ch4_gas,igcm_ch4_ice, |
---|
1270 | ! & ptimestep,pplev,zdqdif,zdqsdif,'CH4',' vdifc ') |
---|
1271 | ! endif ! methane |
---|
1272 | !------------------------------------------------------------------ |
---|
1273 | ! test CO conservation |
---|
1274 | ! if(carbox)then |
---|
1275 | ! call testconserv(ngrid,nlayer,nq,igcm_co_gas,igcm_co_ice, |
---|
1276 | ! & ptimestep,pplev,zdqdif,zdqsdif,'CO ',' vdifc ') |
---|
1277 | ! endif ! carbox |
---|
1278 | !------------------------------------------------------------------ |
---|
1279 | |
---|
1280 | ! JL12 the following if test is temporarily there to allow us to compare the old vdifc with turbdiff. |
---|
1281 | else if (UseTurbDiff) then |
---|
1282 | |
---|
1283 | call turbdiff(ngrid,nlayer,nq, & |
---|
1284 | ptimestep,capcal, & |
---|
1285 | pplay,pplev,zzlay,zzlev,z0, & |
---|
1286 | pu,pv,pt,zpopsk,pq,tsurf,emis,qsurf, & |
---|
1287 | pdt,pdq,zflubid, & |
---|
1288 | zdudif,zdvdif,zdtdif,zdtsdif, & |
---|
1289 | sensibFlux,q2,zdqdif,zdqevap,zdqsdif, & |
---|
1290 | taux,tauy) |
---|
1291 | |
---|
1292 | else ! if (oldplutovdifc) .and. (UseTurbDiff) |
---|
1293 | |
---|
1294 | zdh(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer)/zpopsk(1:ngrid,1:nlayer) |
---|
1295 | |
---|
1296 | call vdifc(ngrid,nlayer,nq,zpopsk, & |
---|
1297 | ptimestep,capcal,lwrite, & |
---|
1298 | pplay,pplev,zzlay,zzlev,z0, & |
---|
1299 | pu,pv,zh,pq,tsurf,emis,qsurf, & |
---|
1300 | zdh,pdq,zflubid, & |
---|
1301 | zdudif,zdvdif,zdhdif,zdtsdif, & |
---|
1302 | sensibFlux,q2,zdqdif,zdqsdif) |
---|
1303 | |
---|
1304 | zdtdif(1:ngrid,1:nlayer)=zdhdif(1:ngrid,1:nlayer)*zpopsk(1:ngrid,1:nlayer) ! for diagnostic only |
---|
1305 | zdqevap(1:ngrid,1:nlayer)=0. |
---|
1306 | |
---|
1307 | end if !end of 'UseTurbDiff' |
---|
1308 | |
---|
1309 | zdtsurf(1:ngrid)=zdtsurf(1:ngrid)+zdtsdif(1:ngrid) |
---|
1310 | |
---|
1311 | !!! this is always done, except for turbulence-resolving simulations |
---|
1312 | if (.not. turb_resolved) then |
---|
1313 | pdv(1:ngrid,1:nlayer)=pdv(1:ngrid,1:nlayer)+zdvdif(1:ngrid,1:nlayer) |
---|
1314 | pdu(1:ngrid,1:nlayer)=pdu(1:ngrid,1:nlayer)+zdudif(1:ngrid,1:nlayer) |
---|
1315 | pdt(1:ngrid,1:nlayer)=pdt(1:ngrid,1:nlayer)+zdtdif(1:ngrid,1:nlayer) |
---|
1316 | endif |
---|
1317 | |
---|
1318 | ! if(ok_slab_ocean)then !AF24: removed |
---|
1319 | ! flux_sens_lat(1:ngrid)=(zdtsdif(1:ngrid)*capcal(1:ngrid)-fluxrad(1:ngrid)) |
---|
1320 | ! endif |
---|
1321 | |
---|
1322 | !! call writediagfi(ngrid,"vdifc_post_zdqsdif"," "," ",2,zdqsdif(1:ngrid,igcm_h2o_gas)) |
---|
1323 | |
---|
1324 | if (tracer) then |
---|
1325 | pdq(1:ngrid,1:nlayer,1:nq)=pdq(1:ngrid,1:nlayer,1:nq)+ zdqdif(1:ngrid,1:nlayer,1:nq) |
---|
1326 | dqsurf(1:ngrid,1:nq)=dqsurf(1:ngrid,1:nq) + zdqsdif(1:ngrid,1:nq) |
---|
1327 | end if ! of if (tracer) |
---|
1328 | |
---|
1329 | !! call writediagfi(ngrid,"vdifc_post_dqsurf"," "," ",2,dqsurf(1:ngrid,igcm_h2o_gas)) |
---|
1330 | !! call writediagfi(ngrid,"vdifc_post_qsurf"," "," ",2,qsurf(1:ngrid,igcm_h2o_gas)) |
---|
1331 | |
---|
1332 | ! test energy conservation |
---|
1333 | !------------------------- |
---|
1334 | if(enertest)then |
---|
1335 | |
---|
1336 | dEzdiff(:,:)=cpp*mass(:,:)*zdtdif(:,:) |
---|
1337 | do ig = 1, ngrid |
---|
1338 | dEdiff(ig)=SUM(dEzdiff (ig,:))+ sensibFlux(ig)! subtract flux to the ground |
---|
1339 | dEzdiff(ig,1)= dEzdiff(ig,1)+ sensibFlux(ig)! subtract flux to the ground |
---|
1340 | enddo |
---|
1341 | |
---|
1342 | call planetwide_sumval(dEdiff(:)*cell_area(:)/totarea_planet,dEtot) |
---|
1343 | dEdiffs(:)=capcal(:)*zdtsdif(:)-zflubid(:)-sensibFlux(:) |
---|
1344 | call planetwide_sumval(dEdiffs(:)*cell_area(:)/totarea_planet,dEtots) |
---|
1345 | call planetwide_sumval(sensibFlux(:)*cell_area(:)/totarea_planet,AtmToSurf_TurbFlux) |
---|
1346 | |
---|
1347 | if (is_master) then |
---|
1348 | |
---|
1349 | if (UseTurbDiff) then |
---|
1350 | print*,'In TurbDiff sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
---|
1351 | print*,'In TurbDiff non-cons atm nrj change =',dEtot,' W m-2' |
---|
1352 | print*,'In TurbDiff (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
---|
1353 | else |
---|
1354 | print*,'In vdifc sensible flux (atm=>surf) =',AtmToSurf_TurbFlux,' W m-2' |
---|
1355 | print*,'In vdifc non-cons atm nrj change =',dEtot,' W m-2' |
---|
1356 | print*,'In vdifc (correc rad+latent heat) surf nrj change =',dEtots,' W m-2' |
---|
1357 | end if |
---|
1358 | endif ! end of 'is_master' |
---|
1359 | |
---|
1360 | ! JL12 : note that the black body radiative flux emitted by the surface has been updated by the implicit scheme but not given back elsewhere. |
---|
1361 | endif ! end of 'enertest' |
---|
1362 | |
---|
1363 | |
---|
1364 | ! ! Test water conservation. !AF24: removed |
---|
1365 | |
---|
1366 | else ! calldifv |
---|
1367 | |
---|
1368 | ! if(.not.newtonian)then |
---|
1369 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + (fluxrad(1:ngrid) + fluxgrd(1:ngrid))/capcal(1:ngrid) |
---|
1370 | |
---|
1371 | ! ------------------------------------------------------------------ |
---|
1372 | ! Methane surface sublimation and condensation in fast model (nogcm) |
---|
1373 | ! ------------------------------------------------------------------ |
---|
1374 | if ((methane).and.(fast).and.condmetsurf) THEN |
---|
1375 | |
---|
1376 | call ch4surf(ngrid,nlayer,nq,ptimestep, & |
---|
1377 | tsurf,zdtsurf,pplev,pdpsrf,pq,pdq,qsurf,dqsurf, & |
---|
1378 | zdqch4fast,zdqsch4fast) |
---|
1379 | |
---|
1380 | dqsurf(1:ngrid,igcm_ch4_ice)= dqsurf(1:ngrid,igcm_ch4_ice) + & |
---|
1381 | zdqsch4fast(1:ngrid) |
---|
1382 | pdq(1:ngrid,1,igcm_ch4_gas)= pdq(1:ngrid,1,igcm_ch4_gas) + & |
---|
1383 | zdqch4fast(1:ngrid) |
---|
1384 | zdtsurf(1:ngrid)=zdtsurf(1:ngrid)+lw_ch4*zdqsch4fast(1:ngrid)/capcal(1:ngrid) |
---|
1385 | end if |
---|
1386 | ! ------------------------------------------------------------------ |
---|
1387 | ! CO surface sublimation and condensation in fast model (nogcm) |
---|
1388 | ! ------------------------------------------------------------------ |
---|
1389 | if ((carbox).and.(fast).and.condcosurf) THEN |
---|
1390 | |
---|
1391 | call cosurf(ngrid,nlayer,nq,ptimestep, & |
---|
1392 | tsurf,pplev,pdpsrf,pq,pdq,qsurf,dqsurf, & |
---|
1393 | zdqcofast,zdqscofast) |
---|
1394 | |
---|
1395 | dqsurf(1:ngrid,igcm_co_ice)= dqsurf(1:ngrid,igcm_co_ice) + & |
---|
1396 | zdqscofast(1:ngrid) |
---|
1397 | pdq(1:ngrid,1,igcm_co_gas)= pdq(1:ngrid,1,igcm_co_gas) + & |
---|
1398 | zdqcofast(1:ngrid) |
---|
1399 | zdtsurf(1:ngrid)=zdtsurf(1:ngrid)+lw_co*zdqscofast(1:ngrid)/capcal(1:ngrid) |
---|
1400 | end if |
---|
1401 | |
---|
1402 | |
---|
1403 | endif ! end of 'calldifv' |
---|
1404 | |
---|
1405 | if (conservn2) then |
---|
1406 | write(*,*) 'conservn2 diff' |
---|
1407 | call testconservmass(ngrid,nlayer,pplev(:,1),qsurf(:,1)+ & |
---|
1408 | dqsurf(:,1)*ptimestep) |
---|
1409 | endif |
---|
1410 | |
---|
1411 | !------------------- |
---|
1412 | ! IV. Convection : |
---|
1413 | !------------------- |
---|
1414 | |
---|
1415 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1416 | ! IV.a Thermal plume model : AF24: removed |
---|
1417 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1418 | |
---|
1419 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1420 | ! IV.b Dry convective adjustment : |
---|
1421 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1422 | |
---|
1423 | if(calladj) then |
---|
1424 | |
---|
1425 | zdh(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer)/zpopsk(1:ngrid,1:nlayer) |
---|
1426 | zduadj(1:ngrid,1:nlayer)=0.0 |
---|
