1 | subroutine hazecloud(ngrid,nlayer,nq,ptimestep, & |
---|
2 | pplay,pplev,pq,pdq,pdist_sol,mu0,pfluxuv,zdqhaze, & |
---|
3 | zdqphot_prec,zdqphot_ch4,zdqconv_prec,declin) |
---|
4 | |
---|
5 | ! zdqphot_ch4,zdqconv_prec,declin,zdqhaze_col) |
---|
6 | |
---|
7 | use radinc_h, only : naerkind |
---|
8 | use comgeomfi_h |
---|
9 | use comcstfi_mod, only: pi, g |
---|
10 | use tracer_h, only: igcm_haze, igcm_ch4_gas, igcm_prec_haze, noms, mmol |
---|
11 | use geometry_mod, only: longitude, latitude ! in radians |
---|
12 | use callkeys_mod, only: hazeconservch4 |
---|
13 | |
---|
14 | implicit none |
---|
15 | |
---|
16 | !================================================================== |
---|
17 | ! Purpose |
---|
18 | ! ------- |
---|
19 | ! Production of haze in the atmosphere |
---|
20 | ! |
---|
21 | ! Inputs |
---|
22 | ! ------ |
---|
23 | ! ngrid Number of vertical columns |
---|
24 | ! nlayer Number of layers |
---|
25 | ! pplay(ngrid,nlayer) Pressure layers |
---|
26 | ! pplev(ngrid,nlayer+1) Pressure levels |
---|
27 | ! |
---|
28 | ! Outputs |
---|
29 | ! ------- |
---|
30 | ! |
---|
31 | ! Both |
---|
32 | ! ---- |
---|
33 | ! |
---|
34 | ! Authors |
---|
35 | ! ------- |
---|
36 | ! Tanguy Bertrand and Francois Forget (2014) |
---|
37 | ! |
---|
38 | !================================================================== |
---|
39 | |
---|
40 | |
---|
41 | !----------------------------------------------------------------------- |
---|
42 | ! Arguments |
---|
43 | |
---|
44 | INTEGER ngrid, nlayer, nq |
---|
45 | ! REAL lati(ngrid) |
---|
46 | ! REAL long(ngrid) |
---|
47 | ! REAL declin |
---|
48 | LOGICAL firstcall |
---|
49 | SAVE firstcall |
---|
50 | DATA firstcall/.true./ |
---|
51 | REAL ptimestep |
---|
52 | REAL pplay(ngrid,nlayer),pplev(ngrid,nlayer+1) |
---|
53 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) |
---|
54 | REAL,INTENT(IN) :: pdq(ngrid,nlayer,nq) |
---|
55 | ! REAL,INTENT(IN) :: mmol(nq) |
---|
56 | REAL,INTENT(IN) :: pdist_sol ! distance SUN-pluto in AU |
---|
57 | REAL,INTENT(IN) :: pfluxuv ! Lyman alpha flux at specific Ls (ph/cm/s) |
---|
58 | REAL,INTENT(IN) :: mu0(ngrid) ! cosinus of solar incident flux |
---|
59 | REAL,INTENT(IN) :: declin ! distance SUN-pluto in AU |
---|
60 | REAL,INTENT(OUT) :: zdqhaze(ngrid,nlayer,nq) ! Final tendancy |
---|
61 | ! REAL,INTENT(OUT) :: zdqhaze_col(ngrid) ! Final tendancy haze prod |
---|
62 | !----------------------------------------------------------------------- |
---|
63 | ! Local variables |
---|
64 | |
---|
65 | INTEGER l,ig,iq |
---|
66 | REAL zq_ch4(ngrid,nlayer) |
---|
67 | REAL zq_prec(ngrid,nlayer) |
---|
68 | REAL tauch4(nlayer) |
---|
69 | REAL sigch4 ! aborption cross section ch4 cm-2 mol-1 |
---|
70 | REAL flym_sol_earth ! initial flux Earth ph.m-2.s-1 |
---|
71 | REAL flym_sol_pluto ! initial Lyman alpha SOLAR flux Pluto ph.m-2.s-1 |
