1 | MODULE mp2m_calmufi |
---|
2 | use tracer_h |
---|
3 | use callkeys_mod, only : call_haze_prod_pCH4, haze_rho |
---|
4 | |
---|
5 | ! Microphysical model MP2M |
---|
6 | use mp2m_intgcm |
---|
7 | use mp2m_diagnostics |
---|
8 | |
---|
9 | |
---|
10 | implicit none |
---|
11 | |
---|
12 | !============================================================================ |
---|
13 | ! |
---|
14 | ! Purpose |
---|
15 | ! ------- |
---|
16 | ! Interface subroutine to YAMMS model for LMD PCM. |
---|
17 | ! |
---|
18 | ! The subroutine computes the microphysics processes for a single vertical column. |
---|
19 | ! - All input vectors are assumed to be defined from GROUND to TOP of the atmosphere. |
---|
20 | ! - All output vectors are defined from GROUND to TOP of the atmosphere. |
---|
21 | ! - Only tendencies are returned. |
---|
22 | ! |
---|
23 | ! @important |
---|
24 | ! The method assumes global initialization of YAMMS model (and extras) has been already |
---|
25 | ! done elsewhere. |
---|
26 | ! |
---|
27 | ! @warning |
---|
28 | ! Microphysical tracers from physics must be in X/kg_of_air and convert into X/m2 for microphysics. |
---|
29 | ! |
---|
30 | ! @warning |
---|
31 | ! We suppose a given order of tracers (1. mu_m0as, 2. mu_m3as, 3. mu_m0af, 4. mu_m3af)! |
---|
32 | ! |
---|
33 | ! Authors |
---|
34 | ! ------- |
---|
35 | ! B. de Batz de Trenquelléon (11/2024) |
---|
36 | ! |
---|
37 | !============================================================================ |
---|
38 | |
---|
39 | CONTAINS |
---|
40 | |
---|
41 | SUBROUTINE calmufi(dt, plev, zlev, play, zlay, g3d, temp, pq, zdqfi, zdqmufi_prod, zdqmufi) |
---|
42 | !! Interface subroutine to YAMMS model for LMD PCM. |
---|
43 | !! |
---|
44 | !! The subroutine computes the microphysics processes for a single vertical column. |
---|
45 | !! |
---|
46 | REAL(kind=8), INTENT(IN) :: dt !! Physics timestep (s). |
---|
47 | |
---|
48 | REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: plev ! Pressure levels (Pa). |
---|
49 | REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: zlev ! Altitude levels (m). |
---|
50 | REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: play ! Pressure layers (Pa). |
---|
51 | REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: zlay ! Altitude at the center of each layer (m). |
---|
52 | REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: g3d ! Latitude-Altitude depending gravitational acceleration (m.s-2). |
---|
53 | REAL(kind=8), DIMENSION(:,:), INTENT(IN) :: temp ! Temperature at the center of each layer (K). |
---|
54 | |
---|
55 | REAL(kind=8), DIMENSION(:,:,:), INTENT(IN) :: pq ! Tracers (X.kg-1). |
---|
56 | REAL(kind=8), DIMENSION(:,:,:), INTENT(IN) :: zdqfi ! Tendency from former processes for tracers (X.kg-1.s-1). |
---|
57 | REAL(kind=8), DIMENSION(:,:,:), INTENT(IN) :: zdqmufi_prod ! Aerosols production tendency (kg/kg_of_air/s). |
---|
58 | REAL(kind=8), DIMENSION(:,:,:), INTENT(OUT) :: zdqmufi ! Microphysical tendency for tracers (X.m-2 --> X.kg-1.s-1). |