1427 | zdvadj(1:ngrid,1:nlayer)=0.0 |
---|
1428 | zdhadj(1:ngrid,1:nlayer)=0.0 |
---|
1429 | |
---|
1430 | |
---|
1431 | call convadj(ngrid,nlayer,nq,ptimestep, & |
---|
1432 | pplay,pplev,zpopsk, & |
---|
1433 | pu,pv,zh,pq, & |
---|
1434 | pdu,pdv,zdh,pdq, & |
---|
1435 | zduadj,zdvadj,zdhadj, & |
---|
1436 | zdqadj) |
---|
1437 | |
---|
1438 | pdu(1:ngrid,1:nlayer) = pdu(1:ngrid,1:nlayer) + zduadj(1:ngrid,1:nlayer) |
---|
1439 | pdv(1:ngrid,1:nlayer) = pdv(1:ngrid,1:nlayer) + zdvadj(1:ngrid,1:nlayer) |
---|
1440 | pdt(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer) + zdhadj(1:ngrid,1:nlayer)*zpopsk(1:ngrid,1:nlayer) |
---|
1441 | zdtadj(1:ngrid,1:nlayer) = zdhadj(1:ngrid,1:nlayer)*zpopsk(1:ngrid,1:nlayer) ! for diagnostic only |
---|
1442 | |
---|
1443 | if(tracer) then |
---|
1444 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq) + zdqadj(1:ngrid,1:nlayer,1:nq) |
---|
1445 | end if |
---|
1446 | |
---|
1447 | ! Test energy conservation |
---|
1448 | if(enertest)then |
---|
1449 | call planetwide_sumval(cpp*massarea(:,:)*zdtadj(:,:)/totarea_planet,dEtot) |
---|
1450 | if (is_master) print*,'In convadj atmospheric energy change =',dEtot,' W m-2' |
---|
1451 | endif |
---|
1452 | |
---|
1453 | ! ! Test water conservation !AF24: removed |
---|
1454 | |
---|
1455 | endif ! end of 'calladj' |
---|
1456 | !---------------------------------------------- |
---|
1457 | ! Non orographic Gravity Waves: AF24: removed |
---|
1458 | !--------------------------------------------- |
---|
1459 | |
---|
1460 | !----------------------------------------------- |
---|
1461 | ! V. Nitrogen condensation-sublimation : |
---|
1462 | !----------------------------------------------- |
---|
1463 | |
---|
1464 | if (n2cond) then |
---|
1465 | |
---|
1466 | if (.not.tracer) then |
---|
1467 | print*,'We need a N2 ice tracer to condense N2' |
---|
1468 | call abort |
---|
1469 | endif |
---|
1470 | |
---|
1471 | zdqc(:,:,:)=0. |
---|
1472 | zdqsc(:,:)=0. |
---|
1473 | call condense_n2(ngrid,nlayer,nq,ptimestep, & |
---|
1474 | capcal,pplay,pplev,tsurf,pt, & |
---|
1475 | pphi,pdt,pdu,pdv,zdtsurf,pu,pv,pq,pdq, & |
---|
1476 | qsurf(1,igcm_n2),albedo,emis, & |
---|
1477 | zdtc,zdtsurfc,pdpsrf,zduc,zdvc, & |
---|
1478 | zdqc,zdqsc(1,igcm_n2)) |
---|
1479 | |
---|
1480 | pdt(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer)+zdtc(1:ngrid,1:nlayer) |
---|
1481 | pdv(1:ngrid,1:nlayer) = pdv(1:ngrid,1:nlayer)+zdvc(1:ngrid,1:nlayer) |
---|
1482 | pdu(1:ngrid,1:nlayer) = pdu(1:ngrid,1:nlayer)+zduc(1:ngrid,1:nlayer) |
---|
1483 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + zdtsurfc(1:ngrid) |
---|
1484 | |
---|
1485 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq)+ zdqc(1:ngrid,1:nlayer,1:nq) |
---|
1486 | dqsurf(1:ngrid,igcm_n2) = dqsurf(1:ngrid,igcm_n2) + zdqsc(1:ngrid,igcm_n2) |
---|
1487 | |
---|
1488 | !! call writediagfi(ngrid,"condense_n2_post_dqsurf"," "," ",2,dqsurf(1:ngrid,igcm_h2o_gas)) |
---|
1489 | !! call writediagfi(ngrid,"condense_n2_post_qsurf"," "," ",2,qsurf(1:ngrid,igcm_h2o_gas)) |
---|
1490 | |
---|
1491 | ! test energy conservation |
---|
1492 | if(enertest)then |
---|
1493 | call planetwide_sumval(cpp*massarea(:,:)*zdtc(:,:)/totarea_planet,dEtot) |
---|
1494 | call planetwide_sumval(capcal(:)*zdtsurfc(:)*cell_area(:)/totarea_planet,dEtots) |
---|
1495 | if (is_master) then |
---|
1496 | print*,'In n2cloud atmospheric energy change =',dEtot,' W m-2' |
---|
1497 | print*,'In n2cloud surface energy change =',dEtots,' W m-2' |
---|
1498 | endif |
---|
1499 | endif |
---|
1500 | |
---|
1501 | endif ! end of 'n2cond' |
---|
1502 | |
---|
1503 | if (conservn2) then |
---|
1504 | write(*,*) 'conservn2 n2cond' |
---|
1505 | call testconservmass(ngrid,nlayer,pplev(:,1)+ & |
---|
1506 | pdpsrf(:)*ptimestep,qsurf(:,1)+dqsurf(:,1)*ptimestep) |
---|
1507 | endif |
---|
1508 | |
---|
1509 | !--------------------------------------------- |
---|
1510 | ! VI. Specific parameterizations for tracers |
---|
1511 | !--------------------------------------------- |
---|
1512 | |
---|
1513 | if (tracer) then |
---|
1514 | |
---|
1515 | |
---|
1516 | |
---|
1517 | ! 7a. Methane, CO, and ice |
---|
1518 | ! --------------------------------------- |
---|
1519 | ! Methane ice condensation in the atmosphere |
---|
1520 | ! ---------------------------------------- |
---|
1521 | rice_ch4(:,:)=0 ! initialization needed for callsedim |
---|
1522 | zdqch4cloud(:,:,:)=0. |
---|
1523 | if ((methane).and.(metcloud).and.(.not.fast)) THEN |
---|
1524 | call ch4cloud(ngrid,nlayer,naerkind,ptimestep, & |
---|
1525 | pplev,pplay,pdpsrf,zzlev,zzlay, pt,pdt, & |
---|
1526 | pq,pdq,zdqch4cloud,zdqsch4cloud,zdtch4cloud, & |
---|
1527 | nq,rice_ch4) |
---|
1528 | |
---|
1529 | DO l=1,nlayer |
---|
1530 | DO ig=1,ngrid |
---|
1531 | pdq(ig,l,igcm_ch4_gas)=pdq(ig,l,igcm_ch4_gas)+ & |
---|
1532 | zdqch4cloud(ig,l,igcm_ch4_gas) |
---|
1533 | pdq(ig,l,igcm_ch4_ice)=pdq(ig,l,igcm_ch4_ice)+ & |
---|
1534 | zdqch4cloud(ig,l,igcm_ch4_ice) |
---|
1535 | ENDDO |
---|
1536 | ENDDO |
---|
1537 | |
---|
1538 | ! Increment methane ice surface tracer tendency |
---|
1539 | DO ig=1,ngrid |
---|
1540 | dqsurf(ig,igcm_ch4_ice)=dqsurf(ig,igcm_ch4_ice)+ & |
---|
1541 | zdqsch4cloud(ig,igcm_ch4_ice) |
---|
1542 | ENDDO |
---|
1543 | |
---|
1544 | ! update temperature tendancy |
---|
1545 | DO ig=1,ngrid |
---|
1546 | DO l=1,nlayer |
---|
1547 | pdt(ig,l)=pdt(ig,l)+zdtch4cloud(ig,l) |
---|
1548 | ENDDO |
---|
1549 | ENDDO |
---|
1550 | end if |
---|
1551 | |
---|
1552 | ! --------------------------------------- |
---|
1553 | ! CO ice condensation in the atmosphere |
---|
1554 | ! ---------------------------------------- |
---|
1555 | zdqcocloud(:,:,:)=0. |
---|
1556 | IF ((carbox).and.(monoxcloud).and.(.not.fast)) THEN |
---|
1557 | call cocloud(ngrid,nlayer,naerkind,ptimestep, & |
---|
1558 | pplev,pplay,pdpsrf,zzlev,zzlay, pt,pdt, & |
---|
1559 | pq,pdq,zdqcocloud,zdqscocloud,zdtcocloud, & |
---|
1560 | nq,rice_co,qsurf(1,igcm_n2),dqsurf(1,igcm_n2)) |
---|
1561 | |
---|
1562 | DO l=1,nlayer |
---|
1563 | DO ig=1,ngrid |
---|
1564 | pdq(ig,l,igcm_co_gas)=pdq(ig,l,igcm_co_gas)+ & |
---|
1565 | zdqcocloud(ig,l,igcm_co_gas) |
---|
1566 | pdq(ig,l,igcm_co_ice)=pdq(ig,l,igcm_co_ice)+ & |
---|
1567 | zdqcocloud(ig,l,igcm_co_ice) |
---|
1568 | ENDDO |
---|
1569 | ENDDO |
---|
1570 | |
---|
1571 | ! Increment CO ice surface tracer tendency |
---|
1572 | DO ig=1,ngrid |
---|
1573 | dqsurf(ig,igcm_co_ice)=dqsurf(ig,igcm_co_ice)+ & |
---|
1574 | zdqscocloud(ig,igcm_co_ice) |
---|
1575 | ENDDO |
---|
1576 | |
---|
1577 | ! update temperature tendancy |
---|
1578 | DO ig=1,ngrid |
---|
1579 | DO l=1,nlayer |
---|
1580 | pdt(ig,l)=pdt(ig,l)+zdtcocloud(ig,l) |
---|
1581 | ENDDO |
---|
1582 | ENDDO |
---|
1583 | ELSE |
---|
1584 | rice_co(:,:)=0 ! initialization needed for callsedim |
---|
1585 | END IF ! of IF (carbox) |
---|
1586 | |
---|
1587 | !------------------------------------------------------------------ |
---|
1588 | ! test methane conservation |
---|
1589 | ! if(methane)then |
---|
1590 | ! call testconserv(ngrid,nlayer,nq,igcm_ch4_gas,igcm_ch4_ice, |
---|
1591 | ! & ptimestep,pplev,zdqch4cloud,zdqsch4cloud,'CH4','ch4clou') |
---|
1592 | ! endif ! methane |
---|
1593 | !------------------------------------------------------------------ |
---|
1594 | ! test CO conservation |
---|
1595 | ! if(carbox)then |
---|
1596 | ! call testconserv(ngrid,nlayer,nq,igcm_co_gas,igcm_co_ice, |
---|
1597 | ! & ptimestep,pplev,zdqcocloud,zdqscocloud,'CO ','cocloud') |
---|
1598 | ! endif ! carbox |
---|
1599 | !------------------------------------------------------------------ |
