[3184] | 1 | ! ---------------------------------------------------------------- |
---|
| 2 | ! Purpose: Thermodynamic data on H2O, NH3 |
---|
| 3 | ! Authour: Adapted from various sources by R. Wordsworth (2011) |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | ! --------------------- |
---|
| 7 | ! NH3 |
---|
| 8 | ! --------------------- |
---|
| 9 | subroutine psat_NH3 ( T, p ) |
---|
| 10 | ! |
---|
| 11 | ! PSAT_NH3 makes a rough estimate of the vapor pressure. |
---|
| 12 | ! |
---|
| 13 | ! Interpolated from www.engineeringtoolbox.com data by RDW 21/09/11 for |
---|
| 14 | ! temperatures between 223 and 323 K. |
---|
| 15 | ! |
---|
| 16 | ! Parameters: |
---|
| 17 | ! |
---|
| 18 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
| 19 | ! |
---|
| 20 | ! Output, double precision P, the vapor pressure, in MegaPascals. |
---|
| 21 | ! |
---|
| 22 | |
---|
| 23 | implicit none |
---|
| 24 | |
---|
| 25 | double precision p,T |
---|
| 26 | |
---|
| 27 | p=exp(-1.5609d-004*T**2 + 0.1236*T - 9.1530)/1d6 |
---|
| 28 | |
---|
| 29 | end subroutine psat_NH3 |
---|
| 30 | |
---|
| 31 | subroutine latheat_NH3 ( T, sc, sv ) |
---|
| 32 | ! |
---|
| 33 | ! PSAT_NH3 makes a rough estimate of the entropies of condensation / |
---|
| 34 | ! vapourisation. |
---|
| 35 | ! |
---|
| 36 | ! Interpolated from www.engineeringtoolbox.com data by RDW 21/09/11 for |
---|
| 37 | ! temperatures between 223 and 323 K. |
---|
| 38 | ! |
---|
| 39 | ! Parameters: |
---|
| 40 | ! |
---|
| 41 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
| 42 | ! |
---|
| 43 | ! Output, double precision sc, the entropy of condensate, in J kg^-1 K^-1. |
---|
| 44 | ! double precision sv, the entropy of gas, in J kg^-1 K^-1. |
---|
| 45 | ! |
---|
| 46 | |
---|
| 47 | implicit none |
---|
| 48 | |
---|
| 49 | double precision T,sc,sv |
---|
| 50 | |
---|
| 51 | sv = 0.0492*T**2 - 40.4199*T + 1.2708e+004 |
---|
| 52 | sc = -0.0215*T**2 + 28.7138*T - 5.5267e+003 |
---|
| 53 | |
---|
| 54 | !L = -11.2373*T**2 + 2.5326d+03*T + 1.4099d+06 |
---|
| 55 | |
---|
| 56 | end subroutine latheat_NH3 |
---|
| 57 | |
---|
| 58 | |
---|
| 59 | ! --------------------- |
---|
| 60 | ! H2O |
---|
| 61 | ! --------------------- |
---|
| 62 | |
---|
| 63 | subroutine base ( t, rho, ab, cvb, dpdrb, dpdtb, gb, hb, pb, sb, ub ) |
---|
| 64 | ! |
---|
| 65 | !******************************************************************************* |
---|
| 66 | ! |
---|
| 67 | !! BASE calculates quantities associated with the base Helmholtz function. |
---|
| 68 | ! |
---|
| 69 | ! |
---|
| 70 | ! Discussion: |
---|
| 71 | ! |
---|
| 72 | ! The equation for the base Helmholtz function AB(T,RHO) is: |
---|
| 73 | ! |
---|
| 74 | ! AB(T,RHO) = R * T * ( |
---|
| 75 | ! - ln ( 1 - y ) |
---|
| 76 | ! - ( beta - 1 ) / ( 1 - y ) |
---|
| 77 | ! + ( alpha + beta + 1 ) / ( 2 * ( 1 - y )**2 ) |
---|
| 78 | ! + 4 * y * ( ( Bbar / b ) - gamma ) |
---|
| 79 | ! - 0.5 * ( alpha - beta + 3 ) |
---|
| 80 | ! + ln ( RHO * R * T / P0 ) ) |
---|
| 81 | ! (Equation 2) |
---|
| 82 | ! where |
---|
| 83 | ! |
---|
| 84 | ! y = b * rho / 4, |
---|
| 85 | ! alpha = 11, |
---|
| 86 | ! beta = 133/3, |
---|
| 87 | ! gamma = 7/2, |
---|
| 88 | ! P0 = 0.101325 MegaPascals = 1 atm |
---|
| 89 | ! |
---|
| 90 | ! and |
---|
| 91 | ! |
---|
| 92 | ! b(T) = b1 * ln(T/T0) + sum(j=0,1,3,5) b(j)*(T0/T)**j (Equation 3) |
---|
| 93 | ! |
---|
| 94 | ! Bbar(T) = sum(j=0,1,2,4) B(j)*(T0/T)**j (Equation 4). |
---|
| 95 | ! |
---|
| 96 | ! where |
---|
| 97 | ! |
---|
| 98 | ! T0=647.073 K and the coefficients b(j) and B(j) are |
---|
| 99 | ! |
---|
| 100 | ! j b(j) B(j) |
---|
| 101 | ! -- ----------- ---------- |
---|
| 102 | ! 0 0.7478629 1.1278334 |
---|
| 103 | ! 1 -0.3540782 -0.5944001 |
---|
| 104 | ! 2 0 -5.010996 |
---|
| 105 | ! 3 0.007159876 0 |
---|
| 106 | ! 4 0 0.63684256 |
---|
| 107 | ! 5 -0.003528426 0 |
---|
| 108 | ! |
---|
| 109 | ! For the derived quantities, the following relations are used: |
---|
| 110 | ! |
---|
| 111 | ! Pressure: PB = RHO**2 * dAB/dRHO |
---|
| 112 | ! Density derivative: DPDRB = 2*PB/RHO + RHO**2 * d2AB/dRHO2 |
---|
| 113 | ! Temperature derivative: DPDTB = RHO**2 * d2AB/(dRHO dT) |
---|
| 114 | ! Specific entropy: SB = ( UB - AB ) / T |
---|
| 115 | ! Specific internal energy: UB = AB + T * SB |
---|
| 116 | ! Specific enthalpy: HB = UB + PB / RHO |
---|
| 117 | ! Specific heat capacity |
---|
| 118 | ! at constant volume: CVB = - T * d2AB/dT2 |
---|
| 119 | ! Specific Gibbs function: GB = AB + PB / RHO |
---|
| 120 | ! |
---|
| 121 | ! |
---|
| 122 | ! Reference: |
---|
| 123 | ! |
---|
| 124 | ! Lester Haar, John Gallagher and George Kell, |
---|
| 125 | ! NBS/NRC Steam Tables: |
---|
| 126 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
| 127 | ! for Vapor and Liquid States of Water in SI Units, |
---|
| 128 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
| 129 | ! TJ270.H3 |
---|
| 130 | ! |
---|
| 131 | ! C A Meyer, R B McClintock, G J Silvestri, R C Spencer, |
---|
| 132 | ! ASME Steam Tables: Thermodynamic and Transport Properties of Steam, |
---|
| 133 | ! American Society of Mechanical Engineers, 1967. |
---|
| 134 | ! |
---|
| 135 | ! Modified: |
---|
| 136 | ! |
---|
| 137 | ! 03 February 2002 |
---|
| 138 | ! |
---|
| 139 | ! Parameters: |
---|
| 140 | ! |
---|
| 141 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
| 142 | ! |
---|
| 143 | ! Input, double precision RHO, the density, in G/CM3. |
---|
| 144 | ! |
---|
| 145 | ! Output, double precision AB, the base value of the Helmholtz function, |
---|
| 146 | ! in KJ/kg. |
---|
| 147 | ! |
---|
| 148 | ! Output, double precision CVB, the base value of the isochoric (constant |
---|
| 149 | ! volume) heat capacity, in KJ/(kg degrees Kelvin). |
---|
| 150 | ! |
---|
| 151 | ! Output, double precision DPDRB, the base value of the partial |
---|
| 152 | ! derivative dP(T,RHO)/dRHO, with T held fixed, in (MegaPascals CM3)/G. |
---|
| 153 | ! |
---|
| 154 | ! Output, double precision DPDTB, the base value of the partial |
---|
| 155 | ! derivative dP(T,RHO)/dT, with RHO held fixed, in |
---|
| 156 | ! MegaPascals/degrees Kelvin. |
---|
| 157 | ! |
---|
| 158 | ! Output, double precision GB, the base value of the Gibbs free energy, |
---|
| 159 | ! in KJ/kg. |
---|
| 160 | ! |
---|
| 161 | ! Output, double precision HB, the base value of enthalpy, in KJ/kg. |
---|
| 162 | ! |
---|
| 163 | ! Output, double precision PB, the base pressure, in MegaPascals. |
---|
| 164 | ! |
---|
| 165 | ! Output, double precision SB, the base value of entropy, |
---|
| 166 | ! in KJ/(kg degrees Kelvin). |
---|
| 167 | ! |
