| 1 | MODULE nonoro_gwd_mix_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | REAL,allocatable,save :: du_eddymix_gwd(:,:) ! Zonal wind tendency due to GWD |
|---|
| 6 | REAL,allocatable,save :: dv_eddymix_gwd(:,:) ! Meridional wind tendency due to GWD |
|---|
| 7 | REAL,allocatable,save :: dh_eddymix_gwd(:,:) ! PT tendency due to GWD |
|---|
| 8 | REAL,allocatable,save :: dq_eddymix_gwd(:,:,:) ! tracers tendency due to GWD |
|---|
| 9 | REAL,allocatable,save :: de_eddymix_rto(:,:) ! Meridional wind tendency due to GWD |
|---|
| 10 | REAL,allocatable,save :: df_eddymix_flx(:,:) ! Meridional wind tendency due to GWD |
|---|
| 11 | !REAL,ALLOCATABLE,SAVE :: east_gwstress(:,:) ! Profile of eastward stress |
|---|
| 12 | !REAL,ALLOCATABLE,SAVE :: west_gwstress(:,:) ! Profile of westward stress |
|---|
| 13 | LOGICAL, save :: calljliu_gwimix ! flag for using non-orographic GW-induced mixing |
|---|
| 14 | |
|---|
| 15 | !$OMP THREADPRIVATE(du_eddymix_gwd,dv_eddymix_gwd,dh_eddymix_gwd,dq_eddymix_gwd,de_eddymix_rto,df_eddymix_flx,calljliu_gwimix) |
|---|
| 16 | !,east_gwstress,west_gwstress) |
|---|
| 17 | |
|---|
| 18 | CONTAINS |
|---|
| 19 | |
|---|
| 20 | SUBROUTINE NONORO_GWD_MIX(ngrid,nlayer,DTIME,nq,cpnew, rnew, pp, & |
|---|
| 21 | zmax_therm, pt, pu, pv, pq, pht, pdt, pdu, pdv, pdq, pdht, & |
|---|
| 22 | d_pq, d_t, d_u, d_v) |
|---|
| 23 | |
|---|
| 24 | !-------------------------------------------------------------------------------- |
|---|
| 25 | ! Parametrization of the eddy diffusion coefficient due to a discrete |
|---|
| 26 | ! number of gravity waves. |
|---|
| 27 | ! J.LIU |
|---|
| 28 | ! Version 01, Gaussian distribution of the source |
|---|
| 29 | ! LMDz model online version |
|---|
| 30 | ! |
|---|
| 31 | !--------------------------------------------------------------------------------- |
|---|
| 32 | |
|---|
| 33 | use comcstfi_mod, only: g, pi, r,rcp |
|---|
| 34 | USE ioipsl_getin_p_mod, ONLY : getin_p |
|---|
| 35 | use vertical_layers_mod, only : presnivs |
|---|
| 36 | use geometry_mod, only: cell_area |
|---|
| 37 | use write_output_mod, only: write_output |
|---|
| 38 | |
|---|
| 39 | implicit none |
|---|
| 40 | |
|---|
| 41 | CHARACTER (LEN=20) :: modname='NONORO_GWD_MIX' |
|---|
| 42 | CHARACTER (LEN=80) :: abort_message |
|---|
| 43 | |
|---|
| 44 | |
|---|
| 45 | ! 0. DECLARATIONS: |
|---|
| 46 | |
|---|
| 47 | ! 0.1 INPUTS |
|---|
| 48 | INTEGER, intent(in):: ngrid ! number of atmospheric columns |
|---|
| 49 | INTEGER, intent(in):: nlayer ! number of atmospheric layers |
|---|
| 50 | INTEGER, INTENT(IN) :: nq ! number of tracer species in traceurs.def |
|---|
| 51 | ! integer, parameter:: nesp =42 ! number of traceurs in chemistry |
|---|
| 52 | REAL, intent(in):: DTIME ! Time step of the Physics(s) |
|---|
| 53 | REAL, intent(in):: zmax_therm(ngrid) ! Altitude of max velocity thermals (m) |
|---|
| 54 | ! REAL, intent(in):: loss(nesp) ! Chemical reaction loss rate |
|---|
| 55 | REAL,INTENT(IN) :: cpnew(ngrid,nlayer)! Cp of the atmosphere |
|---|
| 56 | REAL,INTENT(IN) :: rnew(ngrid,nlayer) ! R of the atmosphere |
|---|
| 57 | REAL, intent(in):: pp(ngrid,nlayer) ! Pressure at full levels(Pa) |
|---|
| 58 | REAL, intent(in):: pt(ngrid,nlayer) ! Temp at full levels(K) |
|---|
| 59 | REAL, intent(in):: pu(ngrid,nlayer) ! Zonal wind at full levels(m/s) |
|---|
| 60 | REAL, intent(in):: pv(ngrid,nlayer) ! Meridional winds at full levels(m/s) |
|---|
| 61 | REAL, INTENT(IN) :: pq(ngrid,nlayer,nq) ! advected field nq |
|---|
| 62 | REAL, INTENT(IN) :: pht(ngrid,nlayer) ! advected field of potential temperature |
|---|
| 63 | REAL, INTENT(IN) :: pdht(ngrid,nlayer) ! tendancy of potential temperature |
|---|
| 64 | REAL, INTENT(IN) :: pdq(ngrid,nlayer,nq)! tendancy field pq |
|---|
| 65 | REAL,INTENT(in) :: pdt(ngrid,nlayer) ! Tendency on temperature (K/s) |
|---|
| 66 | REAL,INTENT(in) :: pdu(ngrid,nlayer) ! Tendency on zonal wind (m/s/s) |
|---|
| 67 | REAL,INTENT(in) :: pdv(ngrid,nlayer) ! Tendency on meridional wind (m/s/s) |
|---|
| 68 | |
|---|
| 69 | ! 0.2 OUTPUTS |
|---|
| 70 | ! REAL, intent(out):: zustr(ngrid) ! Zonal surface stress |
|---|
| 71 | ! REAL, intent(out):: zvstr(ngrid) ! Meridional surface stress |
|---|
| 72 | REAL, intent(out):: d_t(ngrid, nlayer) ! Tendency on temperature (K/s) due to gravity waves (not used set to zero) |
|---|
| 73 | REAL, intent(out):: d_u(ngrid, nlayer) ! Tendency on zonal wind (m/s/s) due to gravity waves |
|---|
| 74 | REAL, intent(out):: d_v(ngrid, nlayer) ! Tendency on meridional wind (m/s/s) due to gravity waves |
|---|
| 75 | REAL, INTENT(out) :: d_pq(ngrid,nlayer,nq)! tendancy field pq |
|---|
| 76 | REAL :: d_h(ngrid, nlayer) ! Tendency on PT (T/s/s) due to gravity waves mixing |
|---|
| 77 | ! 0.3 INTERNAL ARRAYS |
|---|
| 78 | REAL :: TT(ngrid, nlayer) ! Temperature at full levels |
|---|
| 79 | REAL :: RHO(ngrid, nlayer) ! Mass density at full levels |
|---|
| 80 | REAL :: UU(ngrid, nlayer) ! Zonal wind at full levels |
|---|
| 81 | REAL :: VV(ngrid, nlayer) ! Meridional winds at full levels |
|---|
| 82 | REAL :: HH(ngrid, nlayer) ! potential temperature at full levels |
|---|
| 83 | REAL :: BVLOW(ngrid) ! initial N at each grid (not used) |
|---|
| 84 | |
|---|
| 85 | INTEGER II, JJ, LL, QQ |
|---|
| 86 | |
|---|
| 87 | ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED |
|---|
| 88 | REAL, parameter:: DELTAT = 24. * 3600. |
|---|
| 89 | |
|---|
| 90 | ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS |
|---|
| 91 | INTEGER, PARAMETER:: NK = 2 ! number of horizontal wavenumbers |
|---|
| 92 | INTEGER, PARAMETER:: NP = 2 ! directions (eastward and westward) phase speed |
|---|
| 93 | INTEGER, PARAMETER:: NO = 2 ! absolute values of phase speed |
|---|
| 94 | INTEGER, PARAMETER:: NA = 5 ! number of realizations to get the phase speed |
|---|
| 95 | INTEGER, PARAMETER:: NW = NK * NP * NO ! Total numbers of gravity waves |
|---|
| 96 | INTEGER JK, JP, JO, JW ! Loop index for NK,NP,NO, and NW |
|---|