---|
1600 | |
---|
1601 | ! 7b. Haze particle production |
---|
1602 | ! ------------------- |
---|
1603 | IF (haze) THEN |
---|
1604 | |
---|
1605 | zdqphot_prec(:,:)=0. |
---|
1606 | zdqphot_ch4(:,:)=0. |
---|
1607 | zdqhaze(:,:,:)=0 |
---|
1608 | ! Forcing to a fixed haze profile if haze_proffix |
---|
1609 | if (haze_proffix.and.i_haze.gt.0.) then |
---|
1610 | call haze_prof(ngrid,nlayer,zzlay,pplay,pt, & |
---|
1611 | reffrad,profmmr) |
---|
1612 | zdqhaze(:,:,i_haze)=(profmmr(:,:)-pq(:,:,igcm_haze)) & |
---|
1613 | /ptimestep |
---|
1614 | else |
---|
1615 | call hazecloud(ngrid,nlayer,nq,ptimestep, & |
---|
1616 | pplay,pplev,pq,pdq,dist_star,mu0,zfluxuv,zdqhaze, & |
---|
1617 | zdqphot_prec,zdqphot_ch4,zdqconv_prec,declin) |
---|
1618 | endif |
---|
1619 | |
---|
1620 | DO iq=1, nq ! should be updated |
---|
1621 | DO l=1,nlayer |
---|
1622 | DO ig=1,ngrid |
---|
1623 | pdq(ig,l,iq)=pdq(ig,l,iq)+ zdqhaze(ig,l,iq) |
---|
1624 | ENDDO |
---|
1625 | ENDDO |
---|
1626 | ENDDO |
---|
1627 | |
---|
1628 | ENDIF |
---|
1629 | |
---|
1630 | IF (fast.and.fasthaze) THEN |
---|
1631 | call prodhaze(ngrid,nlayer,nq,ptimestep,pplev,pq,pdq,dist_star, & |
---|
1632 | mu0,declin,zdqprodhaze,zdqsprodhaze,gradflux,fluxbot, & |
---|
1633 | fluxlym_sol_bot,fluxlym_ipm_bot,flym_sol,flym_ipm) |
---|
1634 | |
---|
1635 | DO ig=1,ngrid |
---|
1636 | pdq(ig,1,igcm_ch4_gas)=pdq(ig,1,igcm_ch4_gas)+ & |
---|
1637 | zdqprodhaze(ig,igcm_ch4_gas) |
---|
1638 | pdq(ig,1,igcm_prec_haze)=pdq(ig,1,igcm_prec_haze)+ & |
---|
1639 | zdqprodhaze(ig,igcm_prec_haze) |
---|
1640 | pdq(ig,1,igcm_haze)=abs(pdq(ig,1,igcm_haze)+ & |
---|
1641 | zdqprodhaze(ig,igcm_haze)) |
---|
1642 | qsurf(ig,igcm_haze)= qsurf(ig,igcm_haze)+ & |
---|
1643 | zdqsprodhaze(ig)*ptimestep |
---|
1644 | ENDDO |
---|
1645 | |
---|
1646 | ENDIF |
---|
1647 | |
---|
1648 | |
---|
1649 | |
---|
1650 | ! ------------------------- |
---|
1651 | ! VI.3. Aerosol particles |
---|
1652 | ! ------------------------- |
---|
1653 | |
---|
1654 | !Generic Condensation |
---|
1655 | if (generic_condensation) then |
---|
1656 | call condensation_generic(ngrid,nlayer,nq,ptimestep,pplev,pplay, & |
---|
1657 | pt,pq,pdt,pdq,dt_generic_condensation, & |
---|
1658 | dqvaplscale_generic,dqcldlscale_generic,rneb_generic) |
---|
1659 | pdt(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer)+dt_generic_condensation(1:ngrid,1:nlayer) |
---|
1660 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq)+dqvaplscale_generic(1:ngrid,1:nlayer,1:nq) |
---|
1661 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq)+dqcldlscale_generic(1:ngrid,1:nlayer,1:nq) |
---|
1662 | |
---|
1663 | if(enertest)then |
---|
1664 | do ig=1,ngrid |
---|
1665 | genericconddE(ig) = cpp*SUM(mass(:,:)*dt_generic_condensation(:,:)) |
---|
1666 | enddo |
---|
1667 | |
---|
1668 | call planetwide_sumval(cpp*massarea(:,:)*dt_generic_condensation(:,:)/totarea_planet,dEtot) |
---|
1669 | |
---|
1670 | if (is_master) print*,'In generic condensation atmospheric energy change =',dEtot,' W m-2' |
---|
1671 | end if |
---|
1672 | |
---|
1673 | ! Let's loop on tracers |
---|
1674 | cloudfrac(:,:)=0.0 |
---|
1675 | do iq=1,nq |
---|
1676 | call generic_tracer_index(nq,iq,igcm_generic_gas,igcm_generic_ice,call_ice_gas_generic) |
---|
1677 | if (call_ice_gas_generic) then ! to call only one time the ice/vap pair of a tracer |
---|
1678 | do l = 1, nlayer |
---|
1679 | do ig=1,ngrid |
---|
1680 | cloudfrac(ig,l)=rneb_generic(ig,l,iq) |
---|
1681 | enddo |
---|
1682 | enddo |
---|
1683 | endif |
---|
1684 | end do ! do iq=1,nq loop on tracers |
---|
1685 | ! endif ! .not. water |
---|
1686 | |
---|
1687 | endif !generic_condensation |
---|
1688 | |
---|
1689 | ! Sedimentation. |
---|
1690 | if (sedimentation) then |
---|
1691 | |
---|
1692 | zdqsed(1:ngrid,1:nlayer,1:nq) = 0.0 |
---|
1693 | zdqssed(1:ngrid,1:nq) = 0.0 |
---|
1694 | |
---|
1695 | if (oldplutosedim)then |
---|
1696 | call callsedim_pluto(ngrid,nlayer,ptimestep, & |
---|
1697 | pplev,zzlev,pt,pdt,rice_ch4,rice_co, & |
---|
1698 | pq,pdq,zdqsed,zdqssed,nq,pphi) |
---|
1699 | |
---|
1700 | else |
---|
1701 | call callsedim(ngrid,nlayer,ptimestep, & |
---|
1702 | pplev,zzlev,pt,pdt,pq,pdq, & |
---|
1703 | zdqsed,zdqssed,nq,pphi) |
---|
1704 | endif |
---|
1705 | |
---|
1706 | ! Whether it falls as rain or snow depends only on the surface temperature |
---|
1707 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq) + zdqsed(1:ngrid,1:nlayer,1:nq) |
---|
1708 | dqsurf(1:ngrid,1:nq) = dqsurf(1:ngrid,1:nq) + zdqssed(1:ngrid,1:nq) |
---|
1709 | |
---|
1710 | end if ! end of 'sedimentation' |
---|
1711 | |
---|
1712 | ! --------------- |
---|
1713 | ! VI.4. Updates |
---|
1714 | ! --------------- |
---|
1715 | |
---|
1716 | ! Updating Atmospheric Mass and Tracers budgets. |
---|
1717 | if(mass_redistrib) then |
---|
1718 | |
---|
1719 | zdmassmr(1:ngrid,1:nlayer) = mass(1:ngrid,1:nlayer) * 0 |
---|
1720 | ! ( zdqevap(1:ngrid,1:nlayer) & |
---|
1721 | ! ! + zdqrain(1:ngrid,1:nlayer,igcm_h2o_gas) & |
---|
1722 | ! ! + dqmoist(1:ngrid,1:nlayer,igcm_h2o_gas) & |
---|
1723 | ! + dqvaplscale(1:ngrid,1:nlayer) ) |
---|
1724 | |
---|
1725 | do ig = 1, ngrid |
---|
1726 | zdmassmr_col(ig)=SUM(zdmassmr(ig,1:nlayer)) |
---|
1727 | enddo |
---|
1728 | |
---|
1729 | ! call writediagfi(ngrid,"mass_evap","mass gain"," ",3,zdmassmr) |
---|
1730 | ! call writediagfi(ngrid,"mass_evap_col","mass gain col"," ",2,zdmassmr_col) |
---|
1731 | call writediagfi(ngrid,"mass","mass","kg/m2",3,mass) |
---|
1732 | |
---|
1733 | call mass_redistribution(ngrid,nlayer,nq,ptimestep, & |
---|
1734 | capcal,pplay,pplev,pt,tsurf,pq,qsurf, & |
---|
1735 | pu,pv,pdt,zdtsurf,pdq,pdu,pdv,zdmassmr, & |
---|
1736 | zdtmr,zdtsurfmr,zdpsrfmr,zdumr,zdvmr,zdqmr,zdqsurfmr) |
---|
1737 | |
---|
1738 | pdq(1:ngrid,1:nlayer,1:nq) = pdq(1:ngrid,1:nlayer,1:nq) + zdqmr(1:ngrid,1:nlayer,1:nq) |
---|
1739 | dqsurf(1:ngrid,1:nq) = dqsurf(1:ngrid,1:nq) + zdqsurfmr(1:ngrid,1:nq) |
---|
1740 | pdt(1:ngrid,1:nlayer) = pdt(1:ngrid,1:nlayer) + zdtmr(1:ngrid,1:nlayer) |
---|
1741 | pdu(1:ngrid,1:nlayer) = pdu(1:ngrid,1:nlayer) + zdumr(1:ngrid,1:nlayer) |
---|
1742 | pdv(1:ngrid,1:nlayer) = pdv(1:ngrid,1:nlayer) + zdvmr(1:ngrid,1:nlayer) |
---|
1743 | pdpsrf(1:ngrid) = pdpsrf(1:ngrid) + zdpsrfmr(1:ngrid) |
---|
1744 | zdtsurf(1:ngrid) = zdtsurf(1:ngrid) + zdtsurfmr(1:ngrid) |
---|
1745 | |
---|
1746 | endif |
---|
1747 | |
---|
1748 | ! call writediagfi(ngrid,"mass_redistribution_post_dqsurf"," "," ",2,dqsurf(1:ngrid,igcm_h2o_gas)) |
---|
1749 | |
---|
1750 | !! call writediagfi(ngrid,"slab_pre_dqsurf"," "," ",2,dqsurf(1:ngrid,igcm_h2o_gas)) |
---|
1751 | !! call writediagfi(ngrid,"slab_pre_qsurf"," "," ",2,qsurf(1:ngrid,igcm_h2o_gas)) |
---|
1752 | |
---|
1753 | |
---|
1754 | ! ------------------ |
---|
1755 | ! VI.5. Slab Ocean !AF24: removed |
---|
1756 | ! ------------------ |
---|
1757 | |
---|
1758 | ! ----------------------------- |
---|
1759 | ! VI.6. Surface Tracer Update |
---|
1760 | ! ----------------------------- |
---|
1761 | |
---|
1762 | ! AF24: deleted hydrology |
---|
1763 | |
---|
1764 | qsurf(1:ngrid,1:nq) = qsurf(1:ngrid,1:nq) + ptimestep*dqsurf(1:ngrid,1:nq) |
---|
1765 | |
---|
1766 | ! Add qsurf to qsurf_hist, which is what we save in diagfi.nc. At the same time, we set the water |
---|
1767 | ! content of ocean gridpoints back to zero, in order to avoid rounding errors in vdifc, rain. |
---|
1768 | qsurf_hist(:,:) = qsurf(:,:) |
---|
1769 | |
---|
1770 | ! if(ice_update)then |
---|
1771 | ! ice_min(1:ngrid)=min(ice_min(1:ngrid),qsurf(1:ngrid,igcm_h2o_ice)) |
---|
1772 | ! endif |
---|
1773 | |
---|
