[3195] | 1 | subroutine condense_n2(klon,klev,nq,ptimestep, & |
---|
[3193] | 2 | pcapcal,pplay,pplev,ptsrf,pt, & |
---|
| 3 | pphi,pdt,pdu,pdv,pdtsrf,pu,pv,pq,pdq, & |
---|
| 4 | picen2,psolaralb,pemisurf, & |
---|
| 5 | pdtc,pdtsrfc,pdpsrf,pduc,pdvc, & |
---|
| 6 | pdqc,pdicen2) |
---|
[3184] | 7 | |
---|
[3193] | 8 | use radinc_h, only : naerkind |
---|
| 9 | use comgeomfi_h |
---|
[3195] | 10 | use comcstfi_mod, only: g, r, cpp, pi |
---|
| 11 | USE surfdat_h, only: phisfi,kp,p00 |
---|
| 12 | USE tracer_h, only: noms, igcm_n2, lw_n2 |
---|
| 13 | USE callkeys_mod, only: fast,ch4lag,latlag,nbsub,no_n2frost,tsurfmax,kmixmin,source_haze,vmrlag |
---|
| 14 | USE comvert_mod, ONLY: ap,bp |
---|
| 15 | use geometry_mod, only: latitude |
---|
[3184] | 16 | |
---|
| 17 | |
---|
[3193] | 18 | implicit none |
---|
| 19 | |
---|
[3184] | 20 | !================================================================== |
---|
| 21 | ! Purpose |
---|
| 22 | ! ------- |
---|
[3193] | 23 | ! Condense and/or sublime N2 ice on the ground and in the |
---|
| 24 | ! atmosphere, and sediment the ice. |
---|
[3195] | 25 | ! |
---|
[3184] | 26 | ! Inputs |
---|
[3195] | 27 | ! ------ |
---|
[3193] | 28 | ! klon Number of vertical columns |
---|
[3195] | 29 | ! klev Number of layers |
---|
| 30 | ! pplay(klon,klev) Pressure layers |
---|
| 31 | ! pplev(klon,klev+1) Pressure levels |
---|
| 32 | ! pt(klon,klev) Temperature (in K) |
---|
[3193] | 33 | ! ptsrf(klon) Surface temperature |
---|
[3195] | 34 | ! |
---|
| 35 | ! pdt(klon,klev) Time derivative before condensation/sublimation of pt |
---|
[3193] | 36 | ! pdtsrf(klon) Time derivative before condensation/sublimation of ptsrf |
---|
| 37 | ! picen2(klon) n2 ice at the surface (kg/m2) |
---|
[3195] | 38 | ! |
---|
[3184] | 39 | ! Outputs |
---|
| 40 | ! ------- |
---|
[3193] | 41 | ! pdpsrf(klon) \ Contribution of condensation/sublimation |
---|
[3195] | 42 | ! pdtc(klon,klev) / to the time derivatives of Ps, pt, and ptsrf |
---|
[3193] | 43 | ! pdtsrfc(klon) / |
---|
| 44 | ! pdicen2(klon) Tendancy n2 ice at the surface (kg/m2) |
---|
[3195] | 45 | ! |
---|
[3184] | 46 | ! Both |
---|
| 47 | ! ---- |
---|
[3193] | 48 | ! psolaralb(klon) Albedo at the surface |
---|
| 49 | ! pemisurf(klon) Emissivity of the surface |
---|
[3184] | 50 | ! |
---|
| 51 | ! Authors |
---|
[3195] | 52 | ! ------- |
---|
[3193] | 53 | ! Francois Forget (1996,2013) |
---|
[3184] | 54 | ! Converted to Fortran 90 and slightly modified by R. Wordsworth (2009) |
---|
[3195] | 55 | ! |
---|
| 56 | ! |
---|
[3184] | 57 | !================================================================== |
---|
| 58 | |
---|
[3193] | 59 | !----------------------------------------------------------------------- |
---|
| 60 | ! Arguments |
---|
[3184] | 61 | |
---|
[3195] | 62 | INTEGER klon, klev, nq |
---|
[3184] | 63 | |
---|
[3195] | 64 | REAL ptimestep |
---|
| 65 | REAL pplay(klon,klev),pplev(klon,klev+1) |
---|
[3193] | 66 | REAL pcapcal(klon) |
---|
[3195] | 67 | REAL pt(klon,klev) |
---|
[3193] | 68 | REAL ptsrf(klon),flu1(klon),flu2(klon),flu3(klon) |
---|
[3195] | 69 | REAL pphi(klon,klev) |
---|
| 70 | REAL pdt(klon,klev),pdtsrf(klon),pdtc(klon,klev) |
---|
[3193] | 71 | REAL pdtsrfc(klon),pdpsrf(klon) |
---|
| 72 | REAL picen2(klon),psolaralb(klon),pemisurf(klon) |
---|
[3184] | 73 | |
---|
| 74 | |
---|
[3195] | 75 | REAL pu(klon,klev) , pv(klon,klev) |
---|
| 76 | REAL pdu(klon,klev) , pdv(klon,klev) |
---|
| 77 | REAL pduc(klon,klev) , pdvc(klon,klev) |
---|
| 78 | REAL pq(klon,klev,nq),pdq(klon,klev,nq) |
---|
| 79 | REAL pdqc(klon,klev,nq) |
---|
| 80 | |
---|
[3193] | 81 | !----------------------------------------------------------------------- |