| 97 | |
|---|
| 98 | REAL, save :: kmax ! Max horizontal wavenumber (lambda min,lambda=2*pi/kmax),kmax=N/u, u(=30~50) zonal wind velocity at launch altitude |
|---|
| 99 | !$OMP THREADPRIVATE(kmax) |
|---|
| 100 | REAL, save :: kmin ! Min horizontal wavenumber (lambda max = 314 km,lambda=2*pi/kmin) |
|---|
| 101 | !$OMP THREADPRIVATE(kmin) |
|---|
| 102 | REAL kstar ! Min horizontal wavenumber constrained by horizontal resolution |
|---|
| 103 | |
|---|
| 104 | REAL :: max_k(ngrid) ! max_k=max(kstar,kmin) |
|---|
| 105 | REAL, parameter:: cmin = 1. ! Min horizontal absolute phase velocity (not used) |
|---|
| 106 | REAL CPHA(ngrid) ! absolute PHASE VELOCITY frequency |
|---|
| 107 | REAL ZK(NW, ngrid) ! Horizontal wavenumber amplitude |
|---|
| 108 | REAL ZP(NW, ngrid) ! Horizontal wavenumber angle |
|---|
| 109 | REAL ZO(NW, ngrid) ! Absolute frequency |
|---|
| 110 | |
|---|
| 111 | REAL maxp(NW,ngrid) ! wave saturation index |
|---|
| 112 | REAL maxs(NW,ngrid) ! wave saturation index |
|---|
| 113 | integer LLSATURATION(NW,ngrid) ! layer where the gravity waves break |
|---|
| 114 | integer LLZCRITICAL(NW,ngrid) ! layer where the gravity waves depleting |
|---|
| 115 | integer ZHSATURATION(NW,ngrid) ! altitude of the layer where the gravity waves break |
|---|
| 116 | INTEGER ll_zb(ngrid) ! layer where the gravity waves break |
|---|
| 117 | INTEGER ll_zc(ngrid) ! layer where the gravity waves break |
|---|
| 118 | integer ll_zb_ii,ll_zc_ii |
|---|
| 119 | integer ll_zb_max, ll_zb_max_r |
|---|
| 120 | REAL d_eddy_mix_p(NW,ngrid) ! Diffusion coefficients where ll> = ll_zb |
|---|
| 121 | REAL d_eddy_mix_m(NW,ngrid) ! Diffusion coefficients where ll< ll_zb |
|---|
| 122 | REAL d_eddy_mix_s(NW,ngrid) ! Diffusion coefficients where ll< ll_zb |
|---|
| 123 | REAL lambda_img(NW,ngrid) |
|---|
| 124 | REAL d_eddy_mix_p_ll(nlayer,NW,ngrid) ! Diffusion coefficients where ll> = ll_zb |
|---|
| 125 | REAL d_eddy_mix_m_ll(nlayer,NW,ngrid) ! Diffusion coefficients where ll< ll_zb |
|---|
| 126 | REAL d_eddy_mix_tot_ll(nlayer,NW,ngrid) ! Diffusion coefficients where ll> = ll_zb |
|---|
| 127 | REAL d_eddy_mix_tot(ngrid, nlayer+1) |
|---|
| 128 | REAL d_eddy_mix(NW,ngrid) ! Comprehensive Diffusion coefficients |
|---|
| 129 | REAL d_wave(NW,ngrid) ! coefficients consider the tracers' gradients |
|---|
| 130 | REAL u_eddy_mix_p(NW, ngrid) ! Zonal Diffusion coefficients |
|---|
| 131 | REAL v_eddy_mix_p(NW, ngrid) ! Meridional Diffusion coefficients |
|---|
| 132 | REAL h_eddy_mix_p(NW, ngrid) ! potential temperature DC |
|---|
| 133 | Real u_eddy_mix_tot(ngrid, nlayer+1) ! Total zonal D |
|---|
| 134 | Real v_eddy_mix_tot(ngrid, nlayer+1) ! Total meridional D |
|---|
| 135 | Real h_eddy_mix_tot(ngrid, nlayer+1) ! Total PT D |
|---|
| 136 | REAL U_shear(ngrid,nlayer) |
|---|
| 137 | Real wwp_vertical_tot(nlayer+1, NW, ngrid) ! Total meridional D |
|---|
| 138 | Real wwp_vertical_ll(nlayer+1) |
|---|
| 139 | real eddy_mix_ll(nlayer) |
|---|
| 140 | real eddy_mix_tot_ll(nlayer) |
|---|
| 141 | REAL pq_eddy_mix_p(NW,ngrid,nq) |
|---|
| 142 | REAL pq_eddy_mix_tot(ngrid, nlayer+1,nq) |
|---|
| 143 | REAL zq(ngrid,nlayer,nq) ! advected field nq |
|---|
| 144 | REAL zq_var(ngrid,nlayer,nq) |
|---|
| 145 | REAL dzq_var(ngrid,nlayer,nq) |
|---|
| 146 | REAL mdzq_var(nlayer,nq) |
|---|
| 147 | REAL zq_ave(nlayer,nq) |
|---|
| 148 | REAL dzq_ave(nlayer,nq) |
|---|
| 149 | REAL zq_ratio(nlayer,nq) |
|---|
| 150 | REAL, save:: eff |
|---|
| 151 | !$OMP THREADPRIVATE(eff) |
|---|
| 152 | REAL, save:: eff1 |
|---|
| 153 | !$OMP THREADPRIVATE(eff1) |
|---|
| 154 | REAL, save:: vdl |
|---|
| 155 | !$OMP THREADPRIVATE(vdl) |
|---|
| 156 | |
|---|
| 157 | |
|---|
| 158 | REAL intr_freq_m(nw, ngrid) ! Waves Intr. freq. at the 1/2 lev below the full level (previous name: ZOM) |
|---|
| 159 | REAL intr_freq_p(nw, ngrid) ! Waves Intr. freq. at the 1/2 lev above the full level (previous name: ZOP) |
|---|
| 160 | REAL wwm(nw, ngrid) ! Wave EP-fluxes at the 1/2 level below the full level |
|---|
| 161 | REAL wwp(nw, ngrid) ! Wave EP-fluxes at the 1/2 level above the full level |
|---|
| 162 | REAL wwpsat(nw,ngrid) ! Wave EP-fluxes of saturation |
|---|
| 163 | REAL u_epflux_p(nw, ngrid) ! Partial zonal flux (=for each wave) at the 1/2 level above the full level (previous name: RUWP) |
|---|
| 164 | REAL v_epflux_p(nw, ngrid) ! Partial meridional flux (=for each wave) at the 1/2 level above the full level (previous name: RVWP) |
|---|
| 165 | REAL u_epflux_tot(ngrid, nlayer + 1) ! Total zonal flux (=for all waves (nw)) at the 1/2 level above the full level (3D) (previous name: RUW) |
|---|
| 166 | REAL v_epflux_tot(ngrid, nlayer + 1) ! Total meridional flux (=for all waves (nw)) at the 1/2 level above the full level (3D) (previous name: RVW) |
|---|
| 167 | REAL epflux_0(nw, ngrid) ! Fluxes at launching level (previous name: RUW0) |
|---|
| 168 | REAL, save :: epflux_max ! Max EP flux value at launching altitude (previous name: RUWMAX, tunable) |
|---|
| 169 | !$OMP THREADPRIVATE(epflux_max) |
|---|
| 170 | INTEGER LAUNCH ! Launching altitude |
|---|
| 171 | REAL, save :: xlaunch ! Control the launching altitude by pressure |
|---|
| 172 | !$OMP THREADPRIVATE(xlaunch) |
|---|
| 173 | REAL, parameter:: zmaxth_top = 8000. ! Top of convective layer (approx. not used) |
|---|
| 174 | REAL cmax(ngrid,nlayer) ! Max horizontal absolute phase velocity (at the maginitide of zonal wind u at the launch altitude) |
|---|
| 175 | |
|---|
| 176 | ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS |
|---|
| 177 | REAL, save :: sat ! saturation parameter(tunable) |
|---|
| 178 | !$OMP THREADPRIVATE(sat) |
|---|
| 179 | REAL, save :: rdiss ! dissipation coefficient (tunable) |
|---|
| 180 | !$OMP THREADPRIVATE(rdiss) |
|---|
| 181 | REAL, parameter:: zoisec = 1.e-10 ! security for intrinsic frequency |
|---|
| 182 | |
|---|
| 183 | ! 0.3.3 Background flow at 1/2 levels and vertical coordinate |
|---|