---|
72 | REAL flym_ipm(ngrid) ! top of atm. Incident IPM (Interplanetary) flux Lyman alpha ph.m-2.s-1 |
---|
73 | REAL fluxlym_sol(nlayer+1) ! Local Solar flux Lyman alpha ph.m-2.s-1 |
---|
74 | REAL fluxlym_ipm(nlayer+1) ! Local IPM (Interplanetary) flux Lyman alpha ph.m-2.s-1 |
---|
75 | REAL mu_ipm(ngrid) ! local Mean incident flux for IPM Lyman alpha photons |
---|
76 | REAL mu_sol(ngrid) ! local Mean incident flux for solar lyman alpha photons |
---|
77 | |
---|
78 | REAL gradflux(nlayer) ! gradient flux Lyman alpha ph.m-2.s-1 |
---|
79 | REAL zdqphot_ch4(ngrid,nlayer) ! tendancy due to photolysis of ch4 |
---|
80 | REAL zdqphot_prec(ngrid,nlayer) ! tendancy due to photolysis of ch4 |
---|
81 | REAL zdqconv_prec(ngrid,nlayer) ! tendancy due to conversion of |
---|
82 | ! prec_haze into haze |
---|
83 | REAL kch4 ! fraction of Carbon from ch4 directly dissociated |
---|
84 | ! by prec_haze |
---|
85 | CHARACTER(len=10) :: tname |
---|
86 | REAL ncratio ! ration Nitrogen/Carbon observed in tholins |
---|
87 | REAL tcon ! Time constant: conversion in aerosol |
---|
88 | REAL avogadro ! avogadro constant |
---|
89 | |
---|
90 | REAL longit |
---|
91 | REAL latit |
---|
92 | REAL valmin |
---|
93 | REAL valmax |
---|
94 | REAL valmin_dl |
---|
95 | REAL puis |
---|
96 | REAL dist |
---|
97 | REAL long2 |
---|
98 | !----------------------------------------------------------------------- |
---|
99 | |
---|
100 | !---------------- INPUT ------------------------------------------------ |
---|
101 | |
---|
102 | avogadro = 6.022141e23 |
---|
103 | sigch4 = 1.85e-17 ! aborption cross section ch4 cm-2 mol-1 |
---|
104 | !! Initial Solar flux Lyman alpha on Earth (1AU) |
---|
105 | flym_sol_earth=pfluxuv*1.e15 ! ph.m-2.s-1 -> 5e+11 ph.cm-2.s-1 |
---|
106 | !! Initial Solar flux Lyman alpha on Pluto |
---|
107 | flym_sol_pluto=flym_sol_earth/(pdist_sol*pdist_sol) ! ph.m-2.s-1 |
---|
108 | ! option decrease by 12% the initial IPM flux to account for Interplanetary H absorption: |
---|
109 | ! Fig 3 Gladstone et al 2014 : Lyalpha at Pluto |
---|
110 | flym_sol_pluto=flym_sol_pluto*0.878 |
---|
111 | |
---|
112 | !!!! Top of atm. Incident IPM (Interplanetary) flux Lyman alpha ph.m-2.s-1 |
---|
113 | ! fit Fig. 4 in Randall Gladstone et al. (2015) |
---|
114 | ! -- New version : Integration over semi sphere of Gladstone data. |
---|
115 | ! Fit of results |
---|
116 | |
---|
117 | IF (ngrid.eq.1) THEN |
---|
118 | flym_ipm(1)=75.e10 |
---|
119 | mu_ipm(1) = 0.5 !max(mu0(1), 0.5) |
---|
120 | mu_sol(1)=0.25 |
---|
121 | ELSE |
---|
122 | |
---|
123 | ! 1) get longitude/latitude (rad) of anti-subsolar point (max de mu0 - 180) |
---|
124 | longit=longitude((MAXLOC(mu0,DIM=1,MASK=mu0.GT.0.9))) ! rad |
---|
125 | IF (longit.GE.0) THEN |
---|
126 | longit=longit-pi |
---|
127 | ELSE |
---|