---|
| 168 | ! Output, double precision UB, the base value of internal energy, |
---|
| 169 | ! in KJ/kg. |
---|
| 170 | ! |
---|
| 171 | implicit none |
---|
| 172 | ! |
---|
| 173 | double precision ab |
---|
| 174 | double precision, parameter :: alpha = 11.0D+00 |
---|
| 175 | double precision b1 |
---|
| 176 | double precision b1t |
---|
| 177 | double precision b1tt |
---|
| 178 | double precision b2 |
---|
| 179 | double precision b2t |
---|
| 180 | double precision b2tt |
---|
| 181 | double precision, parameter :: beta = 44.333333333333D+00 |
---|
| 182 | double precision cvb |
---|
| 183 | double precision dpdrb |
---|
| 184 | double precision dpdtb |
---|
| 185 | double precision dz |
---|
| 186 | double precision dz0 |
---|
| 187 | double precision, parameter :: gamma = 3.5D+00 |
---|
| 188 | double precision gascon |
---|
| 189 | double precision gb |
---|
| 190 | double precision hb |
---|
| 191 | double precision, parameter :: p_zero = 0.101325D+00 |
---|
| 192 | double precision pb |
---|
| 193 | double precision rho |
---|
| 194 | double precision sb |
---|
| 195 | double precision t |
---|
| 196 | double precision ub |
---|
| 197 | double precision x |
---|
| 198 | double precision y |
---|
| 199 | double precision z |
---|
| 200 | double precision z0 |
---|
| 201 | ! |
---|
| 202 | ! Refuse to handle zero or negative temperatures. |
---|
| 203 | ! |
---|
| 204 | if ( t <= 0.0 ) then |
---|
| 205 | write ( *, '(a)' ) ' ' |
---|
| 206 | write ( *, '(a)' ) 'BASE - Fatal error!' |
---|
| 207 | write ( *, '(a)' ) ' The input temperature T must be positive.' |
---|
| 208 | write ( *, '(a,g14.6)' ) ' Input value was T = ', t |
---|
| 209 | stop |
---|
| 210 | end if |
---|
| 211 | ! |
---|
| 212 | ! Refuse to handle zero or negative density. |
---|
| 213 | ! |
---|
| 214 | if ( rho <= 0.0D+00 ) then |
---|
| 215 | write ( *, '(a)' ) ' ' |
---|
| 216 | write ( *, '(a)' ) 'BASE - Fatal error!' |
---|
| 217 | write ( *, '(a)' ) ' The input density RHO must be positive.' |
---|
| 218 | write ( *, '(a,g14.6)' ) ' Input value was RHO = ', rho |
---|
| 219 | stop |
---|
| 220 | end if |
---|
| 221 | ! |
---|
| 222 | ! Compute auxilliary quantities for Equation 2. |
---|
| 223 | ! |
---|
| 224 | call bb ( t, b1, b2, b1t, b2t, b1tt, b2tt ) |
---|
| 225 | |
---|
| 226 | y = 0.25D+00 * b1 * rho |
---|
| 227 | |
---|
| 228 | x = 1.0D+00 - y |
---|
| 229 | ! |
---|
| 230 | ! Evaluate Equation 2. |
---|
| 231 | ! |
---|
| 232 | ab = - log ( 1.0D+00 - y ) & |
---|
| 233 | - ( beta - 1.0D+00 ) / ( 1.0D+00 - y ) & |
---|
| 234 | + ( alpha + beta + 1.0D+00 ) / ( 2.0D+00 * ( 1.0D+00 - y )**2 ) & |
---|
| 235 | + 4.0D+00 * y * ( ( b2 / b1 ) - gamma ) & |
---|
| 236 | - 0.5D+00 * ( alpha - beta + 3.0D+00 ) & |
---|
| 237 | + log ( rho * gascon() * t / p_zero ) |
---|
| 238 | ! |
---|
| 239 | ! Determine quantities defined in terms of AB. |
---|
| 240 | ! |
---|
| 241 | pb = ( 1.0D+00 + alpha * y + beta * y**2 ) / ( 1.0D+00 - y )**3 & |
---|
| 242 | + 4.0D+00 * y * ( b2 / b1 - gamma ) |
---|
| 243 | |
---|
| 244 | z0 = ( 1.0D+00 + alpha * y + beta * y**2 ) / ( 1.0D+00 - y )**3 |
---|
| 245 | |
---|
| 246 | z = z0 + 4.0D+00 * y * ( b2 / b1 - gamma ) |
---|
| 247 | |
---|
| 248 | dz0 = ( alpha + 2.0D+00 * beta * y ) / ( 1.0D+00 - y )**3 & |
---|
| 249 | + 3.0D+00 * ( 1.0D+00 + alpha * y + beta * y**2 ) / ( 1.0D+00 - y )**4 |
---|
| 250 | |
---|
| 251 | dz = dz0 + 4.0D+00 * ( b2 / b1 - gamma ) |
---|
| 252 | |
---|
| 253 | gb = ab + pb |
---|
| 254 | |
---|
| 255 | ub = - t * b1t * ( pb - 1.0D+00 - rho * b2 ) / b1 - rho * t * b2t |
---|
| 256 | |
---|
| 257 | hb = pb + ub |
---|
| 258 | ! |
---|
| 259 | ! An incorrect version of this equation began: |
---|
| 260 | ! |
---|
| 261 | ! cvb = 2.0D+00 * ub + ( pb - 1.0D+00 ) & |
---|
| 262 | ! |
---|
| 263 | ! and caused me no end of trouble. My fault, JVB, 03 February 2002 |
---|
| 264 | ! |
---|
| 265 | cvb = 2.0D+00 * ub + ( z0 - 1.0D+00 ) & |
---|
| 266 | * ( ( t * b1t / b1 )**2 - t**2 * b1tt / b1 ) & |
---|
| 267 | - rho * t**2 * ( b2tt - gamma * b1tt ) - ( t * b1t / b1 )**2 * y * dz0 |
---|
| 268 | |
---|
| 269 | dpdtb = pb / t + rho * ( 0.25D+00 * ( dz0 + 4.0D+00 * ( b2 / b1 - gamma ) ) & |
---|
| 270 | * b1t + b2t - b2 / b1 * b1t ) |
---|
| 271 | |
---|
| 272 | sb = ub - ab |
---|
| 273 | |
---|
| 274 | dpdrb = pb + y * ( dz0 + 4.0D+00 * ( b2 / b1 - gamma ) ) |
---|
| 275 | ! |
---|
| 276 | ! Assign dimensions. |
---|
| 277 | ! |
---|
| 278 | ab = gascon() * t * ab |
---|
| 279 | cvb = gascon() * cvb |
---|
| 280 | dpdrb = gascon() * t * dpdrb |
---|
| 281 | dpdtb = gascon() * t * rho * dpdtb |
---|
| 282 | gb = gascon() * t * gb |
---|
| 283 | hb = gascon() * t * hb |
---|
| 284 | pb = gascon() * t * rho * pb |
---|
| 285 | sb = gascon() * sb |
---|
| 286 | ub = gascon() * t * ub |
---|
| 287 | |
---|
| 288 | return |
---|
| 289 | end subroutine base |
---|
| 290 | |
---|
| 291 | subroutine bb ( t, b1, b2, b1t, b2t, b1tt, b2tt ) |
---|
| 292 | ! |
---|
| 293 | !******************************************************************************* |
---|
| 294 | ! |
---|
| 295 | !! BB calculates the B's of equations 3 and 4. |
---|
| 296 | ! |
---|
| 297 | ! |
---|
| 298 | ! Discussion: |
---|
| 299 | ! |
---|
| 300 | ! Here |
---|
| 301 | ! |
---|
| 302 | ! b(T) = b1 * ln(T/T0) + sum(j=0,1,3,5) b(j)*(T0/T)**j (Equation 3) |
---|
| 303 | ! |
---|
| 304 | ! Bbar(T) = sum(j=0,1,2,4) B(j)*(T0/T)**j (Equation 4). |
---|
| 305 | ! |
---|
| 306 | ! where |
---|
| 307 | ! |
---|
| 308 | ! T0 = 647.073 K |
---|
| 309 | ! |
---|
| 310 | ! and the coefficients b(j) and B(j) are |
---|
| 311 | ! |
---|
| 312 | ! j b(j) B(j) |
---|
| 313 | ! -- ----------- ---------- |
---|
| 314 | ! 0 0.7478629 1.1278334 |
---|
| 315 | ! 1 -0.3540782 -0.5944001 |
---|
| 316 | ! 2 0 -5.010996 |
---|
| 317 | ! 3 0.007159876 0 |
---|
| 318 | ! 4 0 0.63684256 |
---|
| 319 | ! 5 -0.003528426 0 |
---|
| 320 | ! |
---|
| 321 | ! |
---|
| 322 | ! Reference: |
---|
| 323 | ! |
---|
| 324 | ! Lester Haar, John Gallagher and George Kell, |
---|
| 325 | ! NBS/NRC Steam Tables: |
---|
| 326 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
| 327 | ! for Vapor and Liquid States of Water in SI Units, |
---|
| 328 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
| 329 | ! TJ270.H3 |
---|
| 330 | ! |
---|
| 331 | ! C A Meyer, R B McClintock, G J Silvestri, R C Spencer, |
---|
| 332 | ! ASME Steam Tables: Thermodynamic and Transport Properties of Steam, |
---|
| 333 | ! American Society of Mechanical Engineers, 1967. |
---|
| 334 | ! |
---|
| 335 | ! Parameters: |
---|
| 336 | ! |
---|
| 337 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