| 184 | REAL H0bis(ngrid, nlayer) ! Characteristic Height of the atmosphere (specific locations) |
|---|
| 185 | REAL, save:: H0 ! Characteristic Height of the atmosphere (constant) |
|---|
| 186 | !$OMP THREADPRIVATE(H0) |
|---|
| 187 | REAL, parameter:: pr = 250 ! Reference pressure [Pa] |
|---|
| 188 | REAL, parameter:: tr = 220. ! Reference temperature [K] |
|---|
| 189 | REAL ZH(ngrid, nlayer + 1) ! Log-pressure altitude (constant H0) |
|---|
| 190 | REAL ZHbis(ngrid, nlayer + 1) ! Log-pressure altitude (varying H0bis) |
|---|
| 191 | REAL UH(ngrid, nlayer + 1) ! zonal wind at 1/2 levels |
|---|
| 192 | REAL VH(ngrid, nlayer + 1) ! meridional wind at 1/2 levels |
|---|
| 193 | REAL PH(ngrid, nlayer + 1) ! Pressure at 1/2 levels |
|---|
| 194 | REAL, parameter:: psec = 1.e-20 ! Security to avoid division by 0 pressure(!!IMPORTANT: should be lower than the topmost layer's pressure) |
|---|
| 195 | REAL BV(ngrid, nlayer + 1) ! Brunt Vaisala freq. (N^2) at 1/2 levels |
|---|
| 196 | REAL, parameter:: bvsec = 1.e-3 ! Security to avoid negative BV |
|---|
| 197 | REAL HREF(nlayer + 1) ! Reference pressure for launching altitude |
|---|
| 198 | |
|---|
| 199 | |
|---|
| 200 | REAL RAN_NUM_1,RAN_NUM_2,RAN_NUM_3 |
|---|
| 201 | INTEGER first_breaking_flag(ngrid) |
|---|
| 202 | INTEGER first_satuatio_flag(ngrid) |
|---|
| 203 | |
|---|
| 204 | LOGICAL,SAVE :: firstcall = .true. |
|---|
| 205 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 206 | |
|---|
| 207 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 208 | ! 1. INITIALISATIONS |
|---|
| 209 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 210 | IF (firstcall) THEN |
|---|
| 211 | write(*,*) "nonoro_gwd_mix: non-oro GW-induced mixing is active!" |
|---|
| 212 | epflux_max = 5.E-4 ! Mars' value !! |
|---|
| 213 | call getin_p("nonoro_gwd_epflux_max", epflux_max) |
|---|
| 214 | write(*,*) "NONORO_GWD_MIX: epflux_max=", epflux_max |
|---|
| 215 | sat = 1.5 ! default gravity waves saturation value !! |
|---|
| 216 | call getin_p("nonoro_gwd_sat", sat) |
|---|
| 217 | write(*,*) "NONORO_GWD_MIX: sat=", sat |
|---|
| 218 | ! cmax = 50. ! default gravity waves phase velocity value !! |
|---|
| 219 | ! call getin_p("nonoro_gwd_cmax", cmax) |
|---|
| 220 | ! write(*,*) "NONORO_GWD_MIX: cmax=", cmax |
|---|
| 221 | rdiss=0.07 ! default coefficient of dissipation !! |
|---|
| 222 | call getin_p("nonoro_gwd_rdiss", rdiss) |
|---|
| 223 | write(*,*) "NONORO_GWD_MIX: rdiss=", rdiss |
|---|
| 224 | kmax=1.E-4 ! default Max horizontal wavenumber !! |
|---|
| 225 | call getin_p("nonoro_gwd_kmax", kmax) |
|---|
| 226 | write(*,*) "NONORO_GWD_MIX: kmax=", kmax |
|---|
| 227 | kmin=7.E-6 ! default Max horizontal wavenumber !! |
|---|
| 228 | call getin_p("nonoro_gwd_kmin", kmin) |
|---|
| 229 | write(*,*) "NONORO_GWD_MIX: kmin=", kmin |
|---|
| 230 | xlaunch=0.6 ! default GW luanch altitude controller !! |
|---|
| 231 | call getin_p("nonoro_gwd_xlaunch", xlaunch) |
|---|
| 232 | write(*,*) "NONORO_GWD_MIX: xlaunch=", xlaunch |
|---|
| 233 | eff=0.1 ! Diffusion effective factor !! |
|---|
| 234 | call getin_p("nonoro_gwimixing_eff", eff) |
|---|
| 235 | write(*,*) "NONORO_GWD_MIX: eff=", eff |
|---|
| 236 | eff1=0.1 ! Diffusion effective factor !! |
|---|
| 237 | call getin_p("nonoro_gwimixing_eff1", eff1) |
|---|
| 238 | write(*,*) "NONORO_GWD_MIX: eff1=", eff1 |
|---|
| 239 | vdl=1.5 ! Diffusion effective factor !! |
|---|
| 240 | call getin_p("nonoro_gwimixing_vdl", vdl) |
|---|
| 241 | write(*,*) "NONORO_GWD_MIX: vdl=", vdl |
|---|
| 242 | ! Characteristic vertical scale height |
|---|
| 243 | H0 = r * tr / g |
|---|
| 244 | ! Control |
|---|
| 245 | if (deltat .LT. dtime) THEN |
|---|
| 246 | call abort_physic("NONORO_GWD_MIX","gwd random: deltat lower than dtime!",1) |
|---|
| 247 | endif |
|---|
| 248 | if (nlayer .LT. nw) THEN |
|---|
| 249 | call abort_physic("NONORO_GWD_MIX","gwd random: nlayer lower than nw!",1) |
|---|
| 250 | endif |
|---|
| 251 | firstcall = .false. |
|---|
| 252 | ENDIF |
|---|
| 253 | |
|---|
| 254 | ! Compute current values of temperature and winds |
|---|
| 255 | tt(:,:)=pt(:,:)+dtime*pdt(:,:) |
|---|
| 256 | uu(:,:)=pu(:,:)+dtime*pdu(:,:) |
|---|
| 257 | vv(:,:)=pv(:,:)+dtime*pdv(:,:) |
|---|
| 258 | zq(:,:,:)=pq(:,:,:)+dtime*pdq(:,:,:) |
|---|
| 259 | hh(:,:)=pht(:,:)+dtime*pdht(:,:) |
|---|
| 260 | |
|---|
| 261 | ! tracer average and gradients for mixing |
|---|
| 262 | zq_ave(:,:)=0. |
|---|
| 263 | zq_ave(:,:) = SUM(zq(:,:,:), dim=1) / real(ngrid) |
|---|
| 264 | |
|---|
| 265 | zq_var(:,:,:)=0. |
|---|
| 266 | DO ii=1,ngrid |
|---|
| 267 | zq_var(ii,:,:)=zq(ii,:,:)-zq_ave(:,:) |
|---|
| 268 | endDO |
|---|
| 269 | |
|---|
| 270 | dzq_var(:,:,:)=0. |
|---|
| 271 | mdzq_var(:,:) =0. |
|---|
| 272 | dzq_ave(:,:) =0. |
|---|
| 273 | zq_ratio(:,:) =0. |
|---|
| 274 | DO LL=1,nlayer-1 |
|---|
| 275 | dzq_var(:, LL, :) = (zq_var(:, LL+1, :) - zq_var(:, LL, :))**2. |
|---|
| 276 | mdzq_var(LL, :) = SUM(dzq_var(:, LL, :), dim=1)/real(ngrid) |
|---|
| 277 | dzq_ave(LL, :) = (zq_ave(LL+1, :) - zq_ave(LL, :))**2. |
|---|
| 278 | zq_ratio(LL,:) = MAX(0., (mdzq_var(LL+1,:) + mdzq_var(LL,:)))& |
|---|
| 279 | /MAX(1E-15, (dzq_ave(LL+1,:) + dzq_ave(LL,:))) |
|---|
| 280 | ! do qq=1,nq |
|---|
| 281 | ! print*, 'ratio=', zq_ratio(LL,QQ) |
|---|
| 282 | ! enddo |
|---|
| 283 | endDO |
|---|
| 284 | dzq_var(:,nlayer,:) = dzq_var(:,nlayer-1, :) |
|---|
| 285 | mdzq_var(nlayer,:) = mdzq_var(nlayer-1, :) |
|---|
| 286 | dzq_ave(nlayer,:) = dzq_ave(nlayer-1, :) |
|---|
| 287 | ! Compute the real mass density by rho=p/R(T)T |
|---|
| 288 | DO ll=1,nlayer |
|---|
| 289 | DO ii=1,ngrid |
|---|
| 290 | rho(ii,ll) = pp(ii,ll)/(rnew(ii,ll)*tt(ii,ll)) |
|---|
| 291 | ENDDO |
|---|
| 292 | ENDDO |
|---|
| 293 | ! print*,'epflux_max just after firstcall:', epflux_max |
|---|
| 294 | |
|---|
| 295 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 296 | ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS |
|---|
| 297 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 298 | ! Pressure and inverse of pressure at 1/2 level |