---|
| 82 | ! Local variables |
---|
[3184] | 83 | |
---|
[3193] | 84 | INTEGER l,ig,ilay,it,iq,ich4_gas |
---|
[3184] | 85 | |
---|
[3195] | 86 | REAL*8 zt(klon,klev) |
---|
[3193] | 87 | REAL tcond_n2 |
---|
| 88 | REAL pcond_n2 |
---|
| 89 | REAL glob_average2d ! function |
---|
[3195] | 90 | REAL zqn2(klon,klev) ! N2 MMR used to compute Tcond/zqn2 |
---|
| 91 | REAL ztcond (klon,klev) |
---|
| 92 | REAL ztcondsol(klon),zfallheat |
---|
| 93 | REAL pdicen2(klon) |
---|
| 94 | REAL zcondicea(klon,klev), zcondices(klon) |
---|
| 95 | REAL zfallice(klon,klev+1) |
---|
| 96 | REAL zmflux(klev+1) |
---|
| 97 | REAL zu(klev),zv(klev) |
---|
| 98 | REAL zq(klev,nq),zq1(klev) |
---|
| 99 | REAL ztsrf(klon) |
---|
| 100 | REAL ztc(klev), ztm(klev+1) |
---|
| 101 | REAL zum(klev+1) , zvm(klev+1) |
---|
| 102 | REAL zqm(klev+1,nq),zqm1(klev+1) |
---|
| 103 | LOGICAL condsub(klon) |
---|
[3193] | 104 | REAL subptimestep |
---|
| 105 | Integer Ntime |
---|
[3195] | 106 | real masse (klev),w(klev+1) |
---|
| 107 | real wq(klon,klev+1) |
---|
[3193] | 108 | real vstokes,reff |
---|
| 109 | real dWtotsn2 |
---|
[3195] | 110 | real condnconsn2(klon) |
---|
[3193] | 111 | real nconsMAXn2 |
---|
| 112 | ! Special diagnostic variables |
---|
[3195] | 113 | real tconda1(klon,klev) |
---|
| 114 | real tconda2(klon,klev) |
---|
| 115 | real zdtsig (klon,klev) |
---|
| 116 | real zdtlatent (klon,klev) |
---|
| 117 | real zdt (klon,klev) |
---|
[3421] | 118 | ! REAL albediceF(klon) |
---|
[3195] | 119 | ! SAVE albediceF |
---|
[3193] | 120 | INTEGER nsubtimestep,itsub !number of subtimestep when calling vl1d |
---|
| 121 | REAL subtimestep !ptimestep/nsubtimestep |
---|
[3195] | 122 | REAL dtmax |
---|
[3184] | 123 | |
---|
[3195] | 124 | REAL zplevhist(klon) |
---|
| 125 | REAL zplevnew(klon) |
---|
| 126 | REAL zplev(klon) |
---|
| 127 | REAL zpicen2(klon) |
---|
| 128 | REAL ztsrfhist(klon) |
---|
| 129 | REAL zdtsrf(klon) |
---|
[3193] | 130 | REAL globzplevnew |
---|
[3184] | 131 | |
---|
[3421] | 132 | real,dimension(:),save,allocatable :: vmrn2 |
---|
| 133 | !$OMP THREADPRIVATE(vmrn2) |
---|
[3195] | 134 | REAL stephan |
---|
[3193] | 135 | DATA stephan/5.67e-08/ ! Stephan Boltzman constant |
---|
| 136 | SAVE stephan |
---|
| 137 | !----------------------------------------------------------------------- |
---|
| 138 | ! Saved local variables |
---|
[3184] | 139 | |
---|
[3193] | 140 | ! REAL latcond |
---|
| 141 | REAL ccond |
---|
| 142 | REAL cpice ! for atm condensation |
---|
| 143 | SAVE cpice |
---|
| 144 | ! SAVE latcond,ccond |
---|
| 145 | SAVE ccond |
---|
[3184] | 146 | |
---|
[3193] | 147 | LOGICAL firstcall |
---|
| 148 | SAVE firstcall |
---|
| 149 | REAL SSUM |
---|
| 150 | EXTERNAL SSUM |
---|
[3184] | 151 | |
---|
[3193] | 152 | ! DATA latcond /2.5e5/ |
---|
| 153 | ! DATA latcond /1.98e5/ |
---|
| 154 | DATA cpice /1300./ |
---|
| 155 | DATA firstcall/.true./ |
---|
[3184] | 156 | |
---|
[3193] | 157 | INTEGER,SAVE :: i_n2ice=0 ! n2 ice |
---|
| 158 | CHARACTER(LEN=20) :: tracername ! to temporarily store text |
---|
| 159 | logical olkin ! option to prevent N2 ice effect in the south |
---|
| 160 | DATA olkin/.false./ |
---|
| 161 | save olkin |
---|
[3184] | 162 | |
---|
[3193] | 163 | CHARACTER(len=10) :: tname |
---|
[3184] | 164 | |
---|
[3193] | 165 | !----------------------------------------------------------------------- |
---|
[3184] | 166 | |
---|
[3193] | 167 | ! Initialisation |
---|
| 168 | IF (firstcall) THEN |
---|
| 169 | ccond=cpp/(g*lw_n2) |
---|
[3195] | 170 | print*,'In condense_n2cloud: ccond=',ccond,' latcond=',lw_n2 |
---|
[3184] | 171 | |
---|
[3193] | 172 | ! calculate global mean surface pressure for the fast mode |
