| 1 | MODULE optcv_pluto_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | SUBROUTINE OPTCV_pluto(DTAUV,TAUV,TAUCUMV,PLEV, & |
|---|
| 8 | QXVAER,QSVAER,GVAER,WBARV,COSBV, & |
|---|
| 9 | TAURAY,TAUAERO,TMID,PMID,TAUGSURF,QVAR) |
|---|
| 10 | |
|---|
| 11 | use radinc_h, only: L_NLAYRAD, L_NLEVRAD, L_LEVELS, L_NSPECTV, L_NGAUSS, L_REFVAR, NAERKIND |
|---|
| 12 | use radcommon_h, only: gasv, tlimit, wrefVAR, Cmk, tgasref, pfgasref,wnov,scalep,indv,glat_ig |
|---|
| 13 | use gases_h, only: gfrac, ngasmx, igas_H2, igas_H2O, igas_He, igas_N2, & |
|---|
| 14 | igas_CH4, igas_N2 |
|---|
| 15 | use comcstfi_mod, only: g, r, mugaz |
|---|
| 16 | use callkeys_mod, only: kastprof,continuum,graybody,callgasvis |
|---|
| 17 | use recombin_corrk_mod, only: corrk_recombin, gasv_recomb |
|---|
| 18 | use tpindex_mod, only: tpindex |
|---|
| 19 | |
|---|
| 20 | implicit none |
|---|
| 21 | |
|---|
| 22 | !================================================================== |
|---|
| 23 | ! |
|---|
| 24 | ! Purpose |
|---|
| 25 | ! ------- |
|---|
| 26 | ! Calculates shortwave optical constants at each level. |
|---|
| 27 | ! |
|---|
| 28 | ! Authors |
|---|
| 29 | ! ------- |
|---|
| 30 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
|---|
| 31 | ! |
|---|
| 32 | !================================================================== |
|---|
| 33 | |
|---|
| 34 | |
|---|
| 35 | |
|---|
| 36 | ! THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL |
|---|
| 37 | ! IT CALCUALTES FOR EACH LAYER, FOR EACH SPECRAL INTERVAL IN THE VISUAL |
|---|
| 38 | ! LAYER: WBAR, DTAU, COSBAR |
|---|
| 39 | ! LEVEL: TAU |
|---|
| 40 | ! |
|---|
| 41 | ! TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code |
|---|
| 42 | ! layer L. NW is spectral wavelength interval, ng the Gauss point index. |
|---|
| 43 | ! |
|---|
| 44 | ! TLEV(L) - Temperature at the layer boundary |
|---|
| 45 | ! PLEV(L) - Pressure at the layer boundary (i.e. level) |
|---|
| 46 | ! GASV(NT,NPS,NW,NG) - Visual CO2 k-coefficients |
|---|
| 47 | ! |
|---|
| 48 | !----------------------------------------------------------------------C |
|---|
| 49 | |
|---|
| 50 | |
|---|
| 51 | real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 52 | real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
|---|
| 53 | real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 54 | real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
|---|
| 55 | real*8 PLEV(L_LEVELS) |
|---|
| 56 | real*8 TMID(L_LEVELS), PMID(L_LEVELS) |
|---|
| 57 | real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 58 | real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
|---|
| 59 | |
|---|
| 60 | ! For aerosols |
|---|
| 61 | real*8 QXVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
|---|
| 62 | real*8 QSVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
|---|
| 63 | real*8 GVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
|---|
| 64 | real*8 TAUAERO(L_LEVELS,NAERKIND) |
|---|
| 65 | real*8 TAUAEROLK(L_LEVELS,L_NSPECTV,NAERKIND) |
|---|