|---|
| 299 | DO LL = 2, nlayer |
|---|
| 300 | PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.) |
|---|
| 301 | end DO |
|---|
| 302 | PH(:, nlayer + 1) = 0. |
|---|
| 303 | PH(:, 1) = 2. * PP(:, 1) - PH(:, 2) |
|---|
| 304 | |
|---|
| 305 | ! call write_output('nonoro_pp','nonoro_pp', 'm',PP(:,:)) |
|---|
| 306 | ! call write_output('nonoro_ph','nonoro_ph', 'm',PH(:,:)) |
|---|
| 307 | |
|---|
| 308 | ! Launching level for reproductible case |
|---|
| 309 | !Pour revenir a la version non reproductible en changeant le nombre de |
|---|
| 310 | !process |
|---|
| 311 | ! Reprend la formule qui calcule PH en fonction de PP=play |
|---|
| 312 | DO LL = 2, nlayer |
|---|
| 313 | HREF(LL) = EXP((LOG(presnivs(LL))+ LOG(presnivs(LL - 1))) / 2.) |
|---|
| 314 | end DO |
|---|
| 315 | HREF(nlayer + 1) = 0. |
|---|
| 316 | HREF(1) = 2. * presnivs(1) - HREF(2) |
|---|
| 317 | |
|---|
| 318 | LAUNCH=0 |
|---|
| 319 | DO LL = 1, nlayer |
|---|
| 320 | IF (HREF(LL) / HREF(1) > XLAUNCH) LAUNCH = LL |
|---|
| 321 | ENDDO |
|---|
| 322 | |
|---|
| 323 | ! Log pressure vert. coordinate |
|---|
| 324 | ZH(:,1) = 0. |
|---|
| 325 | DO LL = 2, nlayer + 1 |
|---|
| 326 | !ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC)) |
|---|
| 327 | H0bis(:, LL-1) = r * TT(:, LL-1) / g |
|---|
| 328 | ZH(:, LL) = ZH(:, LL-1) & |
|---|
| 329 | + H0bis(:, LL-1)*(PH(:, LL-1)-PH(:,LL))/PP(:, LL-1) |
|---|
| 330 | end DO |
|---|
| 331 | ZH(:, 1) = H0 * LOG(PR / (PH(:, 1) + PSEC)) |
|---|
| 332 | |
|---|
| 333 | ! call write_output('nonoro_zh','nonoro_zh', 'm',ZH(:,2:nlayer+1)) |
|---|
| 334 | |
|---|
| 335 | ! Winds and Brunt Vaisala frequency |
|---|
| 336 | DO LL = 2, nlayer |
|---|
| 337 | UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind |
|---|
| 338 | VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind |
|---|
| 339 | ! Brunt Vaisala frequency (=g/T*[dT/dz + g/cp] ) |
|---|
| 340 | BV(:, LL)= G/(0.5 * (TT(:, LL) + TT(:, LL - 1))) & |
|---|
| 341 | *((TT(:, LL) - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1))+ & |
|---|
| 342 | G / cpnew(:,LL)) |
|---|
| 343 | |
|---|
| 344 | BV(:,LL) =MAX(1.E-12,BV(:,LL)) ! to ensure that BV is positive |
|---|
| 345 | BV(:,LL) = MAX(BVSEC,SQRT(BV(:,LL))) ! make sure it is not too small |
|---|
| 346 | end DO |
|---|
| 347 | BV(:, 1) = BV(:, 2) |
|---|
| 348 | UH(:, 1) = 0. |
|---|
| 349 | VH(:, 1) = 0. |
|---|
| 350 | BV(:, nlayer + 1) = BV(:, nlayer) |
|---|
| 351 | UH(:, nlayer + 1) = UU(:, nlayer) |
|---|
| 352 | VH(:, nlayer + 1) = VV(:, nlayer) |
|---|
| 353 | cmax(:,launch)=UU(:, launch) |
|---|
| 354 | DO ii=1,ngrid |
|---|
| 355 | KSTAR = PI/SQRT(cell_area(II)) |
|---|
| 356 | MAX_K(II)=MAX(kmin,kstar) |
|---|
| 357 | ENDDO |
|---|
| 358 | call write_output('nonoro_bv','Brunt Vaisala frequency in nonoro', 'Hz',BV(:,2:nlayer+1)) |
|---|
| 359 | |
|---|
| 360 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 361 | ! 3. WAVES CHARACTERISTICS CHOSEN RANDOMLY |
|---|
| 362 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 363 | ! The mod function of here a weird arguments are used to produce the waves characteristics in a stochastic way |
|---|
| 364 | DO JW = 1, NW |
|---|
| 365 | ! Angle |
|---|
| 366 | DO II = 1, ngrid |
|---|
| 367 | ! Angle (0 or PI so far) |
|---|
| 368 | RAN_NUM_1=MOD(TT(II, JW) * 10., 1.) |
|---|
| 369 | RAN_NUM_2= MOD(TT(II, JW) * 100., 1.) |
|---|
| 370 | ZP(JW, II) = (SIGN(1., 0.5 - RAN_NUM_1) + 1.)* PI / 2. |
|---|
| 371 | |
|---|
| 372 | ! Horizontal wavenumber amplitude |
|---|
| 373 | ! From Venus model: TN+GG April/June 2020 (rev2381) |
|---|
| 374 | ! "Individual waves are not supposed to occupy the entire domain, but only a fraction of it" (Lott+2012) |
|---|
| 375 | ! ZK(JW, II) = KMIN + (KMAX - KMIN) *RAN_NUM_2 |
|---|
| 376 | KSTAR = PI/SQRT(cell_area(II)) |
|---|
| 377 | ZK(JW, II) = MAX_K(II) + (KMAX - MAX_K(II)) *RAN_NUM_2 |
|---|
| 378 | |
|---|
| 379 | ! Horizontal phase speed |
|---|
| 380 | ! this computation allows to get a gaussian distribution centered on 0 (right ?) |
|---|
| 381 | ! then cmin is not useful, and it favors small values. |
|---|
| 382 | CPHA(:) = 0. |
|---|
| 383 | DO JJ = 1, NA |
|---|
| 384 | RAN_NUM_3=MOD(TT(II, JW+3*JJ)**2, 1.) |
|---|
| 385 | CPHA(ii) = CPHA(ii) + 2.*CMAX(ii,launch)* & |
|---|
| 386 | (RAN_NUM_3 -0.5)* & |
|---|
| 387 | SQRT(3.)/SQRT(NA*1.) |
|---|
| 388 | END DO |
|---|
| 389 | IF (CPHA(ii).LT.0.) THEN |
|---|
| 390 | CPHA(ii) = -1.*CPHA(ii) |
|---|
| 391 | ZP(JW,II) = ZP(JW,II) + PI |
|---|
| 392 | ENDIF |
|---|
| 393 | ! otherwise, with the computation below, we get a uniform distribution between cmin and cmax. |
|---|
| 394 | ! ran_num_3 = mod(tt(ii, jw)**2, 1.) |
|---|
| 395 | ! cpha = cmin + (cmax - cmin) * ran_num_3 |
|---|
| 396 | |
|---|
| 397 | ! Intrinsic frequency |
|---|
| 398 | ZO(JW, II) = CPHA(II) * ZK(JW, II) |
|---|
| 399 | ! Intrinsic frequency is imposed |
|---|
| 400 | ZO(JW, II) = ZO(JW, II) & |
|---|
| 401 | + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) & |
|---|
| 402 | + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH) |
|---|
| 403 | |
|---|
| 404 | ! Momentum flux at launch level |
|---|
| 405 | epflux_0(JW, II) = epflux_max & |
|---|
| 406 | * MOD(100. * (UU(II, JW)**2 + VV(II, JW)**2), 1.) |
|---|
| 407 | ENDDO |
|---|
| 408 | end DO |
|---|
| 409 | ! print*,'epflux_0 just after waves charac. ramdon:', epflux_0 |
|---|
| 410 | |
|---|
| 411 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 412 | ! 4. COMPUTE THE FLUXES |
|---|
| 413 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 414 | ! 4.1 Vertical velocity at launching altitude to ensure the correct value to the imposed fluxes. |
|---|
| 415 | !------------------------------------------------------ |
|---|
| 416 | DO JW = 1, NW |
|---|
| 417 | ! Evaluate intrinsic frequency at launching altitude: |
|---|
| 418 | intr_freq_p(JW, :) = ZO(JW, :) & |
|---|
| 419 | - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