1774 | endif! end of if 'tracer' |
---|
1775 | |
---|
1776 | if (conservn2) then |
---|
1777 | write(*,*) 'conservn2 tracer' |
---|
1778 | call testconservmass(ngrid,nlayer,pplev(:,1)+ & |
---|
1779 | pdpsrf(:)*ptimestep,qsurf(:,1)) |
---|
1780 | endif |
---|
1781 | |
---|
1782 | DO ig=1,ngrid |
---|
1783 | flusurf(ig,igcm_n2)=(qsurf(ig,igcm_n2)- & |
---|
1784 | qsurf1(ig,igcm_n2))/ptimestep |
---|
1785 | flusurfold(ig,igcm_n2)=flusurf(ig,igcm_n2) |
---|
1786 | if (methane) then |
---|
1787 | flusurf(ig,igcm_ch4_ice)=(qsurf(ig,igcm_ch4_ice)- & |
---|
1788 | qsurf1(ig,igcm_ch4_ice))/ptimestep |
---|
1789 | flusurfold(ig,igcm_ch4_ice)=flusurf(ig,igcm_ch4_ice) |
---|
1790 | endif |
---|
1791 | if (carbox) then |
---|
1792 | flusurf(ig,igcm_co_ice)=(qsurf(ig,igcm_co_ice)- & |
---|
1793 | qsurf1(ig,igcm_co_ice))/ptimestep |
---|
1794 | !flusurfold(ig,igcm_co_ice)=flusurf(ig,igcm_co_ice) |
---|
1795 | endif |
---|
1796 | ENDDO |
---|
1797 | |
---|
1798 | !! Special source of haze particle ! |
---|
1799 | ! todo: should be placed in haze and use tendency of n2 instead of flusurf |
---|
1800 | IF (source_haze) THEN |
---|
1801 | write(*,*) "Source haze not supported yet." |
---|
1802 | stop |
---|
1803 | ! call hazesource(ngrid,nlayer,nq,ptimestep, & |
---|
1804 | ! pplev,flusurf,mu0,zdq_source) |
---|
1805 | |
---|
1806 | DO iq=1, nq |
---|
1807 | DO l=1,nlayer |
---|
1808 | DO ig=1,ngrid |
---|
1809 | pdq(ig,l,iq)=pdq(ig,l,iq)+zdq_source(ig,l,iq) |
---|
1810 | ENDDO |
---|
1811 | ENDDO |
---|
1812 | ENDDO |
---|
1813 | ENDIF |
---|
1814 | |
---|
1815 | |
---|
1816 | !------------------------------------------------ |
---|
1817 | ! VII. Surface and sub-surface soil temperature |
---|
1818 | !------------------------------------------------ |
---|
1819 | |
---|
1820 | ! For diagnostic |
---|
1821 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1822 | DO ig=1,ngrid |
---|
1823 | rho(ig,1) = pplay(ig,1)/(r*pt(ig,1)) |
---|
1824 | sensiblehf1(ig)=rho(ig,1)*cpp*(0.4/log(zzlay(ig,1)/z0))**2* & |
---|
1825 | (pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1))**0.5* & |
---|
1826 | (tsurf(ig)-pt(ig,1)) |
---|
1827 | if (calldifv) then |
---|
1828 | sensiblehf2(ig)=zflubid(ig)-capcal(ig)*zdtsdif(ig) |
---|
1829 | end if |
---|
1830 | |
---|
1831 | ENDDO |
---|
1832 | |
---|
1833 | |
---|
1834 | ! VII.1 Increment surface temperature |
---|
1835 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1836 | tsurf(1:ngrid)=tsurf(1:ngrid)+ptimestep*zdtsurf(1:ngrid) |
---|
1837 | |
---|
1838 | ! Prevent surface (.e.g. non volatile ch4) to exceed max temperature |
---|
1839 | ! Lellouch et al., 2000,2011 |
---|
1840 | IF (tsurfmax) THEN |
---|
1841 | DO ig=1,ngrid |
---|
1842 | if (albedo_equivalent(ig).gt.albmin_ch4.and. & |
---|
1843 | qsurf(ig,igcm_n2).eq.0.) then |
---|
1844 | tsurf(ig)=min(tsurf(ig),54.) |
---|
1845 | endif |
---|
1846 | ENDDO |
---|
1847 | ENDIF |
---|
1848 | |
---|
1849 | ! VII.2 Compute soil temperatures and subsurface heat flux. |
---|
1850 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1851 | if (callsoil) then |
---|
1852 | call soil(ngrid,nsoilmx,.false.,lastcall,inertiedat, & |
---|
1853 | ptimestep,tsurf,tsoil,capcal,fluxgrd) |
---|
1854 | endif |
---|
1855 | |
---|
1856 | ! ! For output : |
---|
1857 | ! tidat_out(:,:)=0. |
---|
1858 | ! DO l=1,min(nlayermx,nsoilmx) |
---|
1859 | ! tidat_out(:,l)=inertiedat(:,l) |
---|
1860 | ! ENDDO |
---|
1861 | |
---|
1862 | ! Test energy conservation |
---|
1863 | if(enertest)then |
---|
1864 | call planetwide_sumval(cell_area(:)*capcal(:)*zdtsurf(:)/totarea_planet,dEtots) |
---|
1865 | if (is_master) print*,'Surface energy change =',dEtots,' W m-2' |
---|
1866 | endif |
---|
1867 | |
---|
1868 | |
---|
1869 | |
---|
1870 | ! VII.3 multiply tendencies of cond/subli for paleo loop only in the |
---|
1871 | ! last Pluto year of the simulation |
---|
1872 | ! Year day must be adapted in the startfi for each object |
---|
1873 | ! Paleo uses year_day to calculate the annual mean tendancies |
---|
1874 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1875 | IF (paleo) then |
---|
1876 | if (zday.gt.day_ini+ptime0+nday-year_day) then |
---|
1877 | DO iq=1,nq |
---|
1878 | DO ig=1,ngrid |
---|
1879 | qsurfyear(ig,iq)=qsurfyear(ig,iq)+ & |
---|
1880 | (qsurf(ig,iq)-qsurf1(ig,iq)) !kg m-2 !ptimestep |
---|
1881 | ENDDO |
---|
1882 | ENDDO |
---|
1883 | endif |
---|
1884 | endif |
---|
1885 | |
---|
1886 | ! VII.4 Glacial flow at each timestep glastep or at lastcall |
---|
1887 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1888 | IF (fast.and.glaflow) THEN |
---|
1889 | if ((mod(zday-day_ini-ptime0,glastep)).lt.1. & |
---|
1890 | .or.lastcall) then |
---|
1891 | IF (lastcall) then |
---|
1892 | dstep=mod(zday-day_ini-ptime0,glastep)*daysec |
---|
1893 | else |
---|
1894 | dstep=glastep*daysec |
---|
1895 | endif |
---|
1896 | zdqflow(:,:)=qsurf(:,:) |
---|
1897 | IF (paleo) then |
---|
1898 | call spreadglacier_paleo(ngrid,nq,qsurf, & |
---|
1899 | phisfinew,dstep,tsurf) |
---|
1900 | else |
---|
1901 | call spreadglacier_simple(ngrid,nq,qsurf,dstep) |
---|
1902 | endif |
---|
1903 | zdqflow(:,:)=(zdqflow(:,:)-qsurf(:,:))/dstep |
---|
1904 | |
---|
1905 | if (conservn2) then |
---|
1906 | write(*,*) 'conservn2 glaflow' |
---|
1907 | call testconservmass(ngrid,nlayer,pplev(:,1)+ & |
---|
1908 | pdpsrf(:)*ptimestep,qsurf(:,1)) |
---|
1909 | endif |
---|
1910 | |
---|
1911 | endif |
---|
1912 | ENDIF |
---|
1913 | |
---|
1914 | !--------------------------------------------------- |
---|
1915 | ! VIII. Perform diagnostics and write output files |
---|
1916 | !--------------------------------------------------- |
---|
1917 | |
---|
1918 | ! Note : For output only: the actual model integration is performed in the dynamics. |
---|
1919 | |
---|
1920 | |
---|
1921 | ! Temperature, zonal and meridional winds. |
---|
1922 | zt(1:ngrid,1:nlayer) = pt(1:ngrid,1:nlayer) + pdt(1:ngrid,1:nlayer)*ptimestep |
---|
1923 | zu(1:ngrid,1:nlayer) = pu(1:ngrid,1:nlayer) + pdu(1:ngrid,1:nlayer)*ptimestep |
---|
1924 | zv(1:ngrid,1:nlayer) = pv(1:ngrid,1:nlayer) + pdv(1:ngrid,1:nlayer)*ptimestep |
---|
1925 | |
---|
1926 | !! Recast thermal plume vertical velocity array for outputs |
---|
1927 | !! AF24: removed |
---|
1928 | |
---|
1929 | ! Diagnostic. |
---|
1930 | zdtdyn(1:ngrid,1:nlayer) = (pt(1:ngrid,1:nlayer)-ztprevious(1:ngrid,1:nlayer)) / ptimestep |
---|
1931 | ztprevious(1:ngrid,1:nlayer) = zt(1:ngrid,1:nlayer) |
---|
1932 | |
---|
1933 | zdudyn(1:ngrid,1:nlayer) = (pu(1:ngrid,1:nlayer)-zuprevious(1:ngrid,1:nlayer)) / ptimestep |
---|
1934 | zuprevious(1:ngrid,1:nlayer) = zu(1:ngrid,1:nlayer) |
---|
1935 | |
---|
1936 | if(firstcall)then |
---|
1937 | zdtdyn(1:ngrid,1:nlayer)=0.0 |
---|
1938 | zdudyn(1:ngrid,1:nlayer)=0.0 |
---|
1939 | endif |
---|
1940 | |
---|
1941 | ! Dynamical heating diagnostic. |
---|
1942 | do ig=1,ngrid |
---|
1943 | fluxdyn(ig)= SUM(zdtdyn(ig,:) *mass(ig,:))*cpp |
---|
1944 | enddo |
---|
1945 | |
---|
1946 | ! Tracers. |
---|
1947 | zq(1:ngrid,1:nlayer,1:nq) = pq(1:ngrid,1:nlayer,1:nq) + pdq(1:ngrid,1:nlayer,1:nq)*ptimestep |
---|
1948 | |
---|
1949 | ! Surface pressure. |
---|
1950 | ps(1:ngrid) = pplev(1:ngrid,1) + pdpsrf(1:ngrid)*ptimestep |
---|
1951 | call globalaverage2d(ngrid,ps,globave) |
---|
1952 | |
---|
1953 | ! pressure density !pluto specific |
---|
1954 | IF (.not.fast) then ! |
---|
1955 | do ig=1,ngrid |
---|
1956 | do l=1,nlayer |
---|
1957 | zplev(ig,l)=pplev(ig,l)/pplev(ig,1)*ps(ig) |
---|
1958 | zplay(ig,l)=pplay(ig,l)/pplev(ig,1)*ps(ig) |
---|
1959 | rho(ig,l) = zplay(ig,l)/(r*zt(ig,l)) |
---|
1960 | enddo |