---|
[3438] | 173 | IF (.not. ALLOCATED(kp)) ALLOCATE(kp(klon)) |
---|
| 174 | DO ig=1,klon |
---|
| 175 | kp(ig) = exp(-phisfi(ig)/(r*38.)) |
---|
| 176 | ENDDO |
---|
[3193] | 177 | IF (fast) THEN |
---|
| 178 | p00=glob_average2d(kp) ! mean pres at ref level |
---|
| 179 | ENDIF |
---|
[3184] | 180 | |
---|
[3421] | 181 | ALLOCATE(vmrn2(klon)) |
---|
[3390] | 182 | vmrn2(:) = 1. |
---|
[3228] | 183 | !IF (ch4lag) then |
---|
| 184 | ! DO ig=1,klon |
---|
| 185 | ! if (latitude(ig)*180./pi.ge.latlag) then |
---|
| 186 | ! vmrn2(ig) = vmrlag |
---|
| 187 | ! endif |
---|
| 188 | ! ENDDO |
---|
| 189 | !ENDIF |
---|
[3421] | 190 | IF (no_n2frost) then |
---|
| 191 | DO ig=1,klon |
---|
| 192 | if (picen2(ig).eq.0.) then |
---|
| 193 | vmrn2(ig) = 1.e-15 |
---|
| 194 | endif |
---|
| 195 | ENDDO |
---|
| 196 | ENDIF |
---|
[3193] | 197 | firstcall=.false. |
---|
| 198 | ENDIF |
---|
[3184] | 199 | |
---|
[3193] | 200 | !----------------------------------------------------------------------- |
---|
[3195] | 201 | ! Calculation of n2 condensation / sublimation |
---|
[3184] | 202 | |
---|
[3193] | 203 | ! Variables used: |
---|
| 204 | ! picen2(klon) : amount of n2 ice on the ground (kg/m2) |
---|
[3195] | 205 | ! zcondicea(klon,klev): condensation rate in layer l (kg/m2/s) |
---|
[3193] | 206 | ! zcondices(klon) : condensation rate on the ground (kg/m2/s) |
---|
[3195] | 207 | ! zfallice(klon,klev) : amount of ice falling from layer l (kg/m2/s) |
---|
| 208 | ! zdtlatent(klon,klev): dT/dt due to phase changes (K/s) |
---|
[3184] | 209 | |
---|
[3193] | 210 | ! Tendencies initially set to 0 |
---|
| 211 | zcondices(1:klon) = 0. |
---|
| 212 | pdtsrfc(1:klon) = 0. |
---|
| 213 | pdpsrf(1:klon) = 0. |
---|
| 214 | ztsrfhist(1:klon) = 0. |
---|
| 215 | condsub(1:klon) = .false. |
---|
| 216 | pdicen2(1:klon) = 0. |
---|
| 217 | zfallheat=0 |
---|
[3195] | 218 | pdqc(1:klon,1:klev,1:nq)=0 |
---|
| 219 | pdtc(1:klon,1:klev)=0 |
---|
| 220 | pduc(1:klon,1:klev)=0 |
---|
| 221 | pdvc(1:klon,1:klev)=0 |
---|
| 222 | zfallice(1:klon,1:klev+1)=0 |
---|
| 223 | zcondicea(1:klon,1:klev)=0 |
---|
| 224 | zdtlatent(1:klon,1:klev)=0 |
---|
| 225 | zt(1:klon,1:klev)=0. |
---|
[3184] | 226 | |
---|
[3193] | 227 | !----------------------------------------------------------------------- |
---|
| 228 | ! Atmospheric condensation |
---|
[3184] | 229 | |
---|
[3193] | 230 | ! Condensation / sublimation in the atmosphere |
---|
| 231 | ! -------------------------------------------- |
---|
| 232 | ! (calcul of zcondicea , zfallice and pdtc) |
---|
[3184] | 233 | |
---|
[3195] | 234 | zt(1:klon,1:klev)=pt(1:klon,1:klev)+ pdt(1:klon,1:klev)*ptimestep |
---|
[3193] | 235 | if (igcm_n2.ne.0) then |
---|
[3195] | 236 | zqn2(1:klon,1:klev) = 1. ! & temporaire |
---|
| 237 | ! zqn2(1:klon,1:klev)= pq(1:klon,1:klev,igcm_n2) + pdq(1:klon,1:klev,igcm_n2)*ptimestep |
---|
[3193] | 238 | else |
---|
[3195] | 239 | zqn2(1:klon,1:klev) = 1. |
---|
[3193] | 240 | end if |
---|
[3195] | 241 | |
---|
[3193] | 242 | if (.not.fast) then |
---|
| 243 | ! Forecast the atmospheric frost temperature 'ztcond' with function tcond_n2 |
---|
[3195] | 244 | DO l=1,klev |
---|
[3193] | 245 | DO ig=1,klon |
---|
[3195] | 246 | ztcond (ig,l) = tcond_n2(pplay(ig,l),zqn2(ig,l)) |
---|
[3193] | 247 | ENDDO |
---|
| 248 | ENDDO |
---|
[3184] | 249 | |
---|
[3195] | 250 | DO l=klev,1,-1 |
---|
[3193] | 251 | DO ig=1,klon |
---|
| 252 | pdtc(ig,l)=0. ! final tendancy temperature set to 0 |
---|
[3184] | 253 | |
---|
[3193] | 254 | IF((zt(ig,l).LT.ztcond(ig,l)).or.(zfallice(ig,l+1).gt.0))THEN |
---|
| 255 | condsub(ig)=.true. !condensation at level l |
---|
[3195] | 256 | IF (zfallice(ig,l+1).gt.0) then |