| 338 | ! |
---|
| 339 | ! Output, double precision B1, the coefficient b from equation 3, |
---|
| 340 | ! in CM3/G. |
---|
| 341 | ! |
---|
| 342 | ! Output, double precision B2, the coefficient Bbar from equation 4, |
---|
| 343 | ! in CM3/G. |
---|
| 344 | ! |
---|
| 345 | ! Output, double precision B1T, the derivative dB1/dT, |
---|
| 346 | ! in (CM3)/(G Degrees Kelvin). |
---|
| 347 | ! |
---|
| 348 | ! Output, double precision B2T, the derivative dB2/dT, |
---|
| 349 | ! in (CM3)/(G Degrees Kelvin). |
---|
| 350 | ! |
---|
| 351 | ! Output, double precision B1TT, the second derivative of B1 with |
---|
| 352 | ! respect to T, in (CM3)/(G (Degrees Kelvin)**2 ). |
---|
| 353 | ! |
---|
| 354 | ! Output, double precision B2TT, the second derivative of B2 with |
---|
| 355 | ! respect to T, in (CM3)/(G (Degrees Kelvin)**2 ). |
---|
| 356 | ! |
---|
| 357 | implicit none |
---|
| 358 | ! |
---|
| 359 | double precision b1 |
---|
| 360 | double precision b1t |
---|
| 361 | double precision b1tt |
---|
| 362 | double precision b2 |
---|
| 363 | double precision b2t |
---|
| 364 | double precision b2tt |
---|
| 365 | double precision, parameter, dimension ( 10 ) :: bp = (/ & |
---|
| 366 | 0.7478629D+00, -0.3540782D+00, 0.0D+00, 0.0D+00, & |
---|
| 367 | 0.007159876D+00, 0.0D+00, -0.003528426D+00, 0.0D+00, & |
---|
| 368 | 0.0D+00, 0.0D+00 /) |
---|
| 369 | double precision, parameter, dimension ( 10 ) :: bq = (/ & |
---|
| 370 | 1.1278334D+00, 0.0D+00, -0.5944001D+00, -5.010996D+00, & |
---|
| 371 | 0.0D+00, 0.63684256D+00, 0.0D+00, 0.0D+00, & |
---|
| 372 | 0.0D+00, 0.0D+00 /) |
---|
| 373 | integer i |
---|
| 374 | double precision t |
---|
| 375 | double precision, parameter :: t_ref = 647.073D+00 |
---|
| 376 | double precision v(10) |
---|
| 377 | ! |
---|
| 378 | ! Refuse to handle zero or negative temperatures. |
---|
| 379 | ! |
---|
| 380 | if ( t <= 0.0D+00 ) then |
---|
| 381 | write ( *, '(a)' ) ' ' |
---|
| 382 | write ( *, '(a)' ) 'BB - Fatal error!' |
---|
| 383 | write ( *, '(a)' ) ' The input temperature T must be positive.' |
---|
| 384 | write ( *, '(a,g14.6)' ) ' Input value was T = ', t |
---|
| 385 | stop |
---|
| 386 | end if |
---|
| 387 | ! |
---|
| 388 | ! Set V(I) = ( T_REF / T )**(I-1). |
---|
| 389 | ! |
---|
| 390 | v(1) = 1.0D+00 |
---|
| 391 | do i = 2, 10 |
---|
| 392 | v(i) = v(i-1) * t_ref / t |
---|
| 393 | end do |
---|
| 394 | ! |
---|
| 395 | ! Set B1, B1T, B1TT. |
---|
| 396 | ! |
---|
| 397 | b1 = bp(1) + bp(2) * log ( 1.0D+00 / v(2) ) |
---|
| 398 | b1t = bp(2) * v(2) / t_ref |
---|
| 399 | b1tt = 0.0D+00 |
---|
| 400 | do i = 3, 10 |
---|
| 401 | b1 = b1 + bp(i) * v(i-1) |
---|
| 402 | b1t = b1t - dble ( i - 2 ) * bp(i) * v(i-1) / t |
---|
| 403 | b1tt = b1tt + bp(i) * dble ( i - 2 )**2 * v(i-1) / t**2 |
---|
| 404 | end do |
---|
| 405 | |
---|
| 406 | b1tt = b1tt - ( b1t / t ) |
---|
| 407 | ! |
---|
| 408 | ! Set B2, B2T, B2TT. |
---|
| 409 | ! |
---|
| 410 | b2 = bq(1) |
---|
| 411 | b2t = 0.0D+00 |
---|
| 412 | b2tt = 0.0D+00 |
---|
| 413 | do i = 3, 10 |
---|
| 414 | b2 = b2 + bq(i) * v(i-1) |
---|
| 415 | b2t = b2t - dble ( i - 2 ) * bq(i) * v(i-1) / t |
---|
| 416 | b2tt = b2tt + bq(i) * dble ( i - 2 )**2 * v(i-1) / t**2 |
---|
| 417 | end do |
---|
| 418 | |
---|
| 419 | b2tt = b2tt - ( b2t / t ) |
---|
| 420 | |
---|
| 421 | return |
---|
| 422 | end subroutine bb |
---|
| 423 | |
---|
| 424 | |
---|
| 425 | subroutine ideal ( t, ai, cpi, cvi, gi, hi, si, ui ) |
---|
| 426 | ! |
---|
| 427 | !******************************************************************************* |
---|
| 428 | ! |
---|
| 429 | !! IDEAL computes ideal gas thermodynamic properties of water. |
---|
| 430 | ! |
---|
| 431 | ! |
---|
| 432 | ! Discussion: |
---|
| 433 | ! |
---|
| 434 | ! Values for thermodynamic properties of water in the ideal |
---|
| 435 | ! gas state were reported by Woolley. The formula for the ideal gas |
---|
| 436 | ! term of the Helmholtz function approximates a term by term summation of |
---|
| 437 | ! contributions from each of the rotation and vibration states. |
---|
| 438 | ! The formula, equation #6 in the reference, is: |
---|
| 439 | ! |
---|
| 440 | ! A(ideal)(T) = -R * T * ( 1 + ( C(1)/Tr + C(2) ) * ln(Tr) |
---|
| 441 | ! + Sum ( 3 <= I <= 18) C(I) * Tr**(I-6) |
---|
| 442 | ! |
---|
| 443 | ! where Tr=T/100 K. The C(i) are tabulated coefficients. Equation |
---|
| 444 | ! 6 can be used for temperatures below 3000 K, and is accurate to |
---|
| 445 | ! within the tolerance of the gas constant for 50<=T<=2000 K. |
---|
| 446 | ! |
---|
| 447 | ! Reference: |
---|
| 448 | ! |
---|
| 449 | ! Lester Haar, John Gallagher and George Kell, |
---|
| 450 | ! NBS/NRC Steam Tables: |
---|
| 451 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
| 452 | ! for Vapor and Liquid States of Water in SI Units, |
---|
| 453 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
| 454 | ! TJ270.H3 |
---|
| 455 | ! |
---|
| 456 | ! Parameters: |
---|
| 457 | ! |
---|
| 458 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
| 459 | ! |
---|
| 460 | ! Output, double precision AI, the Helmholtz function, in KJ/kg. |
---|
| 461 | ! |
---|
| 462 | ! Output, double precision CPI, the heat capacity at constant pressure, |
---|
| 463 | ! in KJ/(kg degrees Kelvin). |
---|
| 464 | ! |
---|
| 465 | ! Output, double precision CVI, the heat capacity at constant volume, |
---|
| 466 | ! in KJ/(kg degrees Kelvin). |
---|
| 467 | ! |
---|
| 468 | ! Output, double precision GI, the Gibbs free energy, in KJ/kg. |
---|
| 469 | ! |
---|
| 470 | ! Output, double precision HI, the enthalpy, in KJ/kg. |
---|
| 471 | ! |
---|
| 472 | ! Output, double precision SI, the entropy, in KJ/(kg degrees Kelvin). |
---|
| 473 | ! |
---|
| 474 | ! Output, double precision UI, the internal energy, in KJ/kg. |
---|
| 475 | ! |
---|
| 476 | implicit none |
---|
| 477 | ! |
---|
| 478 | double precision ai |
---|
| 479 | double precision, parameter, dimension ( 18 ) :: c = (/ & |
---|
| 480 | 19.730271018D+00, 20.9662681977D+00, -0.483429455355D+00, & |
---|
| 481 | 6.05743189245D+00, 22.56023885D+00, -9.87532442D+00, & |
---|
| 482 | -4.3135538513D+00, 0.458155781D+00, -0.047754901883D+00, & |
---|
| 483 | 0.0041238460633D+00, -0.00027929052852D+00, 0.14481695261D-04, & |
---|
| 484 | -0.56473658748D-06, 0.16200446D-07, -0.3303822796D-09, & |
---|
| 485 | 0.451916067368D-11, -0.370734122708D-13, 0.137546068238D-15 /) |
---|
| 486 | double precision cpi |
---|
| 487 | double precision cvi |
---|
| 488 | double precision gascon |
---|
| 489 | double precision gi |
---|
| 490 | double precision hi |
---|