---|
1961 | zplev(ig,nlayer+1)=pplev(ig,nlayer+1)/pplev(ig,1)*ps(ig) |
---|
1962 | enddo |
---|
1963 | ENDIF |
---|
1964 | |
---|
1965 | |
---|
1966 | ! Surface and soil temperature information |
---|
1967 | call planetwide_sumval(cell_area(:)*tsurf(:)/totarea_planet,Ts1) |
---|
1968 | call planetwide_minval(tsurf(:),Ts2) |
---|
1969 | call planetwide_maxval(tsurf(:),Ts3) |
---|
1970 | if(callsoil)then |
---|
1971 | TsS = SUM(cell_area(:)*tsoil(:,nsoilmx))/totarea ! mean temperature at bottom soil layer |
---|
1972 | if (is_master) then |
---|
1973 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf] ave[Tdeep]' |
---|
1974 | print*,Ts1,Ts2,Ts3,TsS |
---|
1975 | end if |
---|
1976 | else |
---|
1977 | if (is_master) then |
---|
1978 | print*,' ave[Tsurf] min[Tsurf] max[Tsurf]' |
---|
1979 | print*,Ts1,Ts2,Ts3 |
---|
1980 | endif |
---|
1981 | end if |
---|
1982 | |
---|
1983 | |
---|
1984 | ! Check the energy balance of the simulation during the run |
---|
1985 | if(corrk)then |
---|
1986 | |
---|
1987 | call planetwide_sumval(cell_area(:)*fluxtop_dn(:)/totarea_planet,ISR) |
---|
1988 | call planetwide_sumval(cell_area(:)*fluxabs_sw(:)/totarea_planet,ASR) |
---|
1989 | call planetwide_sumval(cell_area(:)*fluxtop_lw(:)/totarea_planet,OLR) |
---|
1990 | call planetwide_sumval(cell_area(:)*fluxgrd(:)/totarea_planet,GND) |
---|
1991 | call planetwide_sumval(cell_area(:)*fluxdyn(:)/totarea_planet,DYN) |
---|
1992 | do ig=1,ngrid |
---|
1993 | if(fluxtop_dn(ig).lt.0.0)then |
---|
1994 | print*,'fluxtop_dn has gone crazy' |
---|
1995 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
1996 | print*,'tau_col=',tau_col(ig) |
---|
1997 | print*,'aerosol=',aerosol(ig,:,:) |
---|
1998 | print*,'temp= ',pt(ig,:) |
---|
1999 | print*,'pplay= ',pplay(ig,:) |
---|
2000 | call abort |
---|
2001 | endif |
---|
2002 | end do |
---|
2003 | |
---|
2004 | if(ngrid.eq.1)then |
---|
2005 | DYN=0.0 |
---|
2006 | endif |
---|
2007 | |
---|
2008 | if (is_master) then |
---|
2009 | print*,' ISR ASR OLR GND DYN [W m^-2]' |
---|
2010 | print*, ISR,ASR,OLR,GND,DYN |
---|
2011 | endif |
---|
2012 | |
---|
2013 | if(enertest .and. is_master)then |
---|
2014 | print*,'SW flux/heating difference SW++ - ASR = ',dEtotSW+dEtotsSW-ASR,' W m-2' |
---|
2015 | print*,'LW flux/heating difference LW++ - OLR = ',dEtotLW+dEtotsLW+OLR,' W m-2' |
---|
2016 | print*,'LW energy balance LW++ + ASR = ',dEtotLW+dEtotsLW+ASR,' W m-2' |
---|
2017 | endif |
---|
2018 | |
---|
2019 | if(meanOLR .and. is_master)then |
---|
2020 | if((ngrid.gt.1) .or. (mod(icount-1,ecritphy).eq.0))then |
---|
2021 | ! to record global radiative balance |
---|
2022 | open(92,file="rad_bal.out",form='formatted',position='append') |
---|
2023 | write(92,*) zday,ISR,ASR,OLR |
---|
2024 | close(92) |
---|
2025 | open(93,file="tem_bal.out",form='formatted',position='append') |
---|
2026 | if(callsoil)then |
---|
2027 | write(93,*) zday,Ts1,Ts2,Ts3,TsS |
---|
2028 | else |
---|
2029 | write(93,*) zday,Ts1,Ts2,Ts3 |
---|
2030 | endif |
---|
2031 | close(93) |
---|
2032 | endif |
---|
2033 | endif |
---|
2034 | |
---|
2035 | endif ! end of 'corrk' |
---|
2036 | |
---|
2037 | |
---|
2038 | ! Diagnostic to test radiative-convective timescales in code. |
---|
2039 | if(testradtimes)then |
---|
2040 | open(38,file="tau_phys.out",form='formatted',position='append') |
---|
2041 | ig=1 |
---|
2042 | do l=1,nlayer |
---|
2043 | write(38,*) -1./pdt(ig,l),pt(ig,l),pplay(ig,l) |
---|
2044 | enddo |
---|
2045 | close(38) |
---|
2046 | print*,'As testradtimes enabled,' |
---|
2047 | print*,'exiting physics on first call' |
---|
2048 | call abort |
---|
2049 | endif |
---|
2050 | |
---|
2051 | |
---|
2052 | ! Compute column amounts (kg m-2) if tracers are enabled. |
---|
2053 | if(tracer)then |
---|
2054 | qcol(1:ngrid,1:nq)=0.0 |
---|
2055 | do iq=1,nq |
---|
2056 | do ig=1,ngrid |
---|
2057 | qcol(ig,iq) = SUM( zq(ig,1:nlayer,iq) * mass(ig,1:nlayer)) |
---|
2058 | enddo |
---|
2059 | enddo |
---|
2060 | |
---|
2061 | endif ! end of 'tracer' |
---|
2062 | |
---|
2063 | |
---|
2064 | |
---|
2065 | ! Calculate RH_generic (Generic Relative Humidity) for diagnostic. |
---|
2066 | if(generic_condensation)then |
---|
2067 | RH_generic(:,:,:)=0.0 |
---|
2068 | do iq=1,nq |
---|
2069 | |
---|
2070 | call generic_tracer_index(nq,iq,igcm_generic_gas,igcm_generic_ice,call_ice_gas_generic) |
---|
2071 | |
---|
2072 | if (call_ice_gas_generic) then ! to call only one time the ice/vap pair of a tracer |
---|
2073 | |
---|
2074 | do l = 1, nlayer |
---|
2075 | do ig=1,ngrid |
---|
2076 | call Psat_generic(zt(ig,l),pplay(ig,l),metallicity,psat_tmp_generic,qsat_generic(ig,l,iq)) |
---|
2077 | RH_generic(ig,l,iq) = zq(ig,l,igcm_generic_gas) / qsat_generic(ig,l,iq) |
---|
2078 | enddo |
---|
2079 | enddo |
---|
2080 | |
---|
2081 | end if |
---|
2082 | |
---|
2083 | end do ! iq=1,nq |
---|
2084 | |
---|
2085 | endif ! end of 'generic_condensation' |
---|
2086 | |
---|
2087 | |
---|
2088 | if (methane) then |
---|
2089 | IF (fast) then ! zq is the mixing ratio supposingly mixed in all atmosphere |
---|
2090 | DO ig=1,ngrid |
---|
2091 | vmr_ch4(ig)=zq(ig,1,igcm_ch4_gas)* & |
---|
2092 | mmol(igcm_n2)/mmol(igcm_ch4_gas)*100. |
---|
2093 | ENDDO |
---|
2094 | ELSE |
---|
2095 | DO ig=1,ngrid |
---|
2096 | ! compute vmr methane |
---|
2097 | vmr_ch4(ig)=qcol(ig,igcm_ch4_gas)* & |
---|
2098 | g/ps(ig)*mmol(igcm_n2)/mmol(igcm_ch4_gas)*100. |
---|
2099 | ! compute density methane |
---|
2100 | DO l=1,nlayer |
---|
2101 | zrho_ch4(ig,l)=zq(ig,l,igcm_ch4_gas)*rho(ig,l) |
---|
2102 | ENDDO |
---|
2103 | ENDDO |
---|
2104 | ENDIF |
---|
2105 | endif |
---|
2106 | |
---|
2107 | if (carbox) then |
---|
2108 | IF (fast) then |
---|
2109 | DO ig=1,ngrid |
---|
2110 | vmr_co(ig)=zq(ig,1,igcm_co_gas)* & |
---|
2111 | mmol(igcm_n2)/mmol(igcm_co_gas)*100. |
---|
2112 | ENDDO |
---|
2113 | ELSE |
---|
2114 | DO ig=1,ngrid |
---|
2115 | ! compute vmr CO |
---|
2116 | vmr_co(ig)=qcol(ig,igcm_co_gas)* & |
---|
2117 | g/ps(ig)*mmol(igcm_n2)/mmol(igcm_co_gas)*100. |
---|
2118 | ! compute density CO |
---|
2119 | DO l=1,nlayer |
---|
2120 | zrho_co(ig,l)=zq(ig,l,igcm_co_gas)*rho(ig,l) |
---|
2121 | ENDDO |
---|
2122 | ENDDO |
---|
2123 | ENDIF |
---|
2124 | endif |
---|
2125 | |
---|
2126 | zrho_haze(:,:)=0. |
---|
2127 | zdqrho_photprec(:,:)=0. |
---|
2128 | IF (haze.and.aerohaze) then |
---|
2129 | DO ig=1,ngrid |
---|
2130 | DO l=1,nlayer |
---|
2131 | zrho_haze(ig,l)=zq(ig,l,igcm_haze)*rho(ig,l) |
---|
2132 | zdqrho_photprec(ig,l)=zdqphot_prec(ig,l)*rho(ig,l) |
---|
2133 | ENDDO |
---|
2134 | ENDDO |
---|
2135 | ENDIF |
---|
2136 | |
---|
2137 | IF (fasthaze) then |
---|
2138 | DO ig=1,ngrid |
---|
2139 | qcol(ig,igcm_haze)=zq(ig,1,igcm_haze)*pplev(ig,1)/g |
---|
2140 | qcol(ig,igcm_prec_haze)=zq(ig,1,igcm_prec_haze)*pplev(ig,1)/g |
---|
2141 | ENDDO |
---|
2142 | ENDIF |
---|
2143 | |
---|
2144 | ! Info about Ls, declin... |
---|
2145 | IF (fast) THEN |
---|
2146 | if (is_master) write(*,*),'Ls=',zls*180./pi,' dec=',declin*180./pi |
---|
2147 | if (is_master) write(*,*),'zday=',zday,' ps=',globave |
---|
2148 | IF (lastcall) then |
---|
2149 | if (is_master) write(*,*),'lastcall' |
---|
2150 | ENDIF |
---|
2151 | ELSE |
---|
2152 | if (is_master) write(*,*),'Ls=',zls*180./pi,'decli=',declin*180./pi,'zday=',zday |
---|
2153 | ENDIF |
---|
2154 | |
---|
2155 | lecttsoil=0 ! default value for lecttsoil |
---|
2156 | call getin_p("lecttsoil",lecttsoil) |
---|
2157 | IF (lastcall.and.(ngrid.EQ.1).and.(lecttsoil.eq.1)) THEN |
---|
2158 | ! save tsoil temperature profile for 1D profile |
---|
2159 | OPEN(13,file='proftsoil.out',form='formatted') |