---|
| 257 | zfallheat=zfallice(ig,l+1)*& |
---|
[3193] | 258 | (pphi(ig,l+1)-pphi(ig,l) +& |
---|
| 259 | cpice*(ztcond(ig,l+1)-ztcond(ig,l)))/lw_n2 |
---|
| 260 | ELSE |
---|
| 261 | zfallheat=0. |
---|
| 262 | ENDIF |
---|
| 263 | zdtlatent(ig,l)=(ztcond(ig,l) - zt(ig,l))/ptimestep |
---|
| 264 | zcondicea(ig,l)=(pplev(ig,l)-pplev(ig,l+1))& |
---|
| 265 | *ccond*zdtlatent(ig,l)- zfallheat |
---|
| 266 | ! Case when the ice from above sublimes entirely |
---|
| 267 | ! """"""""""""""""""""""""""""""""""""""""""""""" |
---|
| 268 | IF ((zfallice(ig,l+1).lt.-zcondicea(ig,l)) & |
---|
| 269 | .AND. (zfallice(ig,l+1).gt.0)) THEN |
---|
[3184] | 270 | |
---|
[3195] | 271 | zdtlatent(ig,l)=(-zfallice(ig,l+1)+zfallheat)/& |
---|
[3193] | 272 | (ccond*(pplev(ig,l)-pplev(ig,l+1))) |
---|
| 273 | zcondicea(ig,l)= -zfallice(ig,l+1) |
---|
| 274 | END IF |
---|
[3184] | 275 | |
---|
[3193] | 276 | zfallice(ig,l) = zcondicea(ig,l)+zfallice(ig,l+1) |
---|
[3195] | 277 | |
---|
[3193] | 278 | END IF |
---|
[3195] | 279 | |
---|
[3193] | 280 | ENDDO |
---|
| 281 | ENDDO |
---|
| 282 | endif ! not fast |
---|
[3184] | 283 | |
---|
[3193] | 284 | !----------------------------------------------------------------------- |
---|
| 285 | ! Condensation/sublimation on the ground |
---|
| 286 | ! (calculation of zcondices and pdtsrfc) |
---|
[3184] | 287 | |
---|
[3193] | 288 | ! Adding subtimesteps : in fast version, pressures too low lead to |
---|
| 289 | ! instabilities. |
---|
[3195] | 290 | IF (fast) THEN |
---|
[3193] | 291 | IF (pplev(1,1).gt.0.3) THEN |
---|
[3195] | 292 | nsubtimestep= 1 |
---|
[3193] | 293 | ELSE |
---|
[3195] | 294 | nsubtimestep= nbsub !max(nint(ptimestep/dtmax),1) |
---|
[3193] | 295 | ENDIF |
---|
| 296 | ELSE |
---|
| 297 | nsubtimestep= 1 ! if more then kp and p00 have to be calculated |
---|
| 298 | ! for nofast mode |
---|
| 299 | ENDIF |
---|
| 300 | subtimestep=ptimestep/float(nsubtimestep) |
---|
[3184] | 301 | |
---|
[3193] | 302 | do itsub=1,nsubtimestep |
---|
| 303 | ! first loop : getting zplev, ztsurf |
---|
| 304 | IF (itsub.eq.1) then |
---|
| 305 | DO ig=1,klon |
---|
| 306 | zplev(ig)=pplev(ig,1) |
---|
| 307 | ztsrfhist(ig)=ptsrf(ig) + pdtsrf(ig)*ptimestep |
---|
| 308 | ztsrf(ig)=ptsrf(ig) + pdtsrf(ig)*subtimestep !! |
---|
| 309 | zpicen2(ig)=picen2(ig) |
---|
| 310 | ENDDO |
---|
| 311 | ELSE |
---|
[3195] | 312 | ! additional loop : |
---|
[3193] | 313 | ! 1) pressure updated |
---|
| 314 | ! 2) direct redistribution of pressure over the globe |
---|
| 315 | ! 3) modification pressure for unstable cases |
---|
| 316 | ! 4) pressure update to conserve mass |
---|
| 317 | ! 5) temperature updated with radiative tendancies |
---|
| 318 | DO ig=1,klon |
---|
| 319 | zplevhist(ig)=zplev(ig) |
---|
| 320 | zplevnew(ig)=zplev(ig)+pdpsrf(ig)*subtimestep ! 1) |
---|
| 321 | !IF (zplevnew(ig).le.0.0001) then |
---|
| 322 | ! zplevnew(ig)=0.0001*kp(ig)/p00 |
---|
| 323 | !ENDIF |
---|
| 324 | ENDDO |
---|
| 325 | ! intermediaire de calcul: valeur moyenne de zplevnew (called twice in the code) |
---|
| 326 | globzplevnew=glob_average2d(zplevnew) |
---|
| 327 | DO ig=1,klon |
---|
| 328 | zplev(ig)=kp(ig)*globzplevnew/p00 ! 2) |
---|
| 329 | ENDDO |
---|
| 330 | DO ig=1,klon ! 3) unstable case condensation and sublimation: zplev=zplevhist |
---|
| 331 | IF (((pdpsrf(ig).lt.0.).and.(tcond_n2(zplev(ig),zqn2(ig,1)).le.ztsrf(ig))).or. & |
---|
| 332 | ((pdpsrf(ig).gt.0.).and.(tcond_n2(zplev(ig),zqn2(ig,1)).ge.ztsrf(ig)))) then |
---|
| 333 | zplev(ig)=zplevhist(ig) |
---|
| 334 | ENDIF |
---|
| 335 | zplevhist(ig)=zplev(ig) |
---|
| 336 | ENDDO |
---|
| 337 | zplev=zplev*globzplevnew/glob_average2d(zplevhist) ! 4) |
---|