| 491 | integer i |
---|
| 492 | double precision si |
---|
| 493 | double precision t |
---|
| 494 | double precision temp |
---|
| 495 | double precision tt |
---|
| 496 | double precision ui |
---|
| 497 | ! |
---|
| 498 | ! Refuse to handle zero or negative temperatures. |
---|
| 499 | ! |
---|
| 500 | if ( t <= 0.0D+00 ) then |
---|
| 501 | write ( *, '(a)' ) ' ' |
---|
| 502 | write ( *, '(a)' ) 'IDEAL - Fatal error!' |
---|
| 503 | write ( *, '(a)' ) ' The input temperature T must be positive.' |
---|
| 504 | write ( *, '(a,g14.6)' ) ' Input value was T = ', t |
---|
| 505 | stop |
---|
| 506 | end if |
---|
| 507 | |
---|
| 508 | tt = t / 100.0D+00 |
---|
| 509 | |
---|
| 510 | gi = - ( c(1) / tt + c(2) ) * log ( tt ) |
---|
| 511 | do i = 3, 18 |
---|
| 512 | gi = gi - c(i) * tt**(i-6) |
---|
| 513 | end do |
---|
| 514 | |
---|
| 515 | hi = c(2) + c(1) * ( 1.0D+00 - log ( tt ) ) / tt |
---|
| 516 | do i = 3, 18 |
---|
| 517 | hi = hi + dble ( i - 6 ) * c(i) * tt**(i-6) |
---|
| 518 | end do |
---|
| 519 | |
---|
| 520 | cpi = c(2) - c(1) / tt |
---|
| 521 | do i = 3, 18 |
---|
| 522 | cpi = cpi + dble ( ( i - 6 ) * ( i - 5 ) ) * c(i) * tt**(i-6) |
---|
| 523 | end do |
---|
| 524 | |
---|
| 525 | ai = gi - 1.0D+00 |
---|
| 526 | ui = hi - 1.0D+00 |
---|
| 527 | cvi = cpi - 1.0D+00 |
---|
| 528 | si = hi - gi |
---|
| 529 | ! |
---|
| 530 | ! Assign dimensions. |
---|
| 531 | ! |
---|
| 532 | ai = gascon() * t * ai |
---|
| 533 | cpi = gascon() * cpi |
---|
| 534 | cvi = gascon() * cvi |
---|
| 535 | gi = gascon() * t * gi |
---|
| 536 | hi = gascon() * t * hi |
---|
| 537 | si = gascon() * si |
---|
| 538 | ui = gascon() * t * ui |
---|
| 539 | |
---|
| 540 | return |
---|
| 541 | end subroutine ideal |
---|
| 542 | |
---|
| 543 | |
---|
| 544 | subroutine resid ( t, rho, ar, cvr, dpdrr, dpdtr, gr, hr, pr, sr, ur ) |
---|
| 545 | ! |
---|
| 546 | !******************************************************************************* |
---|
| 547 | ! |
---|
| 548 | !! RESID calculates residual contributions to thermodynamic quantities. |
---|
| 549 | ! |
---|
| 550 | ! |
---|
| 551 | ! Discussion: |
---|
| 552 | ! |
---|
| 553 | ! The residual function consists of 40 terms. The first 36 are |
---|
| 554 | ! used in a global least squares fit to experimental data. |
---|
| 555 | ! |
---|
| 556 | ! Three terms were added that contribute only in the immediate |
---|
| 557 | ! neighborhood of the critical point |
---|
| 558 | ! (tk-5) <= T <= (tk+5) C |
---|
| 559 | ! 0.20 <= rho <= 0.44 g/cm3, |
---|
| 560 | ! |
---|
| 561 | ! A single term was added for the region of high pressure and |
---|
| 562 | ! low temperature: T < 75 C, P > 300 MPa. |
---|
| 563 | ! |
---|
| 564 | ! Except in these limited regions, the residual function is |
---|
| 565 | ! given by the first 36 terms. The equation is |
---|
| 566 | ! |
---|
| 567 | ! A(residual)(rho,T)= |
---|
| 568 | ! sum(i=1 to 36) (g(i)/k(i)) * (T0/T)**(l(i)) (1-exp(-rho))**(k(i)) |
---|
| 569 | ! + sum(i=37 to 40) g(i)*delta(i)**(k(i)) |
---|
| 570 | ! * exp(-alpha(i)*delta(i)**(k(i)) - beta(i)*tau(i)**2) |
---|
| 571 | ! (Equation 5) |
---|
| 572 | ! |
---|
| 573 | ! where |
---|
| 574 | ! |
---|
| 575 | ! g(i) are coefficients determined by fits to data, |
---|
| 576 | ! delta(i) are reduced densities (delta(i)=((rho-rho(i))/rho(i)) |
---|
| 577 | ! tau(i) are reduced temperatures (tau(i)=((T-tau(i))/tau(i)) |
---|
| 578 | ! rho(i) are specified densities. |
---|
| 579 | ! tau(i) are specified temperatures. |
---|
| 580 | ! The k(i) and l(i) are specified integers. |
---|
| 581 | ! |
---|
| 582 | ! Modified: |
---|
| 583 | ! |
---|
| 584 | ! 22 November 1998 |
---|
| 585 | ! |
---|
| 586 | ! Reference: |
---|
| 587 | ! |
---|
| 588 | ! Lester Haar, John Gallagher and George Kell, |
---|
| 589 | ! NBS/NRC Steam Tables: |
---|
| 590 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
| 591 | ! for Vapor and Liquid States of Water in SI Units, |
---|
| 592 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
| 593 | ! TJ270.H3 |
---|
| 594 | ! |
---|
| 595 | ! C A Meyer, R B McClintock, G J Silvestri, R C Spencer, |
---|
| 596 | ! ASME Steam Tables: Thermodynamic and Transport Properties of Steam, |
---|
| 597 | ! American Society of Mechanical Engineers, 1967. |
---|
| 598 | ! |
---|
| 599 | ! Parameters: |
---|
| 600 | ! |
---|
| 601 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
| 602 | ! |
---|
| 603 | ! Input, double precision RHO, the density, in G/CM3. |
---|
| 604 | ! |
---|
| 605 | ! Output, double precision AR, the residual contribution to the |
---|
| 606 | ! Helmholtz function, in KJ/kg. |
---|
| 607 | ! |
---|
| 608 | ! Output, double precision CVR, the residual contribution to the |
---|
| 609 | ! isochoric (constant volume) heat capacity, in KJ/(kg degrees Kelvin). |
---|
| 610 | ! |
---|
| 611 | ! Output, double precision DPDRR, the residual contribution to |
---|
| 612 | ! the partial derivative dP(T,RHO)/dRHO, with T held fixed, in |
---|
| 613 | ! (MegaPascals CM3)/G. |
---|
| 614 | ! |
---|
| 615 | ! Output, double precision DPDTR, the residual contribution to |
---|
| 616 | ! the partial derivative dP(T,RHO)/dT, with RHO held fixed, |
---|
| 617 | ! in MegaPascals/degrees Kelvin. |
---|
| 618 | ! |
---|
| 619 | ! Output, double precision GR, the residual contribution to the Gibbs |
---|
| 620 | ! function, in KJ/kg. |
---|
| 621 | ! |
---|
| 622 | ! Output, double precision HR, the residual contribution to the |
---|
| 623 | ! enthalpy, in KJ/kg. |
---|
| 624 | ! |
---|
| 625 | ! Output, double precision PR, the residual contribution to the pressure, |
---|
| 626 | ! in MegaPascals. |
---|
| 627 | ! |
---|
| 628 | ! Output, double precision SR, the residual contribution to the entropy, |
---|
| 629 | ! in KJ/(kg degrees Kelvin). |
---|
| 630 | ! |
---|
| 631 | ! Output, double precision UR, the residual contribution to the |
---|
| 632 | ! internal energy, in KJ/kg. |
---|
| 633 | ! |
---|
| 634 | implicit none |
---|
| 635 | ! |
---|
| 636 | double precision, parameter, dimension ( 4 ) :: aad = (/ & |
---|
| 637 | 34.0D+00, 40.0D+00, 30.0D+00, 1050.0D+00 /) |
---|
| 638 | double precision, parameter, dimension ( 4 ) :: aat = (/ & |
---|
| 639 | 20000.0D+00, 20000.0D+00, 40000.0D+00, 25.0D+00 /) |
---|
| 640 | double precision, parameter, dimension ( 4 ) :: adz = (/ & |
---|
| 641 | 0.319D+00, 0.319D+00, 0.319D+00, 1.55D+00 /) |
---|
| 642 | double precision ar |
---|
| 643 | double precision att |
---|
| 644 | double precision, parameter, dimension ( 4 ) :: atz = (/ & |
---|
| 645 | 640.0D+00, 640.0D+00, 641.6D+00, 270.0D+00 /) |
---|
| 646 | double precision cvr |