128 | longit=longit+pi |
---|
129 | ENDIF |
---|
130 | latit=-declin ! rad |
---|
131 | |
---|
132 | ! 2) Define input parameter for the fit |
---|
133 | valmin=48.74e10 ! minimum value of ipm flux in ph/m2/s |
---|
134 | valmax=115.014e10 ! maximal value of ipm flux in ph/m2/s |
---|
135 | valmin_dl=74.5e10 ! daylight minimum value |
---|
136 | puis=3.5 |
---|
137 | |
---|
138 | ! 3) Loop for each location and fit |
---|
139 | DO ig=1,ngrid |
---|
140 | ! calculation of cosinus of incident angle for IPM flux |
---|
141 | mu_sol(ig) = mu0(ig) |
---|
142 | mu_ipm(ig) = max(mu_sol(ig), 0.5) |
---|
143 | IF (mu0(ig).LT.1.e-4) THEN |
---|
144 | dist=acos(sin(latitude(ig))*sin(latit)+cos(latitude(ig))* & |
---|
145 | cos(latit)*cos(longit-longitude(ig)))*180/pi |
---|
146 | IF (dist.gt.90) dist=90 |
---|
147 | flym_ipm(ig)=(valmin_dl-valmin)/(90.**puis)*(dist)**puis & |
---|
148 | +valmin |
---|
149 | ELSE |
---|
150 | flym_ipm(ig)= mu0(ig)*(valmax-valmin_dl)+valmin_dl |
---|
151 | ENDIF |
---|
152 | ! proportional to lyman alpha solar flux (reference 2015 : 5e11 ph/cm2/s) |
---|
153 | flym_ipm(ig)=flym_ipm(ig)*pfluxuv/5. |
---|
154 | ENDDO ! nlayer |
---|
155 | |
---|
156 | |
---|
157 | ENDIF ! ngrid |
---|
158 | !--- |
---|
159 | |
---|
160 | !! Time constant of conversion in aerosol to be explore |
---|
161 | tcon= 1.e7 ! 153 ! 1.E7 !second |
---|
162 | ! tcon= 1. ! 153 ! 1.E7 !second |
---|
163 | !! Parameter of conversion precurseur to haze |
---|
164 | kch4=1. |
---|
165 | ncratio=0.5 ! boost for haze considering nitrogen contribution |
---|
166 | ! ratio n/c : =0.25 if there is 1N for 3C |
---|
167 | IF (firstcall) then |
---|
168 | write(*,*) 'hazecloud: haze parameters:' |
---|
169 | write(*,*) 'tcon, kch4, ncratio = ' , tcon, kch4, ncratio |
---|
170 | firstcall=.false. |
---|
171 | ENDIF |
---|
172 | ! note: mu0 = cos(solar zenith angle) |
---|
173 | ! max(mu0) = declin |
---|
174 | |
---|
175 | !!---------------------------------------------------------- |
---|
176 | !!---------------------------------------------------------- |
---|
177 | |
---|
178 | DO ig=1,ngrid |
---|
179 | |
---|
180 | zq_ch4(ig,:)=0. |
---|
181 | zq_prec(ig,:)=0. |
---|
182 | zdqconv_prec(ig,:)=0. |
---|
183 | zdqhaze(ig,:,:)=0. |
---|
184 | zdqphot_prec(ig,:)=0. |
---|
185 | zdqphot_ch4(ig,:)=0. |
---|
186 | tauch4(:)=0. |
---|
187 | gradflux(:)=0. |
---|
188 | fluxlym_sol(1:nlayer)=0. |
---|
189 | fluxlym_sol(nlayer+1)=flym_sol_pluto*mu_sol(ig) ! |
---|
190 | fluxlym_ipm(nlayer+1)= flym_ipm(ig) |
---|
191 | |
---|
192 | DO l=nlayer,1,-1 |
---|
193 | !! Actualisation tracer ch4 and prec_haze |
---|
194 | |
---|
195 | !IF (ngrid.eq.1) THEN |
---|
196 | !! option zq_ch4 = cte |
---|
197 | ! zq_ch4(ig,l)=0.01*0.5*16./28. ! Temporaire |
---|
198 | !ELSE |
---|
199 | zq_ch4(ig,l)=pq(ig,l,igcm_ch4_gas)+ & |
---|
200 | pdq(ig,l,igcm_ch4_gas)*ptimestep |