| 338 | DO ig=1,klon ! 5) |
---|
| 339 | zdtsrf(ig)=pdtsrf(ig) + (stephan/pcapcal(ig))*(ptsrf(ig)**4-ztsrf(ig)**4) |
---|
| 340 | ztsrf(ig)=ztsrf(ig)+pdtsrfc(ig)*subtimestep+zdtsrf(ig)*subtimestep |
---|
| 341 | zpicen2(ig)=zpicen2(ig)+pdicen2(ig)*subtimestep |
---|
| 342 | ENDDO |
---|
| 343 | ENDIF ! (itsub=1) |
---|
[3195] | 344 | |
---|
[3193] | 345 | DO ig=1,klon |
---|
| 346 | ! forecast of frost temperature ztcondsol |
---|
[3421] | 347 | !ztcondsol(ig) = tcond_n2(zplev(ig),zqn2(ig,1)) |
---|
| 348 | ztcondsol(ig) = tcond_n2(zplev(ig),vmrn2(ig)) |
---|
[3184] | 349 | |
---|
[3193] | 350 | ! Loop over where we have condensation / sublimation |
---|
| 351 | IF ((ztsrf(ig) .LT. ztcondsol(ig)) .OR. & ! ground cond |
---|
| 352 | ((ztsrf(ig) .GT. ztcondsol(ig)) .AND. & ! ground sublim |
---|
| 353 | (zpicen2(ig) .GT. 0.))) THEN |
---|
| 354 | condsub(ig) = .true. ! condensation or sublimation |
---|
[3184] | 355 | |
---|
[3193] | 356 | ! Condensation or partial sublimation of N2 ice |
---|
| 357 | if (ztsrf(ig) .LT. ztcondsol(ig)) then ! condensation |
---|
[3195] | 358 | ! Include a correction to account for the cooling of air near |
---|
[3193] | 359 | ! the surface before condensing: |
---|
| 360 | zcondices(ig)=pcapcal(ig)*(ztcondsol(ig)-ztsrf(ig)) & |
---|
| 361 | /((lw_n2+cpp*(zt(ig,1)-ztcondsol(ig)))*subtimestep) |
---|
| 362 | else ! sublimation |
---|
| 363 | zcondices(ig)=pcapcal(ig)*(ztcondsol(ig)-ztsrf(ig)) & |
---|
[3195] | 364 | /(lw_n2*subtimestep) |
---|
[3193] | 365 | end if |
---|
[3184] | 366 | |
---|
[3193] | 367 | pdtsrfc(ig) = (ztcondsol(ig) - ztsrf(ig))/subtimestep |
---|
[3184] | 368 | |
---|
[3193] | 369 | ! partial sublimation of N2 ice |
---|
| 370 | ! If the entire N_2 ice layer sublimes |
---|
| 371 | ! (including what has just condensed in the atmosphere) |
---|
| 372 | IF((zpicen2(ig)/subtimestep).LE. & |
---|
| 373 | -zcondices(ig))THEN |
---|
[3195] | 374 | zcondices(ig) = -zpicen2(ig)/subtimestep |
---|
[3193] | 375 | pdtsrfc(ig)=(lw_n2/pcapcal(ig))* & |
---|
| 376 | (zcondices(ig)) |
---|
| 377 | END IF |
---|
[3184] | 378 | |
---|
[3193] | 379 | ! Changing N2 ice amount and pressure |
---|
[3184] | 380 | |
---|
[3195] | 381 | pdicen2(ig) = zcondices(ig) |
---|
[3193] | 382 | pdpsrf(ig) = -pdicen2(ig)*g |
---|
| 383 | ! pdpsrf(ig) = 0. ! OPTION to check impact N2 sub/cond |
---|
[3438] | 384 | IF (fast.and.(zplev(ig)+pdpsrf(ig)*subtimestep.le.0.0000001)) then |
---|
[3193] | 385 | pdpsrf(ig)=(0.0000001*kp(ig)/p00-zplev(ig))/subtimestep |
---|
| 386 | pdicen2(ig)=-pdpsrf(ig)/g |
---|
| 387 | ENDIF |
---|
[3184] | 388 | |
---|
[3193] | 389 | ELSE ! no condsub |
---|
| 390 | pdpsrf(ig)=0. |
---|
| 391 | pdicen2(ig)=0. |
---|
| 392 | pdtsrfc(ig)=0. |
---|
| 393 | ENDIF |
---|
| 394 | ENDDO ! ig |
---|
| 395 | enddo ! subtimestep |
---|
[3184] | 396 | |
---|
[3193] | 397 | ! Updating pressure, temperature and ice reservoir |
---|
| 398 | DO ig=1,klon |
---|
| 399 | pdpsrf(ig)=(zplev(ig)+pdpsrf(ig)*subtimestep-pplev(ig,1))/ptimestep |
---|
| 400 | ! Two options here : 1 ok, 2 is wrong |
---|
| 401 | pdicen2(ig)=(zpicen2(ig)+pdicen2(ig)*subtimestep-picen2(ig))/ptimestep |
---|
| 402 | !pdicen2(ig)=-pdpsrf(ig)/g |
---|
[3184] | 403 | |
---|
[3193] | 404 | pdtsrfc(ig)=((ztsrf(ig)+pdtsrfc(ig)*subtimestep)-(ztsrfhist(ig)))/ptimestep |
---|
[3184] | 405 | |
---|
[3193] | 406 | ! security |
---|
| 407 | if (picen2(ig) + pdicen2(ig)*ptimestep.lt.0.) then |
---|
| 408 | write(*,*) 'WARNING in condense_n2:' |
---|
| 409 | write(*,*) picen2(ig),pdicen2(ig)*ptimestep |
---|
| 410 | pdicen2(ig)= -picen2(ig)/ptimestep |
---|
| 411 | pdpsrf(ig)=-pdicen2(ig)*g |
---|
| 412 | endif |
---|
[3184] | 413 | |
---|