---|
| 647 | double precision dadt |
---|
| 648 | double precision ddz |
---|
| 649 | double precision del |
---|
| 650 | double precision dex |
---|
| 651 | double precision dfdt |
---|
| 652 | double precision dpdrr |
---|
| 653 | double precision dpdtr |
---|
| 654 | double precision e |
---|
| 655 | double precision errtol |
---|
| 656 | double precision ex0 |
---|
| 657 | double precision ex1 |
---|
| 658 | double precision ex2 |
---|
| 659 | double precision fct |
---|
| 660 | double precision, parameter, dimension ( 40 ) :: g = (/ & |
---|
| 661 | -530.62968529023D+00, 0.22744901424408D+04, 0.78779333020687D+03, & |
---|
| 662 | -69.830527374994D+00, 0.17863832875422D+05,-0.39514731563338D+05, & |
---|
| 663 | 0.33803884280753D+05, -0.13855050202703D+05,-0.25637436613260D+06, & |
---|
| 664 | 0.48212575981415D+06, -0.34183016969660D+06, 0.12223156417448D+06, & |
---|
| 665 | 0.11797433655832D+07, -0.21734810110373D+07, 0.10829952168620D+07, & |
---|
| 666 | -0.25441998064049D+06, -0.31377774947767D+07, 0.52911910757704D+07, & |
---|
| 667 | -0.13802577177877D+07, -0.25109914369001D+06, 0.46561826115608D+07, & |
---|
| 668 | -0.72752773275387D+07, 0.41774246148294D+06, 0.14016358244614D+07, & |
---|
| 669 | -0.31555231392127D+07, 0.47929666384584D+07, 0.40912664781209D+06, & |
---|
| 670 | -0.13626369388386D+07, 0.69625220862664D+06,-0.10834900096447D+07, & |
---|
| 671 | -0.22722827401688D+06, 0.38365486000660D+06, 0.68833257944332D+04, & |
---|
| 672 | 0.21757245522644D+05, -0.26627944829770D+04,-0.70730418082074D+05, & |
---|
| 673 | -0.225D+00, -1.68D+00, 0.055D+00, -93.0D+00 /) |
---|
| 674 | double precision gascon |
---|
| 675 | double precision gr |
---|
| 676 | double precision hr |
---|
| 677 | integer i |
---|
| 678 | integer, parameter, dimension ( 40 ) :: ii = (/ & |
---|
| 679 | 0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6, & |
---|
| 680 | 8,8,8,8,2,2,0,4,2,2,2,4 /) |
---|
| 681 | integer j |
---|
| 682 | integer, parameter, dimension ( 40 ) :: jj = (/ & |
---|
| 683 | 2,3,5,7,2,3,5,7,2,3,5,7,2,3,5,7,2,3,5,7,2,3,5,7,2,3,5,7,& |
---|
| 684 | 2,3,5,7,1,4,4,4,0,2,0,0 /) |
---|
| 685 | integer k |
---|
| 686 | integer l |
---|
| 687 | integer nc |
---|
| 688 | double precision pr |
---|
| 689 | double precision q10 |
---|
| 690 | double precision q20 |
---|
| 691 | double precision q2a |
---|
| 692 | double precision q5t |
---|
| 693 | double precision qm |
---|
| 694 | double precision qp |
---|
| 695 | double precision qr(11) |
---|
| 696 | double precision qt(10) |
---|
| 697 | double precision rho |
---|
| 698 | double precision sr |
---|
| 699 | double precision, parameter :: s_ref = 7.6180720166752D+00 |
---|
| 700 | double precision t |
---|
| 701 | double precision, parameter :: t_ref = 647.073D+00 |
---|
| 702 | double precision tau |
---|
| 703 | double precision tx |
---|
| 704 | double precision, parameter :: u_ref = - 4328.4549774261D+00 |
---|
| 705 | double precision ur |
---|
| 706 | double precision v |
---|
| 707 | ! |
---|
| 708 | errtol = sqrt ( epsilon ( errtol ) ) |
---|
| 709 | ! |
---|
| 710 | ! Refuse to handle zero or negative temperatures. |
---|
| 711 | ! |
---|
| 712 | if ( t <= 0.0D+00 ) then |
---|
| 713 | write ( *, '(a)' ) ' ' |
---|
| 714 | write ( *, '(a)' ) 'RESID - Fatal error!' |
---|
| 715 | write ( *, '(a)' ) ' The input temperature T must be positive.' |
---|
| 716 | write ( *, '(a,g14.6)' ) ' Input value was T = ', t |
---|
| 717 | stop |
---|
| 718 | end if |
---|
| 719 | ! |
---|
| 720 | ! Refuse to handle zero or negative density. |
---|
| 721 | ! |
---|
| 722 | if ( rho <= 0.0D+00 ) then |
---|
| 723 | write ( *, '(a)' ) ' ' |
---|
| 724 | write ( *, '(a)' ) 'RESID - Fatal error!' |
---|
| 725 | write ( *, '(a)' ) ' The input density RHO must be positive.' |
---|
| 726 | write ( *, '(a,g14.6)' ) ' Input value was RHO = ', rho |
---|
| 727 | stop |
---|
| 728 | end if |
---|
| 729 | |
---|
| 730 | nc = 36 |
---|
| 731 | dpdrr = 0.0D+00 |
---|
| 732 | pr = 0.0D+00 |
---|
| 733 | ar = 0.0D+00 |
---|
| 734 | dadt = 0.0D+00 |
---|
| 735 | cvr = 0.0D+00 |
---|
| 736 | dpdtr = 0.0D+00 |
---|
| 737 | |
---|
| 738 | ex0 = - rho |
---|
| 739 | ! ex0 = max ( ex0, - 225.0D+00 ) |
---|
| 740 | ! ex0 = min ( ex0, 225.0D+00 ) |
---|
| 741 | e = exp ( ex0 ) |
---|
| 742 | |
---|
| 743 | q10 = rho * rho * e |
---|
| 744 | q20 = 1.0D+00 - e |
---|
| 745 | |
---|
| 746 | qr(1) = 0.0D+00 |
---|
| 747 | qr(2) = q10 |
---|
| 748 | do i = 2, 10 |
---|
| 749 | qr(i+1) = qr(i) * q20 |
---|
| 750 | end do |
---|
| 751 | |
---|
| 752 | v = t_ref / t |
---|
| 753 | qt(1) = t / t_ref |
---|
| 754 | do i = 2, 10 |
---|
| 755 | qt(i) = qt(i-1) * v |
---|
| 756 | end do |
---|
| 757 | |
---|
| 758 | do i = 1, nc |
---|
| 759 | |
---|
| 760 | k = ii(i) + 1 |
---|
| 761 | l = jj(i) |
---|
| 762 | qp = g(i) * qr(k+1) * qt(l+1) |
---|
| 763 | pr = pr + qp |
---|
| 764 | |
---|
| 765 | dpdrr = dpdrr + ( 2.0D+00 / rho - ( 1.0D+00 - e * dble ( k - 1 ) / & |
---|
| 766 | ( 1.0D+00 - e ) ) ) * qp |
---|
| 767 | |
---|
| 768 | ar = ar + g(i) * qr(k+2) * qt(l+1) / ( rho**2 * e * dble ( k ) & |
---|
| 769 | * gascon ( ) * t ) |
---|
| 770 | |
---|
| 771 | dfdt = ( 1.0D+00 - e )**k * dble ( 1 - l ) * qt(l+2) / t_ref / dble ( k ) |
---|
| 772 | |
---|
| 773 | dadt = dadt + g(i) * dfdt |
---|
| 774 | |
---|
| 775 | dpdtr = dpdtr + g(i) * dfdt * rho**2 * e * dble ( k ) / ( 1.0D+00 - e ) |
---|
| 776 | |
---|
| 777 | cvr = cvr + g(i) * dble ( l ) * dfdt / gascon() |
---|
| 778 | |
---|
| 779 | end do |
---|
| 780 | |
---|
| 781 | qp = 0.0D+00 |
---|
| 782 | q2a = 0.0D+00 |
---|
| 783 | |
---|
| 784 | do j = 37, 40 |
---|
| 785 | |
---|
| 786 | k = ii(j) |
---|
| 787 | ddz = adz(j-36) |
---|
| 788 | del = rho / ddz - 1.0D+00 |
---|
| 789 | |
---|
| 790 | if ( abs ( del ) < errtol ) then |
---|
| 791 | del = errtol |
---|
| 792 | end if |
---|
| 793 | |
---|
| 794 | ex1 = - aad(j-36) * del**k |
---|
| 795 | ! ex1 = max ( ex1, - 225.0D+00 ) |
---|
| 796 | ! ex1 = min ( ex1, 225.0D+00 ) |
---|
| 797 | dex = exp ( ex1 ) * del**jj(j) |
---|
| 798 | |
---|
| 799 | att = aat(j-36) |
---|
| 800 | tx = atz(j-36) |
---|
| 801 | tau = ( t / tx ) - 1.0D+00 |
---|
| 802 | |
---|
| 803 | ex2 = - att * tau**2 |
---|
| 804 | ! ex2 = max ( ex2, - 225.0D+00 ) |
---|
| 805 | ! ex2 = min ( ex2, 225.0D+00 ) |
---|
| 806 | q10 = dex * exp ( ex2 ) |
---|
| 807 | |
---|
| 808 | qm = dble ( jj(j) ) / del - dble ( k ) * aad(j-36) * del**(k-1) |
---|
| 809 | fct = qm * rho**2 * q10 / ddz |
---|
| 810 | |
---|
| 811 | q5t = fct * ( 2.0D+00 / rho + qm / ddz ) - ( rho / ddz )**2 * q10 * & |
---|