---|
201 | !ENDIF |
---|
202 | if (zq_ch4(ig,l).lt.0.) then |
---|
203 | zq_ch4(ig,l)=0. |
---|
204 | endif |
---|
205 | |
---|
206 | !! option zq_ch4 = cte |
---|
207 | ! zq_ch4(ig,l)=0.1*16./28. ! Temporaire |
---|
208 | |
---|
209 | zq_prec(ig,l)=pq(ig,l,igcm_prec_haze)+ & |
---|
210 | pdq(ig,l,igcm_prec_haze)*ptimestep |
---|
211 | |
---|
212 | !! Calculation optical depth ch4 in Lyman alpha for each layer l |
---|
213 | tauch4(l)=sigch4*1.e-4*avogadro* & |
---|
214 | (zq_ch4(ig,l)/(mmol(igcm_ch4_gas)*1.e-3))* & |
---|
215 | (pplev(ig,l)-pplev(ig,l+1))/g |
---|
216 | !! Calculation of Flux in each layer l |
---|
217 | if (mu_sol(ig).gt.1.e-6) then |
---|
218 | fluxlym_sol(l)=fluxlym_sol(l+1)*exp(-tauch4(l)/mu_sol(ig)) |
---|
219 | endif |
---|
220 | |
---|
221 | fluxlym_ipm(l)=fluxlym_ipm(l+1)*exp(-tauch4(l)/mu_ipm(ig)) |
---|
222 | |
---|
223 | gradflux(l)=fluxlym_sol(l+1)-fluxlym_sol(l) & |
---|
224 | + fluxlym_ipm(l+1)-fluxlym_ipm(l) |
---|
225 | !! tendancy on ch4 |
---|
226 | !! considering 1 photon destroys 1 ch4 by photolysis |
---|
227 | zdqphot_ch4(ig,l)=-mmol(igcm_ch4_gas)*1.e-3/avogadro* & |
---|
228 | gradflux(l)*g/(pplev(ig,l)-pplev(ig,l+1)) |
---|
229 | |
---|
230 | !! tendency of prec created by photolysis of ch4 |
---|
231 | zdqphot_prec(ig,l)=-zdqphot_ch4(ig,l) |
---|
232 | |
---|
233 | !! update precurseur zq_prec |
---|
234 | zq_prec(ig,l)=zq_prec(ig,l)+ & |
---|
235 | zdqphot_prec(ig,l)*ptimestep |
---|
236 | |
---|
237 | !! Conversion of prec_haze into haze |
---|
238 | !! controlled by the time constant tcon |
---|
239 | !! New tendancy for prec_haze |
---|
240 | zdqconv_prec(ig,l) = -zq_prec(ig,l)* & |
---|
241 | (1-exp(-ptimestep/tcon))/ptimestep |
---|
242 | |
---|
243 | ENDDO ! nlayer |
---|
244 | |
---|
245 | !! Final tendancy for prec_haze and haze |
---|
246 | |
---|
247 | DO iq=1,nq |
---|
248 | tname=noms(iq) |
---|
249 | !print*, 'TB17 tname=',tname,tname(1:4) |
---|
250 | if (tname(1:4).eq."haze") then |
---|
251 | zdqhaze(ig,:,iq) = -zdqconv_prec(ig,:)* & |
---|
252 | kch4*(1.+ncratio*14./12.) |
---|
253 | else if (noms(iq).eq."prec_haze") then |
---|
254 | zdqhaze(ig,:,igcm_prec_haze)= zdqphot_prec(ig,:) + & |
---|
255 | zdqconv_prec(ig,:) |
---|
256 | |
---|
257 | else if (noms(iq).eq."ch4_gas".and.(.not.hazeconservch4)) then |
---|
258 | zdqhaze(ig,:,igcm_ch4_gas)= zdqphot_ch4(ig,:) |
---|
259 | endif |
---|
260 | ENDDO |
---|
261 | |
---|
262 | ENDDO ! ngrid |
---|
263 | |
---|
264 | |
---|
265 | !! tendency kg/m2/s for haze column: |
---|
266 | ! zdqhaze_col(:)=0. |
---|
267 | ! DO ig=1,ngrid |
---|
268 | ! DO l=1,nlayer |
---|
269 | ! zdqhaze_col(ig)=zdqhaze_col(ig)+zdqhaze(ig,l,igcm_haze)* & |
---|
270 | ! (pplev(ig,l)-pplev(ig,l+1))/g |
---|
271 | ! ENDDO |
---|
272 | ! ENDDO |
---|
273 | |
---|
274 | end subroutine hazecloud |
---|
275 | |
---|