| 66 | real*8 TAEROS(L_LEVELS,L_NSPECTV,NAERKIND) |
|---|
| 67 | |
|---|
| 68 | integer L, NW, NG, K, NG1(L_NSPECTV), LK, IAER |
|---|
| 69 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
|---|
| 70 | real*8 ANS, TAUGAS |
|---|
| 71 | real*8 TAURAY(L_NSPECTV) |
|---|
| 72 | real*8 TRAY(L_LEVELS,L_NSPECTV) |
|---|
| 73 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
|---|
| 74 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
|---|
| 75 | |
|---|
| 76 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1), TRAYAER |
|---|
| 77 | |
|---|
| 78 | |
|---|
| 79 | |
|---|
| 80 | |
|---|
| 81 | |
|---|
| 82 | ! mixing ratio variables |
|---|
| 83 | real*8 QVAR(L_LEVELS), WRATIO(L_LEVELS) |
|---|
| 84 | real*8 KCOEF(4) |
|---|
| 85 | integer NVAR(L_LEVELS) |
|---|
| 86 | |
|---|
| 87 | ! temporary variables for multiple aerosol calculation |
|---|
| 88 | real*8 atemp(L_NLAYRAD,L_NSPECTV) |
|---|
| 89 | real*8 btemp(L_NLAYRAD,L_NSPECTV) |
|---|
| 90 | real*8 ctemp(L_NLAYRAD,L_NSPECTV) |
|---|
| 91 | |
|---|
| 92 | ! variables for k in units m^-1 |
|---|
| 93 | real*8 rho, dz |
|---|
| 94 | |
|---|
| 95 | !======================================================================= |
|---|
| 96 | ! Determine the total gas opacity throughout the column, for each |
|---|
| 97 | ! spectral interval, NW, and each Gauss point, NG. |
|---|
| 98 | ! Calculate the continuum opacities, i.e., those that do not depend on |
|---|
| 99 | ! NG, the Gauss index. |
|---|
| 100 | |
|---|
| 101 | taugsurf(:,:) = 0.0 |
|---|
| 102 | |
|---|
| 103 | do K=2,L_LEVELS |
|---|
| 104 | DPR(K) = PLEV(K)-PLEV(K-1) |
|---|
| 105 | |
|---|
| 106 | |
|---|
| 107 | ! rho = PLEV(K)/(R*TMID(K)) |
|---|
| 108 | rho = PMID(K)/(R*TMID(K)) |
|---|
| 109 | dz = -DPR(k)/(g*rho) |
|---|
| 110 | |
|---|
| 111 | U(k) = Cmk*DPR(k) |
|---|
| 112 | |
|---|
| 113 | |
|---|
| 114 | |
|---|
| 115 | |
|---|
| 116 | call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & |
|---|
| 117 | LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) |
|---|
| 118 | |
|---|
| 119 | do LK=1,4 |
|---|
| 120 | LKCOEF(K,LK) = LCOEF(LK) |
|---|
| 121 | end do |
|---|
| 122 | end do ! levels |
|---|
| 123 | |
|---|
| 124 | ! Spectral dependance of aerosol absorption |
|---|
| 125 | do iaer=1,naerkind |
|---|
| 126 | do NW=1,L_NSPECTV |
|---|
| 127 | do K=2,L_LEVELS |
|---|
| 128 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER) |
|---|
| 129 | end do |
|---|
| 130 | end do |
|---|
| 131 | end do |
|---|
| 132 | |
|---|
| 133 | ! Rayleigh scattering |
|---|
| 134 | do NW=1,L_NSPECTV |
|---|
| 135 | do K=2,L_LEVELS |
|---|
| 136 | TRAY(K,NW) = TAURAY(NW) * DPR(K) |
|---|
| 137 | end do |
|---|
| 138 | end do |
|---|
| 139 | |
|---|
| 140 | ! We ignore K = 1... Hope this is ok... |
|---|
| 141 | do K=2,L_LEVELS |
|---|
| 142 | |
|---|
| 143 | ! JL18: It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
|---|
| 144 | ! but visible does not handle very well diffusion in first layer. |
|---|
| 145 | ! This solves random variations of the sw heating at the model top. |