---|
2160 | DO i=1,nsoilmx |
---|
2161 | write(13,*) tsoil(1,i) |
---|
2162 | ENDDO |
---|
2163 | CLOSE(13) |
---|
2164 | ENDIF |
---|
2165 | |
---|
2166 | if (is_master) print*,'--> Ls =',zls*180./pi |
---|
2167 | |
---|
2168 | if(lastcall) then |
---|
2169 | ztime_fin = ptime + ptimestep/(float(iphysiq)*daysec) |
---|
2170 | |
---|
2171 | !! Update surface ice distribution to iterate to steady state if requested |
---|
2172 | !! AF24: removed |
---|
2173 | |
---|
2174 | ! endif |
---|
2175 | if (paleo) then |
---|
2176 | ! time range for tendencies of ice flux qsurfyear |
---|
2177 | zdt_tot=year_day ! Last year of simulation |
---|
2178 | |
---|
2179 | masslost(:)=0. |
---|
2180 | massacc(:)=0. |
---|
2181 | |
---|
2182 | DO ig=1,ngrid |
---|
2183 | ! update new reservoir of ice on the surface |
---|
2184 | DO iq=1,nq |
---|
2185 | ! kg/m2 to be sublimed or condensed during paleoyears |
---|
2186 | qsurfyear(ig,iq)=qsurfyear(ig,iq)* & |
---|
2187 | paleoyears*365.25/(zdt_tot*daysec/86400.) |
---|
2188 | |
---|
2189 | ! special case if we sublime the entire reservoir |
---|
2190 | !! AF: TODO : fix following lines (real_area), using line below: |
---|
2191 | ! call planetwide_sumval((-qsurfyear(:,iq)-qsurf(:,iq))*cell_area(:),masslost) |
---|
2192 | |
---|
2193 | ! IF (-qsurfyear(ig,iq).gt.qsurf(ig,iq)) THEN |
---|
2194 | ! masslost(iq)=masslost(iq)+real_area(ig)* & |
---|
2195 | ! (-qsurfyear(ig,iq)-qsurf(ig,iq)) |
---|
2196 | ! qsurfyear(ig,iq)=-qsurf(ig,iq) |
---|
2197 | ! ENDIF |
---|
2198 | |
---|
2199 | ! IF (qsurfyear(ig,iq).gt.0.) THEN |
---|
2200 | ! massacc(iq)=massacc(iq)+real_area(ig)*qsurfyear(ig,iq) |
---|
2201 | ! ENDIF |
---|
2202 | |
---|
2203 | |
---|
2204 | ENDDO |
---|
2205 | ENDDO |
---|
2206 | |
---|
2207 | DO ig=1,ngrid |
---|
2208 | DO iq=1,nq |
---|
2209 | qsurfpal(ig,iq)=qsurf(ig,iq)+qsurfyear(ig,iq) |
---|
2210 | IF (qsurfyear(ig,iq).gt.0.) THEN |
---|
2211 | qsurfpal(ig,iq)=qsurfpal(ig,iq)- & |
---|
2212 | qsurfyear(ig,iq)*masslost(iq)/massacc(iq) |
---|
2213 | ENDIF |
---|
2214 | ENDDO |
---|
2215 | ENDDO |
---|
2216 | ! Finally ensure conservation of qsurf |
---|
2217 | DO iq=1,nq |
---|
2218 | call globalaverage2d(ngrid,qsurf(:,iq),globaveice(iq)) |
---|
2219 | call globalaverage2d(ngrid,qsurfpal(:,iq), & |
---|
2220 | globavenewice(iq)) |
---|
2221 | IF (globavenewice(iq).gt.0.) THEN |
---|
2222 | qsurfpal(:,iq)=qsurfpal(:,iq)* & |
---|
2223 | globaveice(iq)/globavenewice(iq) |
---|
2224 | ENDIF |
---|
2225 | ENDDO |
---|
2226 | |
---|
2227 | ! update new geopotential depending on the ice reservoir |
---|
2228 | phisfipal(:)=phisfinew(:)+qsurfpal(:,igcm_n2)*g/1000. |
---|
2229 | !phisfipal(ig)=phisfi(ig) |
---|
2230 | |
---|
2231 | if (kbo.or.triton) then ! case of Triton : we do not change the orbital parameters |
---|
2232 | pdaypal=pday ! no increment of pdaypal to keep same evolution of the subsolar point |
---|
2233 | eccpal=1.-periastr/((periastr+apoastr)/2.) !no change of ecc |
---|
2234 | peri_daypal=peri_day ! no change |
---|
2235 | oblipal=obliquit ! no change |
---|
2236 | tpalnew=tpal |
---|
2237 | adjustnew=adjust |
---|
2238 | |
---|
2239 | else ! Pluto |
---|
2240 | ! update new pday and tpal (Myr) to be set in startfi controle |
---|
2241 | pdaypal=int(day_ini+paleoyears*365.25/6.3872) |
---|
2242 | tpalnew=tpal+paleoyears*1.e-6 ! Myrs |
---|
2243 | |
---|
2244 | ! update new N2 ice adjustment (not tested yet on Pluto) |
---|
2245 | adjustnew=adjust |
---|
2246 | |
---|
2247 | ! update milankovitch parameters : obliquity,Lsp,ecc |
---|
2248 | call calcmilank(tpalnew,oblipal,peri_daypal,eccpal) |
---|
2249 | !peri_daypal=peri_day |
---|
2250 | !eccpal=0.009 |
---|
2251 | endif |
---|
2252 | |
---|
2253 | if (is_master) write(*,*) "Paleo peri=",peri_daypal," tpal=",tpalnew |
---|
2254 | if (is_master) write(*,*) "Paleo eccpal=",eccpal," tpal=",tpalnew |
---|
2255 | |
---|
2256 | !---------------------------------------------------------------------- |
---|
2257 | ! Writing NetCDF file "RESTARTFI" at the end of the run |
---|
2258 | !---------------------------------------------------------------------- |
---|
2259 | ! Note: 'restartfi' is stored just before dynamics are stored |
---|
2260 | ! in 'restart'. Between now and the writing of 'restart', |
---|
2261 | ! there will have been the itau=itau+1 instruction and |
---|
2262 | ! a reset of 'time' (lastacll = .true. when itau+1= itaufin) |
---|
2263 | ! thus we store for time=time+dtvr |
---|
2264 | |
---|
2265 | #ifndef MESOSCALE |
---|
2266 | ! create restartfi |
---|
2267 | if (ngrid.ne.1) then |
---|
2268 | print*, "physdem1pal not yet implemented" |
---|
2269 | stop |
---|
2270 | !TODO: import this routine from pluto.old |
---|
2271 | ! call physdem1pal("restartfi.nc",long,lati,nsoilmx,nq, & |
---|
2272 | ! ptimestep,pdaypal, & |
---|
2273 | ! ztime_fin,tsurf,tsoil,emis,q2,qsurfpal, & |
---|
2274 | ! cell_area,albedodat,inertiedat,zmea,zstd,zsig, & |
---|
2275 | ! zgam,zthe,oblipal,eccpal,tpalnew,adjustnew,phisfipal, & |
---|
2276 | ! peri_daypal) |
---|
2277 | endif |
---|
2278 | else ! 'paleo' |
---|
2279 | |
---|
2280 | if (ngrid.ne.1) then |
---|
2281 | write(*,*)'PHYSIQ: for physdem ztime_fin =',ztime_fin |
---|
2282 | |
---|
2283 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq, & |
---|
2284 | ptimestep,ztime_fin, & |
---|
2285 | tsurf,tsoil,emis,q2,qsurf_hist) |
---|
2286 | endif |
---|
2287 | #endif |
---|
2288 | endif ! end of 'paleo' |
---|
2289 | endif ! end of 'lastcall' |
---|
2290 | |
---|
2291 | |
---|
2292 | ! ----------------------------------------------------------------- |
---|
2293 | ! WSTATS: Saving statistics |
---|
2294 | ! ----------------------------------------------------------------- |
---|
2295 | ! ("stats" stores and accumulates key variables in file "stats.nc" |
---|
2296 | ! which can later be used to make the statistic files of the run: |
---|
2297 | ! if flag "callstats" from callphys.def is .true.) |
---|
2298 | |
---|
2299 | |
---|
2300 | call wstats(ngrid,"ps","Surface pressure","Pa",2,ps) |
---|
2301 | call wstats(ngrid,"tsurf","Surface temperature","K",2,tsurf) |
---|
2302 | call wstats(ngrid,"fluxsurf_lw", & |
---|
2303 | "Thermal IR radiative flux to surface","W.m-2",2, & |
---|
2304 | fluxsurf_lw) |
---|
2305 | call wstats(ngrid,"fluxtop_lw", & |
---|
2306 | "Thermal IR radiative flux to space","W.m-2",2, & |
---|
2307 | fluxtop_lw) |
---|
2308 | |
---|
2309 | ! call wstats(ngrid,"fluxsurf_sw", & |
---|
2310 | ! "Solar radiative flux to surface","W.m-2",2, & |
---|
2311 | ! fluxsurf_sw_tot) |
---|
2312 | ! call wstats(ngrid,"fluxtop_sw", & |
---|
2313 | ! "Solar radiative flux to space","W.m-2",2, & |
---|
2314 | ! fluxtop_sw_tot) |
---|
2315 | |
---|
2316 | call wstats(ngrid,"ISR","incoming stellar rad.","W m-2",2,fluxtop_dn) |
---|
2317 | call wstats(ngrid,"ASR","absorbed stellar rad.","W m-2",2,fluxabs_sw) |
---|
2318 | call wstats(ngrid,"OLR","outgoing longwave rad.","W m-2",2,fluxtop_lw) |
---|
2319 | ! call wstats(ngrid,"ALB","Surface albedo"," ",2,albedo_equivalent) |
---|
2320 | ! call wstats(ngrid,"ALB_1st","First Band Surface albedo"," ",2,albedo(:,1)) |
---|
2321 | call wstats(ngrid,"p","Pressure","Pa",3,pplay) |
---|
2322 | call wstats(ngrid,"emis","Emissivity","",2,emis) |
---|
2323 | call wstats(ngrid,"temp","Atmospheric temperature","K",3,zt) |
---|
2324 | call wstats(ngrid,"u","Zonal (East-West) wind","m.s-1",3,zu) |
---|
2325 | call wstats(ngrid,"v","Meridional (North-South) wind","m.s-1",3,zv) |
---|
2326 | call wstats(ngrid,"w","Vertical (down-up) wind","m.s-1",3,pw) |
---|