---|
59 | |
---|
60 | ! Local tracers: |
---|
61 | !~~~~~~~~~~~~~~~ |
---|
62 | REAL(kind=8), DIMENSION(:,:,:), ALLOCATABLE :: zq ! Local tracers updated from former processes (X.kg-1). |
---|
63 | |
---|
64 | REAL(kind=8), DIMENSION(:), ALLOCATABLE :: m0as ! 0th order moment of the spherical mode (m-2). |
---|
65 | REAL(kind=8), DIMENSION(:), ALLOCATABLE :: m3as ! 3rd order moment of the spherical mode (m3.m-2). |
---|
66 | REAL(kind=8), DIMENSION(:), ALLOCATABLE :: m0af ! 0th order moment of the fractal mode (m-2). |
---|
67 | REAL(kind=8), DIMENSION(:), ALLOCATABLE :: m3af ! 3rd order moment of the fractal mode (m3.m-2). |
---|
68 | |
---|
69 | REAL(kind=8), DIMENSION(:), ALLOCATABLE :: m3as_prod ! Production of 3rd order moment of the spherical mode (m3.m-2). |
---|
70 | |
---|
71 | REAL(kind=8), DIMENSION(:), ALLOCATABLE :: dm0as ! Tendency of the 0th order moment of the spherical mode distribution (m-2). |
---|
72 | REAL(kind=8), DIMENSION(:), ALLOCATABLE :: dm3as ! Tendency of the 3rd order moment of the spherical mode distribution (m3.m-2). |
---|
73 | REAL(kind=8), DIMENSION(:), ALLOCATABLE :: dm0af ! Tendency of the 0th order moment of the fractal mode distribution (m-2). |
---|
74 | REAL(kind=8), DIMENSION(:), ALLOCATABLE :: dm3af ! Tendency of the 3rd order moment of the fractal mode distribution (m3.m-2). |
---|
75 | |
---|
76 | ! Local variables: |
---|
77 | !~~~~~~~~~~~~~~~~~ |
---|
78 | REAL(kind=8), DIMENSION(:,:), ALLOCATABLE :: int2ext ! Conversion intensive to extensive (kg.m-2). |
---|
79 | REAL(kind=8), DIMENSION(:), ALLOCATABLE :: tmp |
---|
80 | TYPE(error) :: err |
---|
81 | |
---|
82 | INTEGER :: ilon,iq |
---|
83 | INTEGER :: nq,nlon,nlay |
---|
84 | CHARACTER(len=10) :: tname |
---|
85 | |
---|
86 | ! Read size of arrays: |
---|
87 | !~~~~~~~~~~~~~~~~~~~~~ |
---|
88 | nq = size(pq,DIM=3) |
---|
89 | nlon = size(play,DIM=1) |
---|
90 | nlay = size(play,DIM=2) |
---|
91 | |
---|
92 | ! Allocate arrays: |
---|
93 | !~~~~~~~~~~~~~~~~~ |
---|
94 | ALLOCATE(zq(nlon,nlay,nq)) |
---|
95 | |
---|
96 | ALLOCATE(m0as(nlay)) |
---|
97 | ALLOCATE(m3as(nlay)) |
---|
98 | ALLOCATE(m0af(nlay)) |
---|
99 | ALLOCATE(m3af(nlay)) |
---|
100 | |
---|
101 | ALLOCATE(m3as_prod(nlay)) |
---|
102 | |
---|
103 | ALLOCATE(dm0as(nlay)) |
---|
104 | ALLOCATE(dm3as(nlay)) |
---|
105 | ALLOCATE(dm0af(nlay)) |
---|
106 | ALLOCATE(dm3af(nlay)) |
---|
107 | |
---|
108 | ALLOCATE(int2ext(nlon,nlay)) |
---|
109 | |
---|
110 | !------------------ |
---|
111 | ! 1. Initialization |
---|
112 | !------------------ |
---|
113 | |
---|
114 | ! Initialization of zdqmufi here since intent=out and no action performed on every tracers |
---|
115 | zdqmufi(:,:,:) = 0.D0 |
---|
116 | |
---|
117 | ! Initialize tracers updated with former processes from physics |
---|
118 | zq(:,:,:) = pq(:,:,:) + zdqfi(:,:,:)*dt |
---|
119 | |
---|
120 | ! Loop on horizontal grid points |
---|
121 | DO ilon = 1, nlon |