|---|
| 420 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
|---|
| 421 | end DO |
|---|
| 422 | |
|---|
| 423 | ! VERSION WITHOUT CONVECTIVE SOURCE |
|---|
| 424 | ! Vertical velocity at launch level, value to ensure the imposed |
|---|
| 425 | ! mom flux: |
|---|
| 426 | DO JW = 1, NW |
|---|
| 427 | ! WW is directly a flux, here, not vertical velocity anymore |
|---|
| 428 | WWP(JW, :) = epflux_0(JW,:) |
|---|
| 429 | u_epflux_p(JW, :) = COS(ZP(JW, :)) * SIGN(1., intr_freq_p(JW, :)) * epflux_0(JW, :) |
|---|
| 430 | v_epflux_p(JW, :) = SIN(ZP(JW, :)) * SIGN(1., intr_freq_p(JW, :)) * epflux_0(JW, :) |
|---|
| 431 | end DO |
|---|
| 432 | |
|---|
| 433 | ! 4.2 Initial flux at launching altitude |
|---|
| 434 | !------------------------------------------------------ |
|---|
| 435 | u_epflux_tot(:, LAUNCH) = 0 |
|---|
| 436 | v_epflux_tot(:, LAUNCH) = 0 |
|---|
| 437 | DO JW = 1, NW |
|---|
| 438 | u_epflux_tot(:, LAUNCH) = u_epflux_tot(:, LAUNCH) + u_epflux_p(JW, :) |
|---|
| 439 | v_epflux_tot(:, LAUNCH) = v_epflux_tot(:, LAUNCH) + v_epflux_p(JW, :) |
|---|
| 440 | end DO |
|---|
| 441 | |
|---|
| 442 | ! 4.3 Loop over altitudes, with passage from one level to the next done by: |
|---|
| 443 | !---------------------------------------------------------------------------- |
|---|
| 444 | ! i) conserving the EP flux, |
|---|
| 445 | ! ii) dissipating a little, |
|---|
| 446 | ! iii) testing critical levels, |
|---|
| 447 | ! iv) testing the breaking. |
|---|
| 448 | !---------------------------------------------------------------------------- |
|---|
| 449 | |
|---|
| 450 | wwp_vertical_tot(:, :,:) =0. |
|---|
| 451 | DO LL = LAUNCH, nlayer - 1 |
|---|
| 452 | ! W(KB)ARNING: ALL THE PHYSICS IS HERE (PASSAGE FROM ONE LEVEL TO THE NEXT) |
|---|
| 453 | DO JW = 1, NW |
|---|
| 454 | intr_freq_m(JW, :) = intr_freq_p(JW, :) |
|---|
| 455 | WWM(JW, :) = WWP(JW, :) |
|---|
| 456 | ! Intrinsic Frequency |
|---|
| 457 | intr_freq_p(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW,:)) * UH(:, LL + 1) & |
|---|
| 458 | - ZK(JW, :) * SIN(ZP(JW,:)) * VH(:, LL + 1) |
|---|
| 459 | ! Vertical velocity in flux formulation |
|---|
| 460 | |
|---|
| 461 | wwpsat(JW,:) = ABS(intr_freq_p(JW, :))**3 / (2.*BV(:, LL+1)) & |
|---|
| 462 | * rho(:,launch)*exp(-zh(:, ll + 1) / H0) & |
|---|
| 463 | * SAT**2 *KMIN**2 / ZK(JW, :)**4 |
|---|
| 464 | WWP(JW, :) = MIN( & |
|---|
| 465 | ! No breaking (Eq.6) |
|---|
| 466 | WWM(JW, :) & |
|---|
| 467 | ! Dissipation (Eq. 8)(real rho used here rather than pressure |
|---|
| 468 | ! parametration because the original code has a bug if the density of |
|---|
| 469 | ! the planet at the launch altitude not approximate 1): ! |
|---|
| 470 | * EXP(- RDISS*2./rho(:, LL + 1) & |
|---|
| 471 | * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 & |
|---|
| 472 | / MAX(ABS(intr_freq_p(JW, :) + intr_freq_m(JW, :)) / 2., ZOISEC)**4 & |
|---|
| 473 | * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL))), & |
|---|
| 474 | ! Critical levels (forced to zero if intrinsic frequency |
|---|
| 475 | ! changes sign) |
|---|
| 476 | MAX(0., SIGN(1., intr_freq_p(JW, :) * intr_freq_m(JW, :))) & |
|---|
| 477 | ! Saturation (Eq. 12) (rho at launch altitude is imposed by J.Liu. |
|---|
| 478 | ! Same reason with Eq. 8) |
|---|
| 479 | * WWPSAT(JW,:)) |
|---|
| 480 | end DO |
|---|
| 481 | ! END OF W(KB)ARNING |
|---|
| 482 | |
|---|
| 483 | ! first_breaking_flag(:)=0 !mixing start at first breaking |
|---|
| 484 | ! first_satuatio_flag(:)=0 |
|---|
| 485 | |
|---|
| 486 | DO JW=1,NW |
|---|
| 487 | wwp_vertical_tot(ll, JW, :) = WWP(JW,:)/rho(:,ll) |
|---|
| 488 | ENDDO |
|---|
| 489 | end DO ! DO LL = LAUNCH, nlayer - 1 |
|---|
| 490 | ! print*, "this line is for tunning" |
|---|
| 491 | |
|---|
| 492 | DO II=1, ngrid |
|---|
| 493 | DO JW=1,NW |
|---|
| 494 | wwp_vertical_ll(:)=wwp_vertical_tot(:, JW, II) |
|---|
| 495 | ll_zb_max = MAXloc(wwp_vertical_ll(:),1) |
|---|
| 496 | !if (LLSATURATION(JW,II).ne.-1000) then |
|---|
| 497 | LLSATURATION(JW,II)=ll_zb_max |
|---|
| 498 | !endif |
|---|
| 499 | ! print*, "this line is for tunning" |
|---|
| 500 | if (ll_zb_max .gt. 1) then |
|---|
| 501 | !ll_zb_max_r =MAXloc(wwp_vertical_ll(nlayer:1:-1),1) |
|---|
| 502 | !if (ll_zb_max_r .gt. ll_zb_max) LLSATURATION(JW,II)=ll_zb_max_r |
|---|
| 503 | DO ll = nlayer,ll_zb_max,-1 |
|---|
| 504 | if (wwp_vertical_ll(ll)-wwp_vertical_ll(ll-1).gt. 0) then |
|---|
| 505 | LLSATURATION(JW,II)=ll |
|---|
| 506 | goto 119 |
|---|
| 507 | endif |
|---|
| 508 | ENDDO |
|---|
| 509 | 119 continue |
|---|
| 510 | endif |
|---|
| 511 | ! if (ll_zb_max .gt. launch) then |
|---|
| 512 | ! DO LL = (nlayer + 1), ll_zb_max,-1 |
|---|
| 513 | ! if (abs(wwp_vertical_ll(ll)).le. 1.e-9) LLZCRITICAL(JW,II)=LL |
|---|
| 514 | ! ENDDO |
|---|
| 515 | ! else |
|---|
| 516 | ! LLZCRITICAL(JW,II)=1 |
|---|
| 517 | ! endif |
|---|
| 518 | !print*, "this line is for tunning" |
|---|
| 519 | ENDDO |
|---|
| 520 | ENDDO |
|---|
| 521 | !print*, "this line is for tunning" |
|---|
| 522 | |
|---|
| 523 | |
|---|
| 524 | DO JW = 1, NW |
|---|
| 525 | ! Evaluate intrinsic frequency at launching altitude: |
|---|
| 526 | intr_freq_p(JW, :) = ZO(JW, :) & |
|---|
| 527 | - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
|---|
| 528 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
|---|
| 529 | end DO |
|---|
| 530 | d_eddy_mix_p_ll(:,:,:)=0. |
|---|
| 531 | d_eddy_mix_m_ll(:,:,:)=0. |
|---|
| 532 | d_eddy_mix_p(:,:)=0. |
|---|
| 533 | d_eddy_mix_m(:,:)=0. |
|---|
| 534 | d_eddy_mix_s(:,:)=0. |
|---|
| 535 | lambda_img(:,:) = 0. |
|---|
| 536 | u_shear(:,:)= 0. |
|---|
| 537 | DO LL = LAUNCH, nlayer - 1 |
|---|
| 538 | U_shear(:,ll)=(UU(:, LL+1)-UU(:, LL)) /(ZH(:, LL+1) - ZH(:, LL)) |
|---|
| 539 | DO II=1,ngrid |
|---|
| 540 | ! all the eddy diffusion parameters are culculated at here |
|---|
| 541 | DO JW = 1, NW |
|---|
| 542 | intr_freq_m(JW, II) = intr_freq_p(JW, II) |
|---|
| 543 | ! Intrinsic Frequency |