| 812 | ( dble ( jj(j) ) / del**2 + dble ( k * ( k - 1 ) ) * aad(j-36) * & |
---|
| 813 | del**(k-2) ) |
---|
| 814 | |
---|
| 815 | dpdrr = dpdrr + q5t * g(j) |
---|
| 816 | qp = qp + g(j) * fct |
---|
| 817 | dadt = dadt - 2.0D+00 * g(j) * att * tau * q10 / tx |
---|
| 818 | dpdtr = dpdtr - 2.0D+00 * g(j) * att * tau * fct / tx |
---|
| 819 | |
---|
| 820 | q2a = q2a + t * g(j) * att * ( 4.0D+00 * ex2 + 2.0D+00 ) * q10 / tx**2 |
---|
| 821 | |
---|
| 822 | ar = ar + q10 * g(j) / ( gascon() * t ) |
---|
| 823 | |
---|
| 824 | end do |
---|
| 825 | |
---|
| 826 | cvr = cvr + q2a / gascon() |
---|
| 827 | pr = pr + qp |
---|
| 828 | sr = - dadt / gascon() |
---|
| 829 | ur = ar + sr |
---|
| 830 | ! |
---|
| 831 | ! Assign dimensions. |
---|
| 832 | ! |
---|
| 833 | ar = gascon() * t * ar |
---|
| 834 | cvr = gascon() * cvr |
---|
| 835 | sr = gascon() * sr |
---|
| 836 | ur = gascon() * t * ur |
---|
| 837 | ! |
---|
| 838 | ! Adjust energies. |
---|
| 839 | ! |
---|
| 840 | ar = ar + gascon ( ) * t * s_ref - gascon ( ) * u_ref |
---|
| 841 | sr = sr - gascon ( ) * s_ref |
---|
| 842 | ur = ur - gascon ( ) * u_ref |
---|
| 843 | |
---|
| 844 | gr = ar + pr / rho |
---|
| 845 | hr = ur + pr / rho |
---|
| 846 | |
---|
| 847 | return |
---|
| 848 | end subroutine resid |
---|
| 849 | |
---|
| 850 | subroutine psat_H2O ( t, p ) |
---|
| 851 | ! |
---|
| 852 | !******************************************************************************* |
---|
| 853 | ! |
---|
| 854 | !! PSAT_H2O makes a rough estimate of the vapor pressure. |
---|
| 855 | ! |
---|
| 856 | ! |
---|
| 857 | ! Discussion: |
---|
| 858 | ! |
---|
| 859 | ! The calculation agrees with tabulated data to within |
---|
| 860 | ! 0.02% for temperature to within a degree or so of the critical |
---|
| 861 | ! temperature. The approximate vapor pressure can be refined |
---|
| 862 | ! by imposing the condition that the Gibbs functions of the vapor |
---|
| 863 | ! and liquid phases be equal. |
---|
| 864 | ! |
---|
| 865 | ! Modified: |
---|
| 866 | ! |
---|
| 867 | ! 21 November 1998 |
---|
| 868 | ! |
---|
| 869 | ! Reference: |
---|
| 870 | ! |
---|
| 871 | ! Lester Haar, John Gallagher and George Kell, |
---|
| 872 | ! NBS/NRC Steam Tables: |
---|
| 873 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
| 874 | ! for Vapor and Liquid States of Water in SI Units, |
---|
| 875 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
| 876 | ! TJ270.H3 |
---|
| 877 | ! |
---|
| 878 | ! C A Meyer, R B McClintock, G J Silvestri, R C Spencer, |
---|
| 879 | ! ASME Steam Tables: Thermodynamic and Transport Properties of Steam, |
---|
| 880 | ! American Society of Mechanical Engineers, 1967. |
---|
| 881 | ! |
---|
| 882 | ! Parameters: |
---|
| 883 | ! |
---|
| 884 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
| 885 | ! |
---|
| 886 | ! Output, double precision P, the vapor pressure, in MegaPascals. |
---|
| 887 | ! |
---|
| 888 | implicit none |
---|
| 889 | ! |
---|
| 890 | double precision, parameter, dimension ( 8 ) :: a = (/ & |
---|
| 891 | -7.8889166D+00, 2.5514255D+00, -6.716169D+00, 33.239495D+00, & |
---|
| 892 | -105.38479D+00, 174.35319D+00, -148.39348D+00, 48.631602D+00 /) |
---|
| 893 | double precision b |
---|
| 894 | integer i |
---|
| 895 | double precision p |
---|
| 896 | double precision q |
---|
| 897 | double precision t |
---|
| 898 | double precision, parameter :: t_ref = 647.25D+00 |
---|
| 899 | double precision v |
---|
| 900 | double precision w |
---|
| 901 | double precision z |
---|
| 902 | ! |
---|
| 903 | ! Refuse to handle zero or negative temperatures. |
---|
| 904 | ! |
---|
| 905 | if ( t <= 0.0D+00 ) then |
---|
| 906 | write ( *, '(a)' ) ' ' |
---|
| 907 | write ( *, '(a)' ) 'PSAT_H2O - Fatal error!' |
---|
| 908 | write ( *, '(a)' ) ' The input temperature T must be positive.' |
---|
| 909 | write ( *, '(a,g14.6)' ) ' Input value was T = ', t |
---|
| 910 | stop |
---|
| 911 | end if |
---|
| 912 | |
---|
| 913 | if ( t <= 314.0D+00 ) then |
---|
| 914 | |
---|
| 915 | p = 0.1D+00 * exp ( 6.3573118D+00 - 8858.843D+00 / t & |
---|
| 916 | + 607.56335D+00 * t**( -0.6D+00 ) ) |
---|
| 917 | |
---|
| 918 | else |
---|
| 919 | |
---|
| 920 | v = t / t_ref |
---|
| 921 | w = abs ( 1.0D+00 - v ) |
---|
| 922 | b = 0.0D+00 |
---|
| 923 | do i = 1, 8 |
---|
| 924 | z = i |
---|
| 925 | b = b + a(i) * w**( ( z + 1.0D+00 ) / 2.0D+00 ) |
---|
| 926 | end do |
---|
| 927 | |
---|
| 928 | q = b / v |
---|
| 929 | p = 22.093D+00 * exp ( q ) |
---|
| 930 | |
---|
| 931 | end if |
---|
| 932 | |
---|
| 933 | return |
---|
| 934 | end subroutine psat_H2O |
---|
| 935 | |
---|
| 936 | |
---|
| 937 | subroutine tdpsdt ( t, dp ) |
---|
| 938 | ! |
---|
| 939 | !******************************************************************************* |
---|
| 940 | ! |
---|
| 941 | !! TDPSDT computes the quantity T * dP(Sat)/dT. |
---|
| 942 | ! |
---|
| 943 | ! |
---|
| 944 | ! Discussion: |
---|
| 945 | ! |
---|
| 946 | ! Here T is the temperature and P(Sat) is the vapor pressure. |
---|
| 947 | ! It is used by TSAT_EST and TSAT. |
---|
| 948 | ! |
---|
| 949 | ! Reference: |
---|
| 950 | ! |
---|
| 951 | ! Lester Haar, John Gallagher and George Kell, |
---|
| 952 | ! NBS/NRC Steam Tables: |
---|
| 953 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
| 954 | ! for Vapor and Liquid States of Water in SI Units, |
---|
| 955 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
| 956 | ! TJ270.H3 |
---|
| 957 | ! |
---|
| 958 | ! C A Meyer, R B McClintock, G J Silvestri, R C Spencer, |
---|
| 959 | ! ASME Steam Tables: Thermodynamic and Transport Properties of Steam, |
---|
| 960 | ! American Society of Mechanical Engineers, 1967. |
---|
| 961 | ! |
---|
| 962 | ! Parameters: |
---|
| 963 | ! |
---|
| 964 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
| 965 | ! |
---|
| 966 | ! Output, double precision DP, the value T*(dP(Sat)/dT), |
---|
| 967 | ! in MegaPascals. |
---|
| 968 | ! |
---|
| 969 | implicit none |
---|
| 970 | ! |
---|
| 971 | double precision, parameter, dimension ( 8 ) :: a = (/ & |
---|
| 972 | -7.8889166D+00, 2.5514255D+00, -6.716169D+00, 33.239495D+00, & |
---|
| 973 | -105.38479D+00, 174.35319D+00, -148.39348D+00, 48.631602D+00 /) |
---|
| 974 | double precision b |
---|
| 975 | double precision c |
---|
| 976 | double precision dp |
---|
| 977 | integer i |
---|
| 978 | double precision q |
---|
| 979 | double precision t |
---|
| 980 | double precision, parameter :: t_ref = 647.25D+00 |
---|
| 981 | double precision v |
---|
| 982 | double precision w |
---|
| 983 | double precision y |
---|
| 984 | double precision z |
---|
| 985 | ! |
---|