|---|
| 146 | if (K < 3) TAEROS(K,:,:) = 0.0 |
|---|
| 147 | |
|---|
| 148 | do NW=1,L_NSPECTV |
|---|
| 149 | |
|---|
| 150 | TRAYAER = TRAY(K,NW) |
|---|
| 151 | ! TRAYAER is Tau RAYleigh scattering, plus AERosol opacity |
|---|
| 152 | do iaer=1,naerkind |
|---|
| 153 | TRAYAER = TRAYAER + TAEROS(K,NW,IAER) |
|---|
| 154 | end do |
|---|
| 155 | |
|---|
| 156 | do NG=1,L_NGAUSS-1 |
|---|
| 157 | |
|---|
| 158 | ! Now compute TAUGAS |
|---|
| 159 | |
|---|
| 160 | ! Interpolate between water mixing ratios |
|---|
| 161 | ! WRATIO = 0.0 if the requested water amount is equal to, or outside the |
|---|
| 162 | ! the water data range |
|---|
| 163 | |
|---|
| 164 | if (L_REFVAR.eq.1)then ! added by RW for special no variable case |
|---|
| 165 | |
|---|
| 166 | KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG) |
|---|
| 167 | KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG) |
|---|
| 168 | KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG) |
|---|
| 169 | KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG) |
|---|
| 170 | |
|---|
| 171 | else |
|---|
| 172 | |
|---|
| 173 | KCOEF(1) = GASV(MT(K),MP(K),NVAR(K),NW,NG) + WRATIO(K)* & |
|---|
| 174 | (GASV(MT(K),MP(K),NVAR(K)+1,NW,NG) - & |
|---|
| 175 | GASV(MT(K),MP(K),NVAR(K),NW,NG)) |
|---|
| 176 | |
|---|
| 177 | KCOEF(2) = GASV(MT(K),MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* & |
|---|
| 178 | (GASV(MT(K),MP(K)+1,NVAR(K)+1,NW,NG) - & |
|---|
| 179 | GASV(MT(K),MP(K)+1,NVAR(K),NW,NG)) |
|---|
| 180 | |
|---|
| 181 | KCOEF(3) = GASV(MT(K)+1,MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* & |
|---|
| 182 | (GASV(MT(K)+1,MP(K)+1,NVAR(K)+1,NW,NG) - & |
|---|
| 183 | GASV(MT(K)+1,MP(K)+1,NVAR(K),NW,NG)) |
|---|
| 184 | |
|---|
| 185 | KCOEF(4) = GASV(MT(K)+1,MP(K),NVAR(K),NW,NG) + WRATIO(K)* & |
|---|
| 186 | (GASV(MT(K)+1,MP(K),NVAR(K)+1,NW,NG) - & |
|---|
| 187 | GASV(MT(K)+1,MP(K),NVAR(K),NW,NG)) |
|---|
| 188 | endif |
|---|
| 189 | |
|---|
| 190 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
|---|
| 191 | |
|---|
| 192 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
|---|
| 193 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
|---|
| 194 | |
|---|
| 195 | TAUGAS = U(k)*ANS |
|---|
| 196 | |
|---|
| 197 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS |
|---|
| 198 | DTAUKV(K,nw,ng) = TAUGAS + TRAYAER |
|---|
| 199 | ! write(21,*) 'TB17 taugas',K,NW,ng,TAUGAS |
|---|
| 200 | |
|---|
| 201 | |
|---|
| 202 | end do |
|---|
| 203 | |
|---|
| 204 | |
|---|
| 205 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
|---|
| 206 | ! which holds continuum opacity only |
|---|
| 207 | |
|---|
| 208 | NG = L_NGAUSS |
|---|
| 209 | DTAUKV(K,nw,ng) = TRAYAER ! Scattering |
|---|
| 210 | |
|---|
| 211 | end do |
|---|
| 212 | end do |
|---|
| 213 | |
|---|
| 214 | !======================================================================= |
|---|
| 215 | ! Now the full treatment for the layers, where besides the opacity |
|---|