|---|
| 544 | intr_freq_p(JW, II) = ZO(JW, II) - ZK(JW, II) * COS(ZP(JW,II)) * UH(II, LL + 1) & |
|---|
| 545 | - ZK(JW, II) * SIN(ZP(JW,II)) * VH(II, LL + 1) |
|---|
| 546 | ll_zb(II)= LLSATURATION(JW,II) |
|---|
| 547 | ll_zb_ii = ll_zb(II) |
|---|
| 548 | ! ll_zc(II)= LLZCRITICAL(JW,II) |
|---|
| 549 | ! ll_zc_ii = ll_zc(II) |
|---|
| 550 | ! If (ll_zb_ii.le. launch .or. ll .gt. ll_zc_ii) then |
|---|
| 551 | If (ll .lt. ll_zb_ii .or. ll_zb_ii.lt. launch) then |
|---|
| 552 | d_eddy_mix_p(JW,II)=0. |
|---|
| 553 | d_eddy_mix_m(JW,II)=0. |
|---|
| 554 | d_eddy_mix_p_ll(ll,JW,ii)=0. |
|---|
| 555 | d_eddy_mix_m_ll(ll,JW,ii)=0. |
|---|
| 556 | endif |
|---|
| 557 | IF (LL.GE.ll_zb_ii .and. ll_zb_ii.ge. launch) THEN |
|---|
| 558 | lambda_img(JW,II) = 0.5 / H0bis(II,LL) & |
|---|
| 559 | - 1.5 /((intr_freq_p(JW, II)+ intr_freq_m(JW, II)) / 2.) & |
|---|
| 560 | *(intr_freq_p(JW, II) - intr_freq_m(JW, II)) & |
|---|
| 561 | /(ZH(II, LL+1) - ZH(II, LL)) & |
|---|
| 562 | + 1.5/((BV(II,LL)+BV(II, LL+1))/2.) & |
|---|
| 563 | *(BV(II, LL+1)-BV(II, LL)) /(ZH(II, LL+1) - ZH(II, LL)) |
|---|
| 564 | !lambda_img(JW,II) = max(0.5 / H0bis(II,LL), abs(lambda_img(JW,II))) |
|---|
| 565 | if (lambda_img(JW,II).lt. 0) lambda_img(JW,II) = 0. |
|---|
| 566 | !if (lambda_img(JW,II).gt. 0.5/H0bis(II,LL)) lambda_img(JW,II) = 0.5/H0bis(II,LL) |
|---|
| 567 | d_eddy_mix_s(JW,II) = eff*MAX(ABS(intr_freq_p(JW, II) + intr_freq_m(JW, II)) / 2., & |
|---|
| 568 | ZOISEC)**4 / (ZK(JW, II)**3 * ((BV(II,LL)+BV(II, LL+1))/2.)**3)& |
|---|
| 569 | *lambda_img(JW,II) |
|---|
| 570 | ! *abs(0.5 / H0bis(II,LL) - 1.5*ZK(JW, II) & |
|---|
| 571 | ! /abs((intr_freq_p(JW, II)+ intr_freq_m(JW, II)) / 2.) & |
|---|
| 572 | ! *(UU(II, LL+1)-UU(II, LL)) /(ZH(II, LL+1) - ZH(II, LL)) & |
|---|
| 573 | ! + 1.5/((BV(II,LL)+BV(II, LL+1))/2.) & |
|---|
| 574 | ! *(BV(II, LL+1)-BV(II, LL)) /(ZH(II, LL+1) - ZH(II, LL))) |
|---|
| 575 | ! *MAX(0., sign(1., lambda_img(JW,II))) |
|---|
| 576 | |
|---|
| 577 | d_eddy_mix_p(JW,II) = Min( d_eddy_mix_s(JW,II) , & |
|---|
| 578 | -((wwp_vertical_tot(ll+1, JW, II)-wwp_vertical_tot(ll, JW, II)) & |
|---|
| 579 | /(ZH(II, LL+1) - ZH(II, LL))) & |
|---|
| 580 | *((intr_freq_p(JW, II)+ intr_freq_m(JW, II)) / 2.)*eff1 & |
|---|
| 581 | /(((BV(II, LL+1) + BV(II,LL)) / 2.)**2 * ZK(JW, II))) |
|---|
| 582 | |
|---|
| 583 | if (d_eddy_mix_p(jw,ii) .lt. 0.) then |
|---|
| 584 | print*, "this line is for tunning" |
|---|
| 585 | endif |
|---|
| 586 | ENDIF |
|---|
| 587 | |
|---|
| 588 | |
|---|
| 589 | end DO !JW = 1, NW |
|---|
| 590 | end DO !II=1,ngrid |
|---|
| 591 | ! print*, "this line is for tunning" |
|---|
| 592 | d_eddy_mix_p_ll(ll,:,:)=d_eddy_mix_p(:,:) |
|---|
| 593 | ! print*, "this line is for tunning" |
|---|
| 594 | ! if (ll.ge.55) then |
|---|
| 595 | ! print*, "this line is for tunning" |
|---|
| 596 | ! endif |
|---|
| 597 | end DO ! DO LL = LAUNCH, nlayer - 1 |
|---|
| 598 | |
|---|
| 599 | call write_output('zonal_shear','u shear', 's-1',u_shear(:,:)) |
|---|
| 600 | |
|---|
| 601 | DO II=1,ngrid |
|---|
| 602 | DO JW = 1, NW |
|---|
| 603 | ll_zb(II)= LLSATURATION(JW,II) |
|---|
| 604 | ll_zb_ii = ll_zb(II) |
|---|
| 605 | |
|---|
| 606 | do LL=launch, nlayer-1 |
|---|
| 607 | IF (LL.eq.ll_zb_ii .and. ll_zb_ii .gt.launch) THEN |
|---|
| 608 | d_eddy_mix_m(JW,II) = d_eddy_mix_p_ll(ll,JW,ii) |
|---|
| 609 | ! if (ii.eq. 848) then |
|---|
| 610 | ! print*, "this line is for tunning" |
|---|
| 611 | ! endif |
|---|
| 612 | ENDIF |
|---|
| 613 | enddo |
|---|
| 614 | |
|---|
| 615 | ENDDO |
|---|
| 616 | ENDDO |
|---|
| 617 | |
|---|
| 618 | DO II=1,ngrid |
|---|
| 619 | DO JW = 1, NW |
|---|
| 620 | ll_zb(II)= LLSATURATION(JW,II) |
|---|
| 621 | ll_zb_ii = ll_zb(II) |
|---|
| 622 | DO LL= launch, (ll_zb_ii - 1) |
|---|
| 623 | if (ll_zb_ii .gt. launch) then |
|---|
| 624 | d_eddy_mix_m_ll(ll,JW,II) = d_eddy_mix_m(JW,II) & |
|---|
| 625 | * exp(vdl*(ZH(II, LL)-ZH(II, ll_zb_ii) ) / H0) |
|---|
| 626 | else |
|---|
| 627 | d_eddy_mix_m_ll(ll,JW,II) = 0. |
|---|
| 628 | endif |
|---|
| 629 | endDO |
|---|
| 630 | ENDDO |
|---|
| 631 | ENDDO |
|---|
| 632 | ! print*, "this line is for tunning" |
|---|
| 633 | |
|---|
| 634 | |
|---|
| 635 | DO II=1, ngrid |
|---|
| 636 | DO JW=1,NW |
|---|
| 637 | eddy_mix_ll(:) = d_eddy_mix_p_ll(:,JW,II)+ d_eddy_mix_m_ll(:,JW,II) |
|---|
| 638 | ! print*, "this line is for tunning" |
|---|
| 639 | enddo |
|---|
| 640 | ENDDO |
|---|
| 641 | |
|---|
| 642 | |
|---|
| 643 | DO JW = 1, NW |
|---|
| 644 | ! Evaluate intrinsic frequency at launching altitude: |
|---|
| 645 | intr_freq_p(JW, :) = ZO(JW, :) & |
|---|
| 646 | - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
|---|
| 647 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
|---|
| 648 | end DO |
|---|
| 649 | u_eddy_mix_tot(:, :) = 0. |
|---|
| 650 | v_eddy_mix_tot(:, :) = 0. |
|---|
| 651 | h_eddy_mix_tot(:, :) = 0. |
|---|
| 652 | u_eddy_mix_p(:, :)=0. |
|---|
| 653 | v_eddy_mix_p(:, :)=0. |
|---|
| 654 | h_eddy_mix_p(:, :)=0. |
|---|
| 655 | d_eddy_mix_tot_ll(:,:,:)=0. |
|---|
| 656 | pq_eddy_mix_p(:,:,:)=0. |
|---|
| 657 | pq_eddy_mix_tot(:, :,:)=0. |
|---|
| 658 | d_eddy_mix(:,:)=0. |
|---|
| 659 | d_wave(:, :) =0. |
|---|
| 660 | d_eddy_mix_p_ll(nlayer,:,:)=d_eddy_mix_p_ll(nlayer-1,:,:) |
|---|
| 661 | d_eddy_mix_tot(:, :) =0. |
|---|
| 662 | DO LL = LAUNCH, nlayer - 1 |
|---|
| 663 | d_eddy_mix(:,:) = d_eddy_mix_m_ll(ll,:,:) + d_eddy_mix_p_ll(ll,:,:) |
|---|
| 664 | DO JW = 1, NW |
|---|
| 665 | u_eddy_mix_p(JW, :) = d_eddy_mix(JW,:)*(UU(:, LL + 1) - UU(:, LL)) & |
|---|
| 666 | /(ZH(:, LL + 1) - ZH(:, LL)) & |
|---|
| 667 | *SIGN(1.,intr_freq_p(JW, :)) * COS(ZP(JW, :)) |
|---|
| 668 | v_eddy_mix_p(JW, :) = d_eddy_mix(JW,:)*(VV(:, LL + 1) - VV(:, LL)) & |
|---|
| 669 | /(ZH(:, LL + 1) - ZH(:, LL)) & |
|---|
| 670 | *SIGN(1.,intr_freq_p(JW, :)) * SIN(ZP(JW, :)) |
|---|
| 671 | h_eddy_mix_p(JW, :) = d_eddy_mix(JW,:)*(HH(:, LL + 1) - HH(:, LL)) & |
|---|
| 672 | /(ZH(:, LL + 1) - ZH(:, LL)) & |