[3193] | 414 | if(.not.picen2(ig).ge.0.) THEN |
---|
| 415 | ! if(picen2(ig) + pdicen2(ig)*ptimestep.le.-1.e-8) then |
---|
[3195] | 416 | print*, 'WARNING NEG RESERVOIR in condense_n2: picen2(',ig,')=', picen2(ig) + pdicen2(ig)*ptimestep |
---|
[3193] | 417 | ! pdicen2(ig)= -picen2(ig)/ptimestep |
---|
| 418 | ! else |
---|
| 419 | picen2(ig)=0.0 |
---|
| 420 | ! endif |
---|
| 421 | endif |
---|
| 422 | ENDDO |
---|
[3184] | 423 | |
---|
[3193] | 424 | ! *************************************************************** |
---|
[3195] | 425 | ! Correction to account for redistribution between sigma or hybrid |
---|
[3193] | 426 | ! layers when changing surface pressure (and warming/cooling |
---|
| 427 | ! of the n2 currently changing phase). |
---|
| 428 | ! ************************************************************* |
---|
| 429 | if (.not.fast) then |
---|
| 430 | DO ig=1,klon |
---|
| 431 | if (condsub(ig)) then |
---|
[3184] | 432 | |
---|
[3193] | 433 | ! Mass fluxes through the sigma levels (kg.m-2.s-1) (>0 when up) |
---|
| 434 | ! """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" |
---|
| 435 | zmflux(1) = -zcondices(ig) |
---|
[3195] | 436 | DO l=1,klev |
---|
[3193] | 437 | zmflux(l+1) = zmflux(l) -zcondicea(ig,l) & |
---|
[3195] | 438 | + (bp(l)-bp(l+1))*(zfallice(ig,1)-zmflux(1)) |
---|
| 439 | ! zmflux set to 0 if very low to avoid: top layer is disappearing in v1ld |
---|
[3193] | 440 | if (abs(zmflux(l+1)).lt.1E-13.OR.bp(l+1).eq.0.) zmflux(l+1)=0. |
---|
| 441 | END DO |
---|
[3184] | 442 | |
---|
[3193] | 443 | ! Mass of each layer |
---|
[3195] | 444 | ! ------------------ |
---|
| 445 | DO l=1,klev |
---|
[3193] | 446 | masse(l)=(pplev(ig,l) - pplev(ig,l+1))/g |
---|
| 447 | END DO |
---|
[3184] | 448 | |
---|
| 449 | |
---|
[3193] | 450 | ! Corresponding fluxes for T,U,V,Q |
---|
| 451 | ! """""""""""""""""""""""""""""""" |
---|
[3195] | 452 | ! averaging operator for TRANSPORT |
---|
[3193] | 453 | ! """""""""""""""""""""""""""""""" |
---|
[3184] | 454 | |
---|
[3193] | 455 | ! Subtimestep loop to perform the redistribution gently and simultaneously with |
---|
[3195] | 456 | ! the other tendencies |
---|
[3193] | 457 | ! Estimation of subtimestep (using only the first layer, the most critical) |
---|
| 458 | dtmax=ptimestep |
---|
[3195] | 459 | if (zmflux(1).gt.1.e-20) then |
---|
[3193] | 460 | dtmax=min(dtmax,masse(1)*zqn2(ig,1)/abs(zmflux(1))) |
---|
| 461 | endif |
---|
[3195] | 462 | nsubtimestep= max(nint(ptimestep/dtmax),nint(2.)) |
---|
[3193] | 463 | subtimestep=ptimestep/float(nsubtimestep) |
---|
[3184] | 464 | |
---|
[3193] | 465 | ! New flux for each subtimestep |
---|
[3195] | 466 | do l=1,klev+1 |
---|
[3193] | 467 | w(l)=-zmflux(l)*subtimestep |
---|
| 468 | enddo |
---|
| 469 | ! initializing variables that will vary during subtimestep: |
---|
[3195] | 470 | do l=1,klev |
---|
| 471 | ztc(l) =pt(ig,l) |
---|
| 472 | zu(l) =pu(ig,l) |
---|
| 473 | zv(l) =pv(ig,l) |
---|
| 474 | do iq=1,nq |
---|
| 475 | zq(l,iq) = pq(ig,l,iq) |
---|
[3193] | 476 | enddo |
---|
| 477 | end do |
---|
[3184] | 478 | |
---|
[3193] | 479 | ! loop over nsubtimestep |
---|
| 480 | ! """""""""""""""""""""" |
---|
| 481 | do itsub=1,nsubtimestep |
---|
[3195] | 482 | ! Progressively adding tendancies from other processes. |
---|
| 483 | do l=1,klev |
---|
[3193] | 484 | ztc(l) =ztc(l) +(pdt(ig,l) + zdtlatent(ig,l))*subtimestep |
---|
| 485 | zu(l) =zu(l) +pdu( ig,l) * subtimestep |
---|
| 486 | zv(l) =zv(l) +pdv( ig,l) * subtimestep |
---|
[3195] | 487 | do iq=1,nq |
---|
[3193] | 488 | zq(l,iq) = zq(l,iq) + pdq(ig,l,iq)* subtimestep |
---|
| 489 | enddo |
---|
| 490 | end do |
---|
[3184] | 491 | |
---|
[3193] | 492 | ! Change of mass in each layer |