---|
122 | |
---|
123 | ! Convert tracers to extensive |
---|
124 | int2ext(ilon,:) = (plev(ilon,1:nlay)-plev(ilon,2:nlay+1)) / g3d(ilon,1:nlay) |
---|
125 | |
---|
126 | m0as(:) = zq(ilon,:,micro_indx(1)) * int2ext(ilon,:) |
---|
127 | m3as(:) = zq(ilon,:,micro_indx(2)) * int2ext(ilon,:) |
---|
128 | |
---|
129 | m0af(:) = zq(ilon,:,micro_indx(3)) * int2ext(ilon,:) |
---|
130 | m3af(:) = zq(ilon,:,micro_indx(4)) * int2ext(ilon,:) |
---|
131 | |
---|
132 | ! Production of haze in the atmosphere by photolysis of CH4 |
---|
133 | if (call_haze_prod_pCH4) then |
---|
134 | do iq = 1, nq |
---|
135 | tname = noms(iq) |
---|
136 | if (tname(1:4).eq."haze") then |
---|
137 | m3as_prod(:) = zdqmufi_prod(ilon,:,iq) * (int2ext(ilon,:) / haze_rho) * dt |
---|
138 | endif |
---|
139 | enddo |
---|
140 | else |
---|
141 | m3as_prod(:) = 0.D0 |
---|
142 | endif |
---|
143 | |
---|
144 | ! Hackin the pressure level |
---|
145 | tmp = plev(ilon,:) |
---|
146 | if (tmp(nlay+1) == 0.0) then |
---|
147 | tmp(nlay+1) = 2*tmp(nlay) - tmp(nlay-1) |
---|
148 | endif |
---|
149 | |
---|
150 | ! Initialize YAMMS atmospheric column |
---|
151 | err = mm_column_init(tmp,zlev(ilon,:),play(ilon,:),zlay(ilon,:),temp(ilon,:)) ; IF (err /= 0) call abort_program(err) |
---|
152 | ! Initialize YAMMS aerosols moments column |
---|
153 | err = mm_aerosols_init(m0as,m3as,m0af,m3af) ; IF (err /= 0) call abort_program(err) |
---|
154 | |
---|
155 | ! Initializes tendencies |
---|
156 | dm0as(:) = 0._mm_wp ; dm3as(:) = 0._mm_wp ; dm0af(:) = 0._mm_wp ; dm3af(:) = 0._mm_wp |
---|
157 | |
---|
158 | !---------------------------- |
---|
159 | ! 2. Call microphysical model |
---|
160 | !---------------------------- |
---|
161 | |
---|
162 | ! Call microphysics |
---|
163 | IF (.NOT.mm_muphys(m3as_prod,dm0as,dm3as,dm0af,dm3af)) THEN |
---|
164 | call abort_program(error("mm_muphys aborted -> initialization not done !",-1)) |
---|
165 | ENDIF |
---|
166 | |
---|
167 | ! Save diagnostics |
---|
168 | call mm_diagnostics(dt,mp2m_aer_s_prec(ilon),mp2m_aer_f_prec(ilon), & |
---|
169 | mp2m_aer_s_w(ilon,:),mp2m_aer_f_w(ilon,:), & |
---|
170 | mp2m_aer_s_flux(ilon,:),mp2m_aer_f_flux(ilon,:), & |
---|
171 | mp2m_rc_sph(ilon,:),mp2m_rc_fra(ilon,:)) |
---|
172 | |
---|
173 | ! Convert tracers back to intensives |
---|
174 | zdqmufi(ilon,:,micro_indx(1)) = dm0as(:) / int2ext(ilon,:) |
---|
175 | zdqmufi(ilon,:,micro_indx(2)) = dm3as(:) / int2ext(ilon,:) |
---|
176 | zdqmufi(ilon,:,micro_indx(3)) = dm0af(:) / int2ext(ilon,:) |
---|
177 | zdqmufi(ilon,:,micro_indx(4)) = dm3af(:) / int2ext(ilon,:) |
---|
178 | |
---|
179 | END DO ! End loop on ilon |
---|
180 | |
---|
181 | ! YAMMS gives a tendency which is integrated for all the timestep but in the GCM |
---|
182 | ! we want to have routines spitting tendencies in s-1 -> let's divide ! |
---|
183 | zdqmufi(:,:,:) = zdqmufi(:,:,:) / dt |
---|
184 | |
---|
185 | END SUBROUTINE calmufi |
---|
186 | |
---|
187 | END MODULE mp2m_calmufi |
---|