| 986 | ! Refuse to handle zero or negative temperatures. |
---|
| 987 | ! |
---|
| 988 | if ( t <= 0.0D+00 ) then |
---|
| 989 | write ( *, '(a)' ) ' ' |
---|
| 990 | write ( *, '(a)' ) 'TDPSDT - Fatal error!' |
---|
| 991 | write ( *, '(a)' ) ' The input temperature T must be positive.' |
---|
| 992 | write ( *, '(a,g14.6)' ) ' Input value was T = ', t |
---|
| 993 | stop |
---|
| 994 | end if |
---|
| 995 | |
---|
| 996 | v = t / t_ref |
---|
| 997 | w = 1.0D+00 - v |
---|
| 998 | b = 0.0D+00 |
---|
| 999 | c = 0.0D+00 |
---|
| 1000 | do i = 1, 8 |
---|
| 1001 | z = dble ( i + 1 ) / 2.0D+00 |
---|
| 1002 | y = a(i) * w**z |
---|
| 1003 | c = c + ( y / w ) * ( 0.5D+00 - 0.5D+00 * dble ( i ) - 1.0D+00 / v ) |
---|
| 1004 | b = b + y |
---|
| 1005 | end do |
---|
| 1006 | |
---|
| 1007 | q = b / v |
---|
| 1008 | dp = 22.093D+00 * exp ( q ) * c |
---|
| 1009 | |
---|
| 1010 | return |
---|
| 1011 | end subroutine tdpsdt |
---|
| 1012 | |
---|
| 1013 | |
---|
| 1014 | |
---|
| 1015 | subroutine therm ( t, rho, a, cjth, cjtt, cp, cv, dpdr, dpdt, g, h, p, s, u ) |
---|
| 1016 | ! |
---|
| 1017 | !******************************************************************************* |
---|
| 1018 | ! |
---|
| 1019 | !! THERM calculates thermodynamic functions given temperature and density. |
---|
| 1020 | ! |
---|
| 1021 | ! |
---|
| 1022 | ! Discussion: |
---|
| 1023 | ! |
---|
| 1024 | ! Thermodynamic values were calculated from an analytic equation |
---|
| 1025 | ! that approximates the Helmholtz function (specific Helmholtz |
---|
| 1026 | ! energy) for ordinary water and steam, of the form A=A(rho,T) |
---|
| 1027 | ! where A is the Helmholtz function, rho the density, and T |
---|
| 1028 | ! the absolute (thermodynamic) temperature. Any thermodynamic |
---|
| 1029 | ! value for any state, liquid, vapor or metastable, may be |
---|
| 1030 | ! calculated by differentiation of this equation in accord with |
---|
| 1031 | ! the first and second laws of thermodynamics. |
---|
| 1032 | ! |
---|
| 1033 | ! The International Association for the Properties of Steam |
---|
| 1034 | ! has provisionally accepted this formulation for the range |
---|
| 1035 | ! 273.15 <= T <= 1273.15 degrees Kelvin, where, for 423.15 <= T, |
---|
| 1036 | ! the maximum pressure is Pmax = 1500 MPa = 15000 bar, and for |
---|
| 1037 | ! 273.15 <= T < 423.15, the maximum pressure is |
---|
| 1038 | ! Pmax = 100 * (5 + (T-273.15)/15) MPa. |
---|
| 1039 | ! |
---|
| 1040 | ! Close to the critical point, a small region is excluded: |
---|
| 1041 | ! Abs(T-Tk) < 1, abs((rho-rhok)/rhok) < 0.3. |
---|
| 1042 | ! |
---|
| 1043 | ! The equation has a wider useful range, namely, fluid states |
---|
| 1044 | ! of pure, undissociated water and steam defined by |
---|
| 1045 | ! 260 <= T <= 2500 K and 0 <= P <= 3000 MPa. |
---|
| 1046 | ! |
---|
| 1047 | ! Thermodynamic property values for specific volume, density, |
---|
| 1048 | ! specific internal energy, specific enthalpy, and specific |
---|
| 1049 | ! entropy of water and steam were tabulated over the range |
---|
| 1050 | ! 0 <= t <= 2000 C, 0 <= P <= 3000 MPa. The reference |
---|
| 1051 | ! state is the liquid at the triple point, for which the |
---|
| 1052 | ! internal energy and entropy have been assigned the value zero. |
---|
| 1053 | ! |
---|
| 1054 | ! Thermodynamic quantities are determined from the Helmholtz function |
---|
| 1055 | ! A(rho,T), which is computed as the sum of three terms: |
---|
| 1056 | ! |
---|
| 1057 | ! A(rho,T) = A(base)(rho,T) + A(residual)(rho,T) + A(ideal)(T) |
---|
| 1058 | ! (Equation 1) |
---|
| 1059 | ! |
---|
| 1060 | ! Because A(rho,T) is everywhere single valued and analytic, |
---|
| 1061 | ! we can derive closed form relations for all other properties. |
---|
| 1062 | ! In the following, unless otherwise indicated, the independent |
---|
| 1063 | ! variables are temperature T and density RHO, and differentiation |
---|
| 1064 | ! with respect to one variable is to imply that the other is fixed. |
---|
| 1065 | ! |
---|
| 1066 | ! Pressure: P = RHO**2 * dA/dRHO |
---|
| 1067 | ! Density derivative: dP/dRHO = 2*P/RHO + RHO**2 * d2A/dRHO2 |
---|
| 1068 | ! Temperature derivative: dP/dT = RHO**2 * d2A/(dRHO dT) |
---|
| 1069 | ! Specific entropy: S = - dA/dT |
---|
| 1070 | ! Specific internal energy: U = A + T*S |
---|
| 1071 | ! Specific enthalpy: H = U + P/RHO |
---|
| 1072 | ! Specific heat capacity |
---|
| 1073 | ! at constant volume: Cv = - T * d2A/dT2 |
---|
| 1074 | ! Specific Gibbs function: G = A + P/RHO |
---|
| 1075 | ! Specific heat capacity |
---|
| 1076 | ! at constant pressure: Cp = Cv + (T*(dP/dT)**2)/(RHO**2*dP/dRHO) |
---|
| 1077 | ! Speed of sound: Omega = Sqrt ((Cp/Cv) * dP/dRHO) |
---|
| 1078 | ! Second virial coefficient: B = 1/(2*R*T) * (d2P/dRHO2) (at RHO=0) |
---|
| 1079 | ! Isothermal Joule-Thomson |
---|
| 1080 | ! coefficient: DeltaT = (dH/dP) (fixed T) = |
---|
| 1081 | ! (1/RHO)-(T*dP/dT)/(RHO**2*dP/dRHO) |
---|
| 1082 | ! Joule-Thomson coefficient: Mu = (dT/dP) (fixed H) = DeltaT/Cp |
---|
| 1083 | ! Isentropic temperature- |
---|
| 1084 | ! pressure coefficient: BetaS = (dT/dP) (fixed S) = |
---|
| 1085 | ! (DeltaT - 1/RHO)/Cp |
---|
| 1086 | ! |
---|
| 1087 | ! Modified: |
---|
| 1088 | ! |
---|
| 1089 | ! 19 November 1998 |
---|
| 1090 | ! |
---|
| 1091 | ! Reference: |
---|
| 1092 | ! |
---|
| 1093 | ! Lester Haar, John Gallagher and George Kell, |
---|
| 1094 | ! NBS/NRC Steam Tables: |
---|
| 1095 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
| 1096 | ! for Vapor and Liquid States of Water in SI Units, |
---|
| 1097 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
| 1098 | ! TJ270.H3 |
---|
| 1099 | ! |
---|
| 1100 | ! C A Meyer, R B McClintock, G J Silvestri, R C Spencer, |
---|
| 1101 | ! ASME Steam Tables: Thermodynamic and Transport Properties of Steam, |
---|
| 1102 | ! American Society of Mechanical Engineers, 1967. |
---|
| 1103 | ! |
---|
| 1104 | ! Parameters: |
---|
| 1105 | ! |
---|
| 1106 | ! Input, double precision T, the temperature, in degrees Kelvin. |
---|
| 1107 | ! |
---|
| 1108 | ! Input, double precision RHO, the fluid density, in G/CM3. |
---|
| 1109 | ! |
---|
| 1110 | ! Output, double precision A, the Helmholtz function, in KJ/kg. |
---|
| 1111 | ! |
---|
| 1112 | ! Output, double precision CJTH, the Joule-Thomson coefficient, |
---|
| 1113 | ! in K/MegaPascals. |
---|
| 1114 | ! |
---|
| 1115 | ! Output, double precision CJTT, the isothermal Joule-Thomson coefficient, |
---|
| 1116 | ! in CM3/G. |
---|
| 1117 | ! |
---|
| 1118 | ! Output, double precision CP, the isobaric (constant pressure) heat |
---|