---|
[3195] | 493 | do l=1,klev |
---|
[3193] | 494 | masse(l)=masse(l)+pdpsrf(ig)*subtimestep*(pplev(ig,l) - pplev(ig,l+1))& |
---|
| 495 | /(g*pplev(ig,1)) |
---|
| 496 | end do |
---|
[3184] | 497 | |
---|
[3232] | 498 | ! Value transfert at the surface interface when condensation sublimation: |
---|
| 499 | |
---|
| 500 | if (zmflux(1).lt.0) then |
---|
| 501 | ! Surface condensation |
---|
| 502 | zum(1)= zu(1) |
---|
| 503 | zvm(1)= zv(1) |
---|
| 504 | ztm(1) = ztc(1) |
---|
| 505 | else |
---|
| 506 | ! Surface sublimation: |
---|
| 507 | ztm(1) = ztsrf(ig) + pdtsrfc(ig)*ptimestep |
---|
| 508 | zum(1) = 0 |
---|
| 509 | zvm(1) = 0 |
---|
| 510 | end if |
---|
| 511 | do iq=1,nq |
---|
| 512 | zqm(1,iq)=0. ! most tracer do not condense ! |
---|
| 513 | enddo |
---|
| 514 | ! Special case if the tracer is n2 gas |
---|
| 515 | if (igcm_n2.ne.0) zqm(1,igcm_n2)=1. |
---|
| 516 | |
---|
[3195] | 517 | ztm(2:klev+1)=0. |
---|
| 518 | zum(2:klev+1)=0. |
---|
| 519 | zvm(2:klev+1)=0. |
---|
| 520 | zqm1(1:klev+1)=0. |
---|
[3184] | 521 | |
---|
[3193] | 522 | ! Van Leer scheme: |
---|
[3195] | 523 | call vl1d(klev,ztc,2.,masse,w,ztm) |
---|
| 524 | call vl1d(klev,zu ,2.,masse,w,zum) |
---|
| 525 | call vl1d(klev,zv ,2.,masse,w,zvm) |
---|
| 526 | do iq=1,nq |
---|
| 527 | do l=1,klev |
---|
[3193] | 528 | zq1(l)=zq(l,iq) |
---|
| 529 | enddo |
---|
| 530 | zqm1(1)=zqm(1,iq) |
---|
[3195] | 531 | call vl1d(klev,zq1,2.,masse,w,zqm1) |
---|
| 532 | do l=2,klev |
---|
[3193] | 533 | zqm(l,iq)=zqm1(l) |
---|
| 534 | enddo |
---|
| 535 | enddo |
---|
[3184] | 536 | |
---|
[3193] | 537 | ! Correction to prevent negative value for qn2 |
---|
| 538 | if (igcm_n2.ne.0) then |
---|
| 539 | zqm(1,igcm_n2)=1. |
---|
[3195] | 540 | do l=1,klev-1 |
---|
| 541 | if (w(l)*zqm(l,igcm_n2).gt.zq(l,igcm_n2)*masse(l)) then |
---|
[3193] | 542 | zqm(l+1,igcm_n2)=max(zqm(l+1,igcm_n2), & |
---|
| 543 | (zqm(l,igcm_n2)*w(l) -zq(l,igcm_n2)*masse(l))/w(l+1) ) |
---|
[3195] | 544 | else |
---|
[3193] | 545 | exit |
---|
| 546 | endif |
---|
| 547 | end do |
---|
[3390] | 548 | end if |
---|
[3184] | 549 | |
---|
[3390] | 550 | ! Value transfert at the surface interface when condensation sublimation: |
---|
| 551 | if (zmflux(1).lt.0) then |
---|
| 552 | ! Surface condensation |
---|
| 553 | zum(1)= zu(1) |
---|
| 554 | zvm(1)= zv(1) |
---|
| 555 | ztm(1) = ztc(1) |
---|
| 556 | else |
---|
| 557 | ! Surface sublimation: |
---|
| 558 | ztm(1) = ztsrf(ig) + pdtsrfc(ig)*ptimestep |
---|
| 559 | zum(1) = 0 |
---|
| 560 | zvm(1) = 0 |
---|
| 561 | end if |
---|
| 562 | do iq=1,nq |
---|
| 563 | zqm(1,iq)=0. ! most tracer do not condense ! |
---|
| 564 | enddo |
---|
| 565 | ! Special case if the tracer is n2 gas |
---|
| 566 | if (igcm_n2.ne.0) zqm(1,igcm_n2)=1. |
---|
[3184] | 567 | |
---|
[3390] | 568 | !!! Source haze: 0.02 pourcent when n2 sublimes |
---|
[3193] | 569 | IF (source_haze) THEN |
---|
[3390] | 570 | IF (pdicen2(ig).lt.0) THEN |
---|
| 571 | DO iq=1,nq |
---|
| 572 | tname=noms(iq) |
---|
| 573 | if (tname(1:4).eq."haze") then |
---|
| 574 | !zqm(1,iq)=0.02 |
---|
| 575 | !zqm(1,iq)=-pdicen2(ig)*0.02 |
---|
| 576 | zqm(1,iq)=-pdicen2(ig)*ptimestep*0.02 |
---|
| 577 | !zqm(10,iq)=-pdicen2(ig)*ptimestep*100. |
---|
| 578 | !zqm(1,iq)=-pdicen2(ig)*1000000. |
---|
[3184] | 579 | |
---|
[3390] | 580 | endif |
---|
| 581 | ENDDO |
---|
| 582 | ENDIF |
---|
| 583 | ENDIF |
---|
[3195] | 584 | ztm(klev+1)= ztc(klev) ! should not be used, but... |
---|
| 585 | zum(klev+1)= zu(klev) ! should not be used, but... |
---|
| 586 | zvm(klev+1)= zv(klev) ! should not be used, but... |
---|
| 587 | do iq=1,nq |
---|
[3390] | 588 | zqm(klev+1,iq)= zq(klev,iq) |