|---|
| 673 | *SIGN(1.,intr_freq_p(JW, :)) * SIN(ZP(JW, :)) |
|---|
| 674 | |
|---|
| 675 | ENDDO |
|---|
| 676 | u_eddy_mix_tot(:, LL+1)=0. |
|---|
| 677 | v_eddy_mix_tot(:, LL+1)=0. |
|---|
| 678 | h_eddy_mix_tot(:, LL+1)=0. |
|---|
| 679 | DO JW=1,NW |
|---|
| 680 | u_eddy_mix_tot(:, LL+1) = u_eddy_mix_tot(:, LL+1) + u_eddy_mix_p(JW, :) |
|---|
| 681 | v_eddy_mix_tot(:, LL+1) = v_eddy_mix_tot(:, LL+1) + v_eddy_mix_p(JW, :) |
|---|
| 682 | h_eddy_mix_tot(:, LL+1) = h_eddy_mix_tot(:, LL+1) + h_eddy_mix_p(JW, :) |
|---|
| 683 | ENDDO |
|---|
| 684 | DO JW=1,NW |
|---|
| 685 | ! d_eddy_mix_tot(:, LL) = d_eddy_mix_tot(:, LL+1) + d_eddy_mix(JW,:) |
|---|
| 686 | d_eddy_mix_tot(:, LL+1) = d_eddy_mix_tot(:, LL+1) + d_eddy_mix(JW,:) |
|---|
| 687 | ! u_eddy_mix_tot(:, LL+1) = u_eddy_mix_tot(:, LL+1)+ u_eddy_mix_p(JW, :) |
|---|
| 688 | ! v_eddy_mix_tot(:, LL+1) = v_eddy_mix_tot(:, LL+1)+ v_eddy_mix_p(JW, :) |
|---|
| 689 | ENDDO |
|---|
| 690 | ! if (ll.ge.55) then |
|---|
| 691 | ! print*, "this line is for tunning" |
|---|
| 692 | !endif |
|---|
| 693 | ! d_wave(JW,:) = d_eddy_mix(JW, :)*(mdzq_var(LL,QQ)/dzq_ave(LL,QQ))**2. |
|---|
| 694 | DO QQ=1,NQ |
|---|
| 695 | DO JW=1,NW |
|---|
| 696 | d_wave(JW, :) = d_eddy_mix(JW, :)*zq_ratio(LL,QQ) |
|---|
| 697 | pq_eddy_mix_p(JW, :, QQ) = d_wave(JW, :)* (zq(:, LL + 1,QQ)- zq(:, LL, QQ)) & |
|---|
| 698 | /(ZH(:, LL + 1)- ZH(:, LL)) & |
|---|
| 699 | *SIGN(1.,intr_freq_p(JW, :)) * SIN(ZP(JW, :)) |
|---|
| 700 | ! pq_eddy_mix_tot(:, LL+1,QQ) = pq_eddy_mix_tot(:, LL+1,QQ) & |
|---|
| 701 | ! + pq_eddy_mix_p(JW, :, QQ) |
|---|
| 702 | ENDDO |
|---|
| 703 | ENDDO |
|---|
| 704 | pq_eddy_mix_tot(:, LL+1,:)=0. |
|---|
| 705 | DO JW=1,NW |
|---|
| 706 | DO QQ=1, NQ |
|---|
| 707 | pq_eddy_mix_tot(:, LL+1,QQ) = pq_eddy_mix_tot(:, LL+1,QQ) + pq_eddy_mix_p(JW, :, QQ) |
|---|
| 708 | ENDDO |
|---|
| 709 | endDO |
|---|
| 710 | ! print*, "this line is for tunning" |
|---|
| 711 | ENDDO !LL = LAUNCH, nlayer - 1 |
|---|
| 712 | |
|---|
| 713 | d_eddy_mix_tot(:, LAUNCH) = d_eddy_mix_tot(:, LAUNCH+1) |
|---|
| 714 | d_eddy_mix_tot(:, nlayer + 1) = d_eddy_mix_tot(:, nlayer) |
|---|
| 715 | d_eddy_mix_tot(:,:) = DTIME/DELTAT/REAL(NW) * d_eddy_mix_tot(:,:) & |
|---|
| 716 | + (1.-DTIME/DELTAT) * de_eddymix_rto(:,:) |
|---|
| 717 | call write_output('nonoro_d_mixing_tot','Total EP Flux along U in nonoro', 'm2s-1',d_eddy_mix_tot(:,2:nlayer+1)) |
|---|
| 718 | ! u_eddy_mix_tot(:, :) = 0. |
|---|
| 719 | ! v_eddy_mix_tot(:, :) = 0. |
|---|
| 720 | ! pq_eddy_mix_tot(:, :, :) = 0. |
|---|
| 721 | ! DO LL = 1, nlayer-1 |
|---|
| 722 | !u_eddy_mix_tot(:, LL) = d_eddy_mix_tot(:, LL)*(UU(:, LL + 1) - UU(:, LL)) & |
|---|
| 723 | ! /(ZH(:, LL + 1) - ZH(:, LL)) !*sign(1.,u_shear(:, LL)) |
|---|
| 724 | !v_eddy_mix_tot(:, LL) = d_eddy_mix_tot(:, LL)*(VV(:, LL + 1) - VV(:, LL)) & |
|---|
| 725 | ! |
|---|
| 726 | ! /(ZH(:, LL + 1) - ZH(:, LL)) !*sign(1.,u_shear(:, LL)) |
|---|
| 727 | |
|---|
| 728 | |
|---|
| 729 | |
|---|
| 730 | ! DO QQ=1, NQ |
|---|
| 731 | ! pq_eddy_mix_tot(:, LL,QQ) = d_eddy_mix_tot(:, LL) & |
|---|
| 732 | ! * (zq(:, LL + 1,QQ)- zq(:, LL, QQ)) & |
|---|
| 733 | ! /(ZH(:, LL + 1)- ZH(:, LL)) |
|---|
| 734 | ! ENDDO |
|---|
| 735 | |
|---|
| 736 | |
|---|
| 737 | |
|---|
| 738 | |
|---|
| 739 | !ENDDO !LL = LAUNCH, nlayer - 1 |
|---|
| 740 | |
|---|
| 741 | de_eddymix_rto(:,:) = d_eddy_mix_tot(:,:) |
|---|
| 742 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 743 | ! 5. TENDENCY CALCULATIONS |
|---|
| 744 | !----------------------------------------------------------------------------------------------------------------------- |
|---|
| 745 | |
|---|
| 746 | ! 5.1 Flow rectification at the top and in the low layers |
|---|
| 747 | ! -------------------------------------------------------- |
|---|
| 748 | ! Warning, this is the total on all GW |
|---|
| 749 | u_eddy_mix_tot(:, nlayer + 1) = 0. |
|---|
| 750 | v_eddy_mix_tot(:, nlayer + 1) = 0. |
|---|
| 751 | h_eddy_mix_tot(:, nlayer + 1) = 0. |
|---|
| 752 | pq_eddy_mix_tot(:, nlayer + 1,:)=0. |
|---|
| 753 | ! Here, big change compared to FLott version: |
|---|
| 754 | ! We compensate (u_epflux_tot(:, LAUNCH), ie total emitted upward flux |
|---|
| 755 | ! over the layers max(1,LAUNCH-3) to LAUNCH-1 |
|---|
| 756 | DO LL = 1, max(1,LAUNCH-3) |
|---|
| 757 | u_eddy_mix_tot(:, LL) = 0. |
|---|
| 758 | v_eddy_mix_tot(:, LL) = 0. |
|---|
| 759 | h_eddy_mix_tot(:, LL) = 0. |
|---|
| 760 | end DO |
|---|
| 761 | |
|---|
| 762 | DO QQ=1,NQ |
|---|
| 763 | DO LL = 1, max(1,LAUNCH-3) |
|---|
| 764 | pq_eddy_mix_tot(:, LL,QQ) = 0. |
|---|
| 765 | end DO |
|---|
| 766 | ENDDO |
|---|
| 767 | |
|---|
| 768 | DO LL = max(2,LAUNCH-2), LAUNCH-1 |
|---|
| 769 | u_eddy_mix_tot(:, LL) = u_eddy_mix_tot(:, LL - 1) + u_eddy_mix_tot(:, LAUNCH) & |
|---|
| 770 | * (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
|---|
| 771 | v_eddy_mix_tot(:, LL) = v_eddy_mix_tot(:, LL - 1) + v_eddy_mix_tot(:, LAUNCH) & |
|---|
| 772 | * (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
|---|
| 773 | h_eddy_mix_tot(:, LL) = h_eddy_mix_tot(:, LL - 1) + h_eddy_mix_tot(:, LAUNCH) & |
|---|
| 774 | * (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
|---|
| 775 | end DO |
|---|
| 776 | |
|---|
| 777 | |
|---|
| 778 | DO QQ=1,NQ |
|---|
| 779 | DO LL = max(2,LAUNCH-2), LAUNCH-1 |
|---|
| 780 | pq_eddy_mix_tot(:, LL,QQ) = pq_eddy_mix_tot(:, LL-1,QQ)+pq_eddy_mix_tot(:, LAUNCH,QQ)& |
|---|
| 781 | * (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
|---|
| 782 | end DO |
|---|
| 783 | ENDDO |
|---|
| 784 | !u_eddy_mix_tot(:,:) = DTIME/DELTAT/REAL(NW) * u_eddy_mix_tot(:,:) & |
|---|
| 785 | ! + (1.-DTIME/DELTAT) * df_eddymix_flx(:,:) |
|---|
| 786 | |
|---|
| 787 | !do ii=1,ngrid |
|---|
| 788 | ! if (u_eddy_mix_tot(ii,58).lt. -8000.) then |
|---|
| 789 | ! print*, ii |
|---|
| 790 | ! endif |
|---|
| 791 | !enddo |
|---|
| 792 | |
|---|
| 793 | ! This way, the total flux from GW is zero, but there is a net transport |
|---|