2327 | call wstats(ngrid,"q2","Boundary layer eddy kinetic energy","m2.s-2",3,q2) |
---|
2328 | |
---|
2329 | if (tracer) then |
---|
2330 | do iq=1,nq |
---|
2331 | call wstats(ngrid,noms(iq),noms(iq),'kg/kg',3,zq(1,1,iq)) |
---|
2332 | call wstats(ngrid,trim(noms(iq))//'_surf',trim(noms(iq))//'_surf',& |
---|
2333 | 'kg m^-2',2,qsurf(1,iq) ) |
---|
2334 | call wstats(ngrid,trim(noms(iq))//'_col',trim(noms(iq))//'_col', & |
---|
2335 | 'kg m^-2',2,qcol(1,iq) ) |
---|
2336 | ! call wstats(ngrid,trim(noms(iq))//'_reff',trim(noms(iq))//'_reff',& |
---|
2337 | ! 'm',3,reffrad(1,1,iq)) ! bug (2): Subscript #3 of the array REFFRAD has value 2 which is greater than the upper bound of 1 |
---|
2338 | end do |
---|
2339 | |
---|
2340 | endif ! end of 'tracer' |
---|
2341 | |
---|
2342 | if(lastcall.and.callstats) then |
---|
2343 | write (*,*) "Writing stats..." |
---|
2344 | call mkstats(ierr) |
---|
2345 | endif |
---|
2346 | |
---|
2347 | #ifndef MESOSCALE |
---|
2348 | |
---|
2349 | !------------------------------------------------------------------------------ |
---|
2350 | ! OUTPUT in netcdf file "DIAGFI.NC", |
---|
2351 | ! containing any variable for diagnostic |
---|
2352 | ! |
---|
2353 | ! Note 1 : output with period "ecritphy", set in "run.def" |
---|
2354 | ! Note 2 : writediagfi can also be called from any other subroutine |
---|
2355 | ! for any variable, but its preferable to keep all the |
---|
2356 | ! calls in one place ... |
---|
2357 | !------------------------------------------------------------------------------ |
---|
2358 | |
---|
2359 | call write_output("Ls","solar longitude","deg",zls*180./pi) |
---|
2360 | ! call write_output("Lss","sub solar longitude","deg",zlss*180./pi) |
---|
2361 | call write_output("RA","right ascension","deg",right_ascen*180./pi) |
---|
2362 | call write_output("Declin","solar declination","deg",declin*180./pi) |
---|
2363 | call write_output("dist_star","dist_star","AU",dist_star) |
---|
2364 | |
---|
2365 | call write_output("tsurf","Surface temperature","K",tsurf) |
---|
2366 | call write_output("ps","Surface pressure","Pa",ps) |
---|
2367 | call write_output("emis","Emissivity","",emis) |
---|
2368 | |
---|
2369 | if (fast) then |
---|
2370 | call write_output("globave","surf press","Pa",globave) |
---|
2371 | call write_output("fluxrad","fluxrad","W m-2",fluxrad) |
---|
2372 | call write_output("fluxgrd","fluxgrd","W m-2",fluxgrd) |
---|
2373 | call write_output("capcal","capcal","W.s m-2 K-1",capcal) |
---|
2374 | ! call write_output("dplanck","dplanck","W.s m-2 K-1",dplanck) |
---|
2375 | call write_output("tsoil","tsoil","K",tsoil) |
---|
2376 | else |
---|
2377 | if (check_physics_outputs) then |
---|
2378 | ! Check the validity of updated fields at the end of the physics step |
---|
2379 | call check_physics_fields("physiq:", zt, zu, zv, pplev, zq) |
---|
2380 | endif |
---|
2381 | |
---|
2382 | call write_output("zzlay","Midlayer altitude", "m",zzlay(:,:)) |
---|
2383 | call write_output("zzlev","Interlayer altitude", "m",zzlev(:,1:nlayer)) |
---|
2384 | !call write_output('pphi','Geopotential',' ',pphi) |
---|
2385 | |
---|
2386 | call write_output("temperature","temperature","K",zt) |
---|
2387 | call write_output("teta","potential temperature","K",zh) |
---|
2388 | call write_output("u","Zonal wind","m.s-1",zu) |
---|
2389 | call write_output("v","Meridional wind","m.s-1",zv) |
---|
2390 | call write_output("w","Vertical wind","m.s-1",pw) |
---|
2391 | call write_output("p","Pressure","Pa",pplay) |
---|
2392 | endif |
---|
2393 | |
---|
2394 | ! Total energy balance diagnostics |
---|
2395 | if(callrad)then |
---|
2396 | call write_output("ALB","Surface albedo"," ",albedo_equivalent) |
---|
2397 | call write_output("ASR","absorbed stellar rad.","W m-2",fluxabs_sw) |
---|
2398 | call write_output("ISR","incoming stellar rad.","W m-2",fluxtop_dn) |
---|
2399 | call write_output("OLR","outgoing longwave rad.","W m-2",fluxtop_lw) |
---|
2400 | call write_output("GND","heat flux from ground","W m-2",fluxgrd) |
---|
2401 | call write_output("DYN","dynamical heat input","W m-2",fluxdyn) |
---|
2402 | endif ! end of 'callrad' |
---|
2403 | |
---|
2404 | if(enertest) then |
---|
2405 | if (calldifv) then |
---|
2406 | call write_output("q2","turbulent kinetic energy","J.kg^-1",q2) |
---|
2407 | call write_output("sensibFlux","sensible heat flux","w.m^-2",sensibFlux) |
---|
2408 | endif |
---|
2409 | |
---|
2410 | if (corrk) then |
---|
2411 | call write_output("dEzradsw","radiative heating","w.m^-2",dEzradsw) |
---|
2412 | call write_output("dEzradlw","radiative heating","w.m^-2",dEzradlw) |
---|
2413 | endif |
---|
2414 | |
---|
2415 | if (generic_condensation) then |
---|
2416 | call write_output("genericconddE","heat from generic condensation","W m-2",genericconddE) |
---|
2417 | call write_output("dt_generic_condensation","heating from generic condensation","K s-1",dt_generic_condensation) |
---|
2418 | endif |
---|
2419 | |
---|
2420 | endif ! end of 'enertest' |
---|
2421 | |
---|
2422 | ! Diagnostics of optical thickness |
---|
2423 | ! Warning this is exp(-tau), I let you postproc with -log to have tau itself - JVO 19 |
---|
2424 | if (diagdtau) then |
---|
2425 | do nw=1,L_NSPECTV |
---|
2426 | write(str2,'(i2.2)') nw |
---|
2427 | call write_output('dtauv'//str2,'Layer optical thickness attenuation in VI band '//str2,'',int_dtauv(:,nlayer:1:-1,nw)) |
---|
2428 | enddo |
---|
2429 | do nw=1,L_NSPECTI |
---|
2430 | write(str2,'(i2.2)') nw |
---|
2431 | call write_output('dtaui'//str2,'Layer optical thickness attenuation in IR band '//str2,'',int_dtaui(:,nlayer:1:-1,nw)) |
---|
2432 | enddo |
---|
2433 | endif |
---|
2434 | |
---|
2435 | ! Temporary inclusions for heating diagnostics. |
---|
2436 | call write_output("zdtsw","SW heating","T s-1",zdtsw) |
---|
2437 | call write_output("zdtlw","LW heating","T s-1",zdtlw) |
---|
2438 | call write_output("dtrad","radiative heating","K s-1",dtrad) |
---|
2439 | call write_output("zdtdyn","Dyn. heating","T s-1",zdtdyn) |
---|
2440 | |
---|
2441 | ! For Debugging. |
---|
2442 | !call write_output('rnat','Terrain type',' ',real(rnat)) |
---|
2443 | |
---|
2444 | ! Output tracers. |
---|
2445 | if (tracer) then |
---|
2446 | ! call write_output("zdtc","tendancy T cond N2","K",zdtc) |
---|
2447 | |
---|
2448 | do iq=1,nq |
---|
2449 | call write_output(noms(iq),noms(iq),'kg/kg',zq(:,:,iq)) |
---|
2450 | ! call write_output(trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
2451 | ! 'kg m^-2',qsurf_hist(1,iq) ) |
---|
2452 | call write_output(trim(noms(iq))//'_col',trim(noms(iq))//'_col', & |
---|
2453 | 'kg m^-2',qcol(:,iq) ) |
---|
2454 | call write_output(trim(noms(iq))//'_surf',trim(noms(iq))//'_surf', & |
---|
2455 | 'kg m^-2',qsurf(:,iq) ) |
---|
2456 | enddo ! end of 'nq' loop |
---|
2457 | |
---|
2458 | !Pluto specific |
---|
2459 | call write_output('n2_iceflux','n2_iceflux',"kg m^-2 s^-1",flusurf(1,igcm_n2) ) |
---|
2460 | if (haze_radproffix)then |
---|
2461 | call write_output('haze_reff','haze_reff','m',reffrad(1,1,1)) |
---|
2462 | end if |
---|
2463 | if (methane) then |
---|
2464 | ! call write_output("rice_ch4","ch4 ice mass mean radius","m",rice_ch4) |
---|
2465 | ! call write_output("zq1temp_ch4"," "," ",zq1temp_ch4) |
---|
2466 | ! call write_output("qsat_ch4"," "," ",qsat_ch4) |
---|
2467 | ! call write_output("qsat_ch4_l1"," "," ",qsat_ch4_l1) |
---|
2468 | |
---|
2469 | call write_output('ch4_iceflux','ch4_iceflux',& |
---|
2470 | "kg m^-2 s^-1",flusurf(1,igcm_ch4_ice) ) |
---|
2471 | call write_output("vmr_ch4","vmr_ch4","%",vmr_ch4) |
---|
2472 | if (.not.fast) then |
---|