| 1119 | ! capacity, in KJ/(kg degrees Kelvin). |
---|
| 1120 | ! |
---|
| 1121 | ! Output, double precision CV, the isochoric (constant volume) heat capacity, |
---|
| 1122 | ! in KJ/(kg degrees Kelvin). |
---|
| 1123 | ! |
---|
| 1124 | ! Output, double precision DPDR, the partial derivative |
---|
| 1125 | ! dP(T,RHO)/dRHO, with T held fixed, in MegaPascals*CM3/G. |
---|
| 1126 | ! |
---|
| 1127 | ! Output, double precision DPDT, the partial derivative |
---|
| 1128 | ! dP(T,RHO)/dT, with RHO held fixed, in MegaPascals/degrees Kelvin. |
---|
| 1129 | ! |
---|
| 1130 | ! Output, double precision G, the Gibbs free energy, in KJ/kg. |
---|
| 1131 | ! |
---|
| 1132 | ! Output, double precision H, the enthalpy, in KJ/kg. |
---|
| 1133 | ! |
---|
| 1134 | ! Output, double precision P, the pressure, in MegaPascals. |
---|
| 1135 | ! |
---|
| 1136 | ! Output, double precision S, the entropy, in KJ/(kg degrees Kelvin). |
---|
| 1137 | ! |
---|
| 1138 | ! Output, double precision U, the internal energy, in KJ/kg. |
---|
| 1139 | ! |
---|
| 1140 | implicit none |
---|
| 1141 | ! |
---|
| 1142 | double precision a |
---|
| 1143 | double precision ab |
---|
| 1144 | double precision ai |
---|
| 1145 | double precision ar |
---|
| 1146 | double precision cjth |
---|
| 1147 | double precision cjtt |
---|
| 1148 | double precision cp |
---|
| 1149 | double precision cpi |
---|
| 1150 | double precision cv |
---|
| 1151 | double precision cvb |
---|
| 1152 | double precision cvi |
---|
| 1153 | double precision cvr |
---|
| 1154 | logical, parameter :: debug = .false. |
---|
| 1155 | ! logical, parameter :: debug = .true. |
---|
| 1156 | double precision dpdr |
---|
| 1157 | double precision dpdrb |
---|
| 1158 | double precision dpdrr |
---|
| 1159 | double precision dpdt |
---|
| 1160 | double precision dpdtb |
---|
| 1161 | double precision dpdtr |
---|
| 1162 | double precision g |
---|
| 1163 | double precision gb |
---|
| 1164 | double precision gi |
---|
| 1165 | double precision gr |
---|
| 1166 | double precision h |
---|
| 1167 | double precision hb |
---|
| 1168 | double precision hi |
---|
| 1169 | double precision hr |
---|
| 1170 | double precision p |
---|
| 1171 | double precision pb |
---|
| 1172 | double precision pr |
---|
| 1173 | double precision rho |
---|
| 1174 | double precision s |
---|
| 1175 | double precision sb |
---|
| 1176 | double precision si |
---|
| 1177 | double precision sr |
---|
| 1178 | double precision t |
---|
| 1179 | double precision u |
---|
| 1180 | double precision ub |
---|
| 1181 | double precision ui |
---|
| 1182 | double precision ur |
---|
| 1183 | ! |
---|
| 1184 | ! Refuse to handle zero or negative temperatures. |
---|
| 1185 | ! |
---|
| 1186 | if ( t <= 0.0D+00 ) then |
---|
| 1187 | write ( *, '(a)' ) ' ' |
---|
| 1188 | write ( *, '(a)' ) 'THERM - Fatal error!' |
---|
| 1189 | write ( *, '(a)' ) ' The input temperature T must be positive.' |
---|
| 1190 | write ( *, '(a,g14.6)' ) ' Input value was T = ', t |
---|
| 1191 | stop |
---|
| 1192 | end if |
---|
| 1193 | ! |
---|
| 1194 | ! Refuse to handle zero or negative density. |
---|
| 1195 | ! |
---|
| 1196 | if ( rho <= 0.0D+00 ) then |
---|
| 1197 | write ( *, '(a)' ) ' ' |
---|
| 1198 | write ( *, '(a)' ) 'THERM - Fatal error!' |
---|
| 1199 | write ( *, '(a)' ) ' The input density RHO must be positive.' |
---|
| 1200 | write ( *, '(a,g14.6)' ) ' Input value was RHO = ', rho |
---|
| 1201 | stop |
---|
| 1202 | end if |
---|
| 1203 | |
---|
| 1204 | call ideal ( t, ai, cpi, cvi, gi, hi, si, ui ) |
---|
| 1205 | |
---|
| 1206 | call resid ( t, rho, ar, cvr, dpdrr, dpdtr, gr, hr, pr, sr, ur ) |
---|
| 1207 | |
---|
| 1208 | call base ( t, rho, ab, cvb, dpdrb, dpdtb, gb, hb, pb, sb, ub ) |
---|
| 1209 | |
---|
| 1210 | a = ab + ar + ai |
---|
| 1211 | cv = cvb + cvr + cvi |
---|
| 1212 | |
---|
| 1213 | if ( debug ) then |
---|
| 1214 | write ( *, * ) ' ' |
---|
| 1215 | write ( *, * ) 'THERM:' |
---|
| 1216 | write ( *, * ) ' CVB = ', cvb |
---|
| 1217 | write ( *, * ) ' CVR = ', cvr |
---|
| 1218 | write ( *, * ) ' CVI = ', cvi |
---|
| 1219 | write ( *, * ) ' CV = ', cv |
---|
| 1220 | end if |
---|
| 1221 | |
---|
| 1222 | |
---|
| 1223 | dpdr = dpdrb + dpdrr |
---|
| 1224 | dpdt = dpdtb + dpdtr |
---|
| 1225 | p = pb + pr |
---|
| 1226 | s = sb + sr + si |
---|
| 1227 | u = ub + ur + ui |
---|
| 1228 | |
---|
| 1229 | if ( debug ) then |
---|
| 1230 | write ( *, * ) ' ' |
---|
| 1231 | write ( *, * ) 'THERM:' |
---|
| 1232 | write ( *, * ) ' UB = ', ub |
---|
| 1233 | write ( *, * ) ' UR = ', ur |
---|
| 1234 | write ( *, * ) ' UI = ', ui |
---|
| 1235 | end if |
---|
| 1236 | |
---|
| 1237 | g = a + p / rho |
---|
| 1238 | h = u + p / rho |
---|
| 1239 | cp = cv + t * dpdt**2 / ( dpdr * rho**2 ) |
---|
| 1240 | cjtt = 1.0D+00 / rho - t * dpdt / ( dpdr * rho**2 ) |
---|
| 1241 | cjth = - cjtt / cp |
---|
| 1242 | |
---|
| 1243 | return |
---|
| 1244 | end subroutine therm |
---|
| 1245 | |
---|
| 1246 | function gascon ( ) |
---|
| 1247 | ! |
---|
| 1248 | !******************************************************************************* |
---|
| 1249 | ! |
---|
| 1250 | !! GASCON returns the value of the specific gas constant. |
---|
| 1251 | ! |
---|
| 1252 | ! |
---|
| 1253 | ! Note: |
---|
| 1254 | ! |
---|
| 1255 | ! The specific gas constant R is related to the universal gas |
---|
| 1256 | ! constant R-bar = 8.31441 J/(mol degrees Kelvin) by the molar mass |
---|
| 1257 | ! M = 18.0152 g/mol: |
---|
| 1258 | ! |
---|
| 1259 | ! R = R-bar / M. |
---|
| 1260 | ! |
---|
| 1261 | ! Reference: |
---|
| 1262 | ! |
---|
| 1263 | ! Lester Haar, John Gallagher and George Kell, |
---|
| 1264 | ! NBS/NRC Steam Tables: |
---|
| 1265 | ! Thermodynamic and Transport Properties and Computer Programs |
---|
| 1266 | ! for Vapor and Liquid States of Water in SI Units, |
---|
| 1267 | ! Hemisphere Publishing Corporation, Washington, 1984, |
---|
| 1268 | ! TJ270.H3 |
---|
| 1269 | ! |
---|
| 1270 | ! C A Meyer, R B McClintock, G J Silvestri, R C Spencer, |
---|
| 1271 | ! ASME Steam Tables: Thermodynamic and Transport Properties of Steam, |
---|
| 1272 | ! American Society of Mechanical Engineers, 1967. |
---|
| 1273 | ! |
---|
| 1274 | ! Parameters: |
---|
| 1275 | ! |
---|
| 1276 | ! Output, double precision GASCON, the value of the specific gas |
---|
| 1277 | ! constant, in J/(g degrees Kelvin). |
---|
| 1278 | ! |
---|
| 1279 | implicit none |
---|
| 1280 | ! |
---|
| 1281 | double precision gascon |
---|
| 1282 | ! |
---|
| 1283 | gascon = 0.461522D+00 |
---|
| 1284 | |
---|
| 1285 | return |
---|
| 1286 | end function gascon |
---|