| 216 | ! we need to calculate the scattering albedo and asymmetry factors |
|---|
| 217 | !TAUAEROLK(:,:,:) = 1.e-20 ! TB17 |
|---|
| 218 | |
|---|
| 219 | do iaer=1,naerkind |
|---|
| 220 | DO NW=1,L_NSPECTV |
|---|
| 221 | DO K=2,L_LEVELS |
|---|
| 222 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) ! effect of scattering albedo |
|---|
| 223 | !TAUAEROLK(K,NW,IAER) = max(TAUAEROLK(K,NW,IAER),1.e-20) ! TB17 |
|---|
| 224 | end do |
|---|
| 225 | ENDDO |
|---|
| 226 | ENDDO |
|---|
| 227 | !print*, 'TBbug TAUAEROLK =', TAUAEROLK |
|---|
| 228 | |
|---|
| 229 | DO NW=1,L_NSPECTV |
|---|
| 230 | DO L=1,L_NLAYRAD-1 |
|---|
| 231 | K = 2*L+1 |
|---|
| 232 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))+SUM(GVAER(K+1,NW,1:naerkind) * TAUAEROLK(K+1,NW,1:naerkind)) |
|---|
| 233 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) |
|---|
| 234 | ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ? |
|---|
| 235 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW) |
|---|
| 236 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
|---|
| 237 | END DO ! L vertical loop |
|---|
| 238 | |
|---|
| 239 | ! Last level |
|---|
| 240 | L = L_NLAYRAD |
|---|
| 241 | K = 2*L+1 |
|---|
| 242 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind)) |
|---|
| 243 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) |
|---|
| 244 | ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ? |
|---|
| 245 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) |
|---|
| 246 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
|---|
| 247 | |
|---|
| 248 | |
|---|
| 249 | END DO ! NW spectral loop |
|---|
| 250 | |
|---|
| 251 | DO NG=1,L_NGAUSS |
|---|
| 252 | DO NW=1,L_NSPECTV |
|---|
| 253 | DO L=1,L_NLAYRAD-1 |
|---|
| 254 | |
|---|
| 255 | K = 2*L+1 |
|---|
| 256 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG) |
|---|
| 257 | WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng) |
|---|
| 258 | |
|---|
| 259 | END DO ! L vertical loop |
|---|
| 260 | |
|---|
| 261 | ! Last level |
|---|
| 262 | L = L_NLAYRAD |
|---|
| 263 | K = 2*L+1 |
|---|
| 264 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) |
|---|
| 265 | |
|---|
| 266 | WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG) |
|---|
| 267 | END DO ! NW spectral loop |
|---|
| 268 | END DO ! NG Gauss loop |
|---|
| 269 | |
|---|
| 270 | ! Total extinction optical depths |
|---|
| 271 | DO NG=1,L_NGAUSS ! full gauss loop |
|---|
| 272 | DO NW=1,L_NSPECTV |
|---|
| 273 | TAUV(1,NW,NG)=0.0D0 |
|---|
| 274 | TAUCUMV(1,NW,NG)=0.0D0 |
|---|
| 275 | |
|---|
| 276 | DO L=1,L_NLAYRAD |
|---|
| 277 | TAUV(L+1,NW,NG)=TAUV(L,NW,NG)+DTAUV(L,NW,NG) |
|---|
| 278 | END DO |
|---|
| 279 | |
|---|
| 280 | DO K=2,L_LEVELS |
|---|
| 281 | TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG) |
|---|
| 282 | END DO |
|---|
| 283 | END DO |
|---|
| 284 | END DO ! end full gauss loop |
|---|
| 285 | |
|---|
| 286 | return |
|---|
| 287 | |
|---|
| 288 | end subroutine optcv_pluto |
|---|
| 289 | |
|---|
| 290 | END MODULE optcv_pluto_mod |
|---|