2473 | call write_output("zrho_ch4","zrho_ch4","kg.m-3",zrho_ch4(:,:)) |
---|
2474 | endif |
---|
2475 | |
---|
2476 | ! Tendancies |
---|
2477 | call write_output("zdqcn2_ch4","zdq condn2 ch4","",& |
---|
2478 | zdqc(:,:,igcm_ch4_gas)) |
---|
2479 | call write_output("zdqdif_ch4","zdqdif ch4","",& |
---|
2480 | zdqdif(:,:,igcm_ch4_gas)) |
---|
2481 | call write_output("zdqsdif_ch4_ice","zdqsdif ch4","",& |
---|
2482 | zdqsdif(:,igcm_ch4_ice)) |
---|
2483 | call write_output("zdqadj_ch4","zdqadj ch4","",& |
---|
2484 | zdqadj(:,:,igcm_ch4_gas)) |
---|
2485 | if (sedimentation) then |
---|
2486 | call write_output("zdqsed_ch4","zdqsed ch4","",& |
---|
2487 | zdqsed(:,:,igcm_ch4_gas)) |
---|
2488 | call write_output("zdqssed_ch4","zdqssed ch4","",& |
---|
2489 | zdqssed(:,igcm_ch4_gas)) |
---|
2490 | endif |
---|
2491 | if (metcloud.and.(.not.fast)) then |
---|
2492 | call write_output("zdtch4cloud","ch4 cloud","T s-1",& |
---|
2493 | zdtch4cloud) |
---|
2494 | call write_output("zdqch4cloud","ch4 cloud","T s-1",& |
---|
2495 | zdqch4cloud(1,1,igcm_ch4_gas)) |
---|
2496 | endif |
---|
2497 | |
---|
2498 | endif |
---|
2499 | |
---|
2500 | if (carbox) then |
---|
2501 | ! call write_output("zdtcocloud","tendancy T cocloud","K",zdtcocloud) |
---|
2502 | call write_output('co_iceflux','co_iceflux',& |
---|
2503 | "kg m^-2 s^-1",flusurf(1,igcm_co_ice) ) |
---|
2504 | call write_output("vmr_co","vmr_co","%",vmr_co) |
---|
2505 | if (.not.fast) THEN |
---|
2506 | call write_output("zrho_co","zrho_co","kg.m-3",zrho_co(:,:)) |
---|
2507 | endif |
---|
2508 | endif |
---|
2509 | |
---|
2510 | if (haze) then |
---|
2511 | ! call write_output("zrho_haze","zrho_haze","kg.m-3",zrho_haze(:,:)) |
---|
2512 | call write_output("zdqrho_photprec","zdqrho_photprec",& |
---|
2513 | "kg.m-3.s-1",zdqrho_photprec(:,:)) |
---|
2514 | call write_output("zdqphot_prec","zdqphot_prec","",& |
---|
2515 | zdqphot_prec(:,:)) |
---|
2516 | call write_output("zdqhaze_ch4","zdqhaze_ch4","",& |
---|
2517 | zdqhaze(:,:,igcm_ch4_gas)) |
---|
2518 | call write_output("zdqhaze_prec","zdqhaze_prec","",& |
---|
2519 | zdqhaze(:,:,igcm_prec_haze)) |
---|
2520 | if (igcm_haze.ne.0) then |
---|
2521 | call write_output("zdqhaze_haze","zdqhaze_haze","",& |
---|
2522 | zdqhaze(:,:,igcm_haze)) |
---|
2523 | if (sedimentation) then |
---|
2524 | call write_output("zdqssed_haze","zdqssed haze",& |
---|
2525 | "kg/m2/s",zdqssed(:,igcm_haze)) |
---|
2526 | endif |
---|
2527 | endif |
---|
2528 | call write_output("zdqphot_ch4","zdqphot_ch4","",& |
---|
2529 | zdqphot_ch4(:,:)) |
---|
2530 | call write_output("zdqconv_prec","zdqconv_prec","",& |
---|
2531 | zdqconv_prec(:,:)) |
---|
2532 | ! call write_output("zdqhaze_col","zdqhaze col","kg/m2/s", |
---|
2533 | ! & zdqhaze_col(:)) |
---|
2534 | endif |
---|
2535 | |
---|
2536 | if (aerohaze) then |
---|
2537 | call write_output("tau_col",& |
---|
2538 | "Total aerosol optical depth","opacity",tau_col) |
---|
2539 | endif |
---|
2540 | |
---|
2541 | endif ! end of 'tracer' |
---|
2542 | |
---|
2543 | |
---|
2544 | ! Output spectrum. |
---|
2545 | if(specOLR.and.corrk)then |
---|
2546 | call writediagspecIR(ngrid,"OLR3D","OLR(lon,lat,band)","W/m^2/cm^-1",3,OLR_nu) |
---|
2547 | call writediagspecVI(ngrid,"OSR3D","OSR(lon,lat,band)","W/m^2/cm^-1",3,OSR_nu) |
---|
2548 | call writediagspecVI(ngrid,"GSR3D","GSR(lon,lat,band)","W/m^2/cm^-1",3,GSR_nu) |
---|
2549 | endif |
---|
2550 | |
---|
2551 | #else |
---|
2552 | comm_HR_SW(1:ngrid,1:nlayer) = zdtsw(1:ngrid,1:nlayer) |
---|
2553 | comm_HR_LW(1:ngrid,1:nlayer) = zdtlw(1:ngrid,1:nlayer) |
---|
2554 | comm_ALBEQ(1:ngrid)=albedo_equivalent(1:ngrid) |
---|
2555 | if (.not.calldifv) comm_LATENT_HF(:)=0.0 |
---|
2556 | |
---|
2557 | if ((tracer).and.(generic_condensation)) then |
---|
2558 | |
---|
2559 | ! If you have set generic_condensation (and not water) and you have set several GCS |
---|
2560 | ! then the outputs given to WRF will be only the ones for the last generic tracer |
---|
2561 | ! (Because it is rewritten every tracer in the loop) |
---|
2562 | ! WRF can take only one moist tracer |
---|
2563 | |
---|
2564 | do iq=1,nq |
---|
2565 | call generic_tracer_index(nq,iq,igcm_generic_gas,igcm_generic_ice,call_ice_gas_generic) |
---|
2566 | |
---|
2567 | if (call_ice_gas_generic) then ! to call only one time the ice/vap pair of a tracer |
---|
2568 | |
---|
2569 | reffrad_generic_zeros_for_wrf(:,:) = 1. |
---|
2570 | |
---|
2571 | comm_CLOUDFRAC(1:ngrid,1:nlayer) = cloudfrac(1:ngrid,1:nlayer) |
---|
2572 | comm_TOTCLOUDFRAC(1:ngrid) = totcloudfrac(1:ngrid) !?????? |
---|
2573 | comm_SURFRAIN(1:ngrid) = zdqsrain_generic(1:ngrid,iq) |
---|
2574 | comm_DQVAP(1:ngrid,1:nlayer) = pdq(1:ngrid,1:nlayer,igcm_generic_gas) |
---|
2575 | comm_DQICE(1:ngrid,1:nlayer)=pdq(1:ngrid,1:nlayer,igcm_generic_ice) |
---|
2576 | ! comm_H2OICE_REFF(1:ngrid,1:nlayer) = reffrad_generic_zeros_for_wrf(1:ngrid,1:nlayer) ! for now zeros ! |
---|
2577 | !comm_H2OICE_REFF(1:ngrid,1:nlayer) = 0*zdtrain_generic(1:ngrid,1:nlayer) ! for now zeros ! |
---|
2578 | comm_REEVAP(1:ngrid) = reevap_precip_generic(1:ngrid,iq) |
---|
2579 | comm_DTRAIN(1:ngrid,1:nlayer) = zdtrain_generic(1:ngrid,1:nlayer) |
---|
2580 | comm_DTLSC(1:ngrid,1:nlayer) = dt_generic_condensation(1:ngrid,1:nlayer) |
---|
2581 | comm_RH(1:ngrid,1:nlayer) = RH_generic(1:ngrid,1:nlayer,iq) |
---|
2582 | |
---|
2583 | endif |
---|
2584 | end do ! do iq=1,nq loop on tracers |
---|
2585 | |
---|
2586 | else |
---|
2587 | comm_CLOUDFRAC(1:ngrid,1:nlayer)=0. |
---|
2588 | comm_TOTCLOUDFRAC(1:ngrid)=0. |
---|
2589 | comm_SURFRAIN(1:ngrid)=0. |
---|
2590 | comm_DQVAP(1:ngrid,1:nlayer)=0. |
---|
2591 | comm_DQICE(1:ngrid,1:nlayer)=0. |
---|
2592 | ! comm_H2OICE_REFF(1:ngrid,1:nlayer)=0. |
---|
2593 | comm_REEVAP(1:ngrid)=0. |
---|
2594 | comm_DTRAIN(1:ngrid,1:nlayer)=0. |
---|
2595 | comm_DTLSC(1:ngrid,1:nlayer)=0. |
---|
2596 | comm_RH(1:ngrid,1:nlayer)=0. |
---|
2597 | |
---|
2598 | endif ! if water, if generic_condensation, else |
---|
2599 | |
---|
2600 | comm_FLUXTOP_DN(1:ngrid)=fluxtop_dn(1:ngrid) |
---|
2601 | comm_FLUXABS_SW(1:ngrid)=fluxabs_sw(1:ngrid) |
---|
2602 | comm_FLUXTOP_LW(1:ngrid)=fluxtop_lw(1:ngrid) |
---|
2603 | comm_FLUXSURF_SW(1:ngrid)=fluxsurf_sw(1:ngrid) |
---|
2604 | comm_FLUXSURF_LW(1:ngrid)=fluxsurf_lw(1:ngrid) |
---|
2605 | comm_FLXGRD(1:ngrid)=fluxgrd(1:ngrid) |
---|
2606 | sensibFlux(1:ngrid) = zflubid(1:ngrid) - capcal(1:ngrid)*zdtsdif(1:ngrid) !!! ???? |
---|
2607 | comm_HR_DYN(1:ngrid,1:nlayer) = zdtdyn(1:ngrid,1:nlayer) |
---|
2608 | #endif |
---|
2609 | |
---|
2610 | ! XIOS outputs |
---|
2611 | #ifdef CPP_XIOS |
---|
2612 | ! Send fields to XIOS: (NB these fields must also be defined as |
---|
2613 | ! <field id="..." /> in context_lmdz_physics.xml to be correctly used) |
---|
2614 | CALL send_xios_field("controle",tab_cntrl_mod,1) |
---|
2615 | |
---|
2616 | CALL send_xios_field("ap",ap,1) |
---|
2617 | CALL send_xios_field("bp",bp,1) |
---|
2618 | CALL send_xios_field("aps",aps,1) |
---|
2619 | CALL send_xios_field("bps",bps,1) |
---|
2620 | |
---|
2621 | if (lastcall.and.is_omp_master) then |
---|
2622 | write(*,*) "physiq: call xios_context_finalize" |
---|
2623 | call xios_context_finalize |
---|
2624 | endif |
---|
2625 | #endif |
---|
2626 | |
---|
2627 | if (check_physics_outputs) then |
---|
2628 | ! Check the validity of updated fields at the end of the physics step |
---|
2629 | call check_physics_fields("end of physiq:", zt, zu, zv, pplev, zq) |
---|
2630 | endif |
---|
2631 | |
---|
2632 | icount=icount+1 |
---|
2633 | |
---|
2634 | end subroutine physiq |
---|
2635 | |
---|
2636 | end module physiq_mod |
---|