| 794 | ! (upward) that should be compensated by circulation |
|---|
| 795 | ! and induce additional friction at the surface |
|---|
| 796 | call write_output('nonoro_u_mixing_tot','Total EP Flux along U in nonoro', '',u_eddy_mix_tot(:,2:nlayer+1)) |
|---|
| 797 | call write_output('nonoro_v_mixing_tot','Total EP Flux along V in nonoro', '',v_eddy_mix_tot(:,2:nlayer+1)) |
|---|
| 798 | |
|---|
| 799 | ! 5.2 AR-1 RECURSIVE FORMULA (13) IN VERSION 4 |
|---|
| 800 | !--------------------------------------------- |
|---|
| 801 | DO LL = 1, nlayer |
|---|
| 802 | !Notice here the d_u and d_v are tendency (For Mars) but not increment(Venus). |
|---|
| 803 | d_u(:, LL) = (u_eddy_mix_tot(:, LL + 1) - u_eddy_mix_tot(:, LL)) & |
|---|
| 804 | / (ZH(:, LL + 1) - ZH(:, LL)) |
|---|
| 805 | !d_v(:, LL) = (v_eddy_mix_tot(:, LL + 1) - v_eddy_mix_tot(:, LL)) & |
|---|
| 806 | ! / (ZH(:, LL + 1) - ZH(:, LL)) |
|---|
| 807 | d_h(:, LL) = (h_eddy_mix_tot(:, LL + 1) - h_eddy_mix_tot(:, LL)) & |
|---|
| 808 | / (ZH(:, LL + 1) - ZH(:, LL)) |
|---|
| 809 | ENDDO |
|---|
| 810 | |
|---|
| 811 | DO QQ=1,NQ |
|---|
| 812 | DO ll = 1, nlayer |
|---|
| 813 | d_pq(:, ll, QQ) = (pq_eddy_mix_tot(:, LL + 1,QQ) - pq_eddy_mix_tot(:, LL, QQ)) & |
|---|
| 814 | / (ZH(:, LL + 1) - ZH(:, LL)) |
|---|
| 815 | end DO |
|---|
| 816 | ENDDO |
|---|
| 817 | !df_eddymix_flx(:,:) = u_eddy_mix_tot(:,:) |
|---|
| 818 | !d_pq(:, :, :)=0. |
|---|
| 819 | !d_t(:,:) = 0. |
|---|
| 820 | !d_v(:,:) = 0. |
|---|
| 821 | !zustr(:) = 0. |
|---|
| 822 | !zvstr(:) = 0. |
|---|
| 823 | ! call write_output('nonoro_d_u','nonoro_d_u', '',d_u(:,:)) |
|---|
| 824 | ! call write_output('nonoro_d_v','nonoro_d_v', '',d_v(:,:)) |
|---|
| 825 | |
|---|
| 826 | ! 5.3 Update tendency of wind with the previous (and saved) values |
|---|
| 827 | !----------------------------------------------------------------- |
|---|
| 828 | d_u(:,:) = DTIME/DELTAT/REAL(NW) * d_u(:,:) & |
|---|
| 829 | + (1.-DTIME/DELTAT) * du_eddymix_gwd(:,:) |
|---|
| 830 | !d_v(:,:) = DTIME/DELTAT/REAL(NW) * d_v(:,:) & |
|---|
| 831 | ! + (1.-DTIME/DELTAT) * dv_eddymix_gwd(:,:) |
|---|
| 832 | du_eddymix_gwd(:,:) = d_u(:,:) |
|---|
| 833 | !dv_eddymix_gwd(:,:) = d_v(:,:) |
|---|
| 834 | d_v(:,:)=0. |
|---|
| 835 | call write_output('du_eddymix_gwd','Tendency on U due to nonoro GW', 'm.s-2',du_eddymix_gwd(:,:)) |
|---|
| 836 | !call write_output('dv_eddymix_gwd','Tendency on V due to nonoro GW', 'm.s-2',dv_eddymix_gwd(:,:)) |
|---|
| 837 | d_h(:,:) = DTIME/DELTAT/REAL(NW) * d_h(:,:) & |
|---|
| 838 | + (1.-DTIME/DELTAT) * dh_eddymix_gwd(:,:) |
|---|
| 839 | do ii=1,ngrid |
|---|
| 840 | d_t(ii,:) = d_h(ii,:) * (PP(ii,:) / PH(ii,1))**rcp |
|---|
| 841 | enddo |
|---|
| 842 | |
|---|
| 843 | dh_eddymix_gwd(:,:)=d_h(:,:) |
|---|
| 844 | |
|---|
| 845 | DO QQ=1,NQ |
|---|
| 846 | d_pq(:, :, QQ) =DTIME/DELTAT/REAL(NW) * d_pq(:, :, QQ) & |
|---|
| 847 | + (1.-DTIME/DELTAT) * dq_eddymix_gwd(:, :, QQ) |
|---|
| 848 | endDO |
|---|
| 849 | |
|---|
| 850 | do QQ=1,NQ |
|---|
| 851 | dq_eddymix_gwd(:, :, QQ)=d_pq(:, :, QQ) |
|---|
| 852 | ENDdo |
|---|
| 853 | |
|---|
| 854 | END SUBROUTINE NONORO_GWD_MIX |
|---|
| 855 | |
|---|
| 856 | |
|---|
| 857 | |
|---|
| 858 | ! ======================================================== |
|---|
| 859 | ! Subroutines used to allocate/deallocate module variables |
|---|
| 860 | ! ======================================================== |
|---|
| 861 | SUBROUTINE ini_nonoro_gwd_mix(ngrid,nlayer,nq) |
|---|
| 862 | |
|---|
| 863 | IMPLICIT NONE |
|---|
| 864 | |
|---|
| 865 | INTEGER, INTENT (in) :: ngrid ! number of atmospheric columns |
|---|
| 866 | INTEGER, INTENT (in) :: nlayer ! number of atmospheric layers |
|---|
| 867 | INTEGER, INTENT (in) :: nq ! number of atmospheric tracers |
|---|
| 868 | |
|---|
| 869 | allocate(du_eddymix_gwd(ngrid,nlayer)) |
|---|
| 870 | allocate(dv_eddymix_gwd(ngrid,nlayer)) |
|---|
| 871 | allocate(dh_eddymix_gwd(ngrid,nlayer)) |
|---|
| 872 | allocate(dq_eddymix_gwd(ngrid,nlayer,nq)) |
|---|
| 873 | allocate(de_eddymix_rto(ngrid,nlayer+1)) |
|---|
| 874 | allocate(df_eddymix_flx(ngrid,nlayer+1)) |
|---|
| 875 | |
|---|
| 876 | !du_eddymix_gwd(:,:)=0 |
|---|
| 877 | !dv_eddymix_gwd(:,:)=0 |
|---|
| 878 | ! allocate(east_gwstress(ngrid,nlayer)) |
|---|
| 879 | ! east_gwstress(:,:)=0 |
|---|
| 880 | ! allocate(west_gwstress(ngrid,nlayer)) |
|---|
| 881 | ! west_gwstress(:,:)=0 |
|---|
| 882 | |
|---|
| 883 | END SUBROUTINE ini_nonoro_gwd_mix |
|---|
| 884 | ! ---------------------------------- |
|---|
| 885 | SUBROUTINE end_nonoro_gwd_mix |
|---|
| 886 | |
|---|
| 887 | IMPLICIT NONE |
|---|
| 888 | |
|---|
| 889 | if (allocated(du_eddymix_gwd)) deallocate(du_eddymix_gwd) |
|---|
| 890 | if (allocated(dv_eddymix_gwd)) deallocate(dv_eddymix_gwd) |
|---|
| 891 | if (allocated(dh_eddymix_gwd)) deallocate(dh_eddymix_gwd) |
|---|
| 892 | if (allocated(dq_eddymix_gwd)) deallocate(dq_eddymix_gwd) |
|---|
| 893 | if (allocated(de_eddymix_rto)) deallocate(de_eddymix_rto) |
|---|
| 894 | if (allocated(df_eddymix_flx)) deallocate(df_eddymix_flx) |
|---|
| 895 | ! if (allocated(east_gwstress)) deallocate(east_gwstress) |
|---|
| 896 | ! if (allocated(west_gwstress)) deallocate(west_gwstress) |
|---|
| 897 | |
|---|
| 898 | END SUBROUTINE end_nonoro_gwd_mix |
|---|
| 899 | !----------------------------------- |
|---|
| 900 | ! FUNCTION MAXLOCATION(gwd_normal,gwd_satura) |
|---|
| 901 | |
|---|
| 902 | ! implicit none |
|---|
| 903 | |
|---|
| 904 | ! INTEGER MAXLOCATION |
|---|
| 905 | ! REAL gwd_normal,gwd_satura |
|---|
| 906 | |
|---|
| 907 | ! IF (gwd_normal .GT. gwd_satura ) THEN |
|---|
| 908 | ! MAXLOCATION=1 |
|---|
| 909 | ! ELSEIF (gwd_normal .LT.gwd_satura) THEN |
|---|
| 910 | ! MAXLOCATION=2 |
|---|
| 911 | ! ELSE |
|---|
| 912 | ! MAXLOCATION=1 |
|---|
| 913 | ! ENDIF |
|---|
| 914 | |
|---|
| 915 | ! return |
|---|
| 916 | |
|---|
| 917 | ! END FUNCTION |
|---|
| 918 | |
|---|
| 919 | |
|---|
| 920 | END MODULE nonoro_gwd_mix_mod |
|---|