---|
[3193] | 589 | enddo |
---|
[3184] | 590 | |
---|
[3390] | 591 | ! Tendencies on T, U, V, Q |
---|
| 592 | ! """"""""""""""""""""""" |
---|
[3195] | 593 | DO l=1,klev |
---|
[3184] | 594 | |
---|
[3193] | 595 | ! Tendencies on T |
---|
| 596 | zdtsig(ig,l) = (1/masse(l)) * & |
---|
| 597 | ( zmflux(l)*(ztm(l) - ztc(l)) & |
---|
| 598 | - zmflux(l+1)*(ztm(l+1) - ztc(l)) & |
---|
| 599 | + zcondicea(ig,l)*(ztcond(ig,l)-ztc(l)) ) |
---|
[3184] | 600 | |
---|
[3193] | 601 | ! Tendencies on U |
---|
| 602 | pduc(ig,l) = (1/masse(l)) * & |
---|
| 603 | ( zmflux(l)*(zum(l) - zu(l))& |
---|
| 604 | - zmflux(l+1)*(zum(l+1) - zu(l)) ) |
---|
[3184] | 605 | |
---|
[3193] | 606 | ! Tendencies on V |
---|
| 607 | pdvc(ig,l) = (1/masse(l)) * & |
---|
| 608 | ( zmflux(l)*(zvm(l) - zv(l)) & |
---|
| 609 | - zmflux(l+1)*(zvm(l+1) - zv(l)) ) |
---|
[3184] | 610 | |
---|
[3193] | 611 | END DO |
---|
[3184] | 612 | |
---|
[3193] | 613 | ! Tendencies on Q |
---|
[3195] | 614 | do iq=1,nq |
---|
[3193] | 615 | if (iq.eq.igcm_n2) then |
---|
| 616 | ! SPECIAL Case when the tracer IS N2 : |
---|
[3195] | 617 | DO l=1,klev |
---|
[3193] | 618 | pdqc(ig,l,iq)= (1/masse(l)) * & |
---|
| 619 | ( zmflux(l)*(zqm(l,iq) - zq(l,iq)) & |
---|
| 620 | - zmflux(l+1)*(zqm(l+1,iq) - zq(l,iq))& |
---|
| 621 | + zcondicea(ig,l)*(zq(l,iq)-1.) ) |
---|
| 622 | END DO |
---|
| 623 | else |
---|
[3195] | 624 | DO l=1,klev |
---|
[3193] | 625 | pdqc(ig,l,iq)= (1/masse(l)) * & |
---|
| 626 | ( zmflux(l)*(zqm(l,iq) - zq(l,iq)) & |
---|
| 627 | - zmflux(l+1)*(zqm(l+1,iq) - zq(l,iq)) & |
---|
| 628 | + zcondicea(ig,l)*zq(l,iq) ) |
---|
| 629 | END DO |
---|
| 630 | end if |
---|
| 631 | enddo |
---|
| 632 | ! Update variables at the end of each subtimestep. |
---|
[3195] | 633 | do l=1,klev |
---|
[3193] | 634 | ztc(l) =ztc(l) + zdtsig(ig,l) *subtimestep |
---|
| 635 | zu(l) =zu(l) + pduc(ig,l) *subtimestep |
---|
| 636 | zv(l) =zv(l) + pdvc(ig,l) *subtimestep |
---|
[3195] | 637 | do iq=1,nq |
---|
[3193] | 638 | zq(l,iq) = zq(l,iq) + pdqc(ig,l,iq)*subtimestep |
---|
| 639 | enddo |
---|
| 640 | end do |
---|
| 641 | enddo ! loop on nsubtimestep |
---|
| 642 | ! Recomputing Total tendencies |
---|
[3195] | 643 | do l=1,klev |
---|
[3193] | 644 | pdtc(ig,l) = (ztc(l) - zt(ig,l) )/ptimestep |
---|
| 645 | pduc(ig,l) = (zu(l) - (pu(ig,l) + pdu(ig,l)*ptimestep))/ptimestep |
---|
| 646 | pdvc(ig,l) = (zv(l) - (pv(ig,l) + pdv(ig,l)*ptimestep))/ptimestep |
---|
[3195] | 647 | do iq=1,nq |
---|
[3193] | 648 | pdqc(ig,l,iq) = (zq(l,iq) - (pq(ig,l,iq) + pdq(ig,l,iq)*ptimestep))/ptimestep |
---|
[3184] | 649 | |
---|
| 650 | |
---|
[3193] | 651 | ! Correction temporaire |
---|
| 652 | if (iq.eq.igcm_n2) then |
---|
| 653 | if((pq(ig,l,iq) +(pdqc(ig,l,iq)+ pdq(ig,l,iq))*ptimestep) & |
---|
| 654 | .lt.0.01) then ! if n2 < 1 % ! |
---|
[3228] | 655 | write(*,*) 'Warning: n2 < 1%' |
---|
| 656 | pdqc(ig,l,iq)=(0.01-pq(ig,l,iq))/ptimestep-pdq(ig,l,iq) |
---|
[3193] | 657 | end if |
---|
| 658 | end if |
---|
[3184] | 659 | |
---|
[3193] | 660 | enddo |
---|
| 661 | end do |
---|
| 662 | ! *******************************TEMPORAIRE ****************** |
---|
[3195] | 663 | if (klon.eq.1) then |
---|
[3193] | 664 | write(*,*) 'nsubtimestep=' ,nsubtimestep |
---|
| 665 | write(*,*) 'masse avant' , (pplev(ig,1) - pplev(ig,2))/g |
---|
[3195] | 666 | write(*,*) 'masse apres' , masse(1) |
---|
[3193] | 667 | write(*,*) 'zmflux*DT, l=1' , zmflux(1)*ptimestep |
---|
| 668 | write(*,*) 'zmflux*DT, l=2' , zmflux(2)*ptimestep |
---|
| 669 | write(*,*) 'pq, l=1,2,3' , pq(1,1,1), pq(1,2,1),pq(1,3,1) |
---|
| 670 | write(*,*) 'zq, l=1,2,3' , zq(1,1), zq(2,1),zq(3,1) |
---|
| 671 | write(*,*) 'dq*Dt l=1' , pdq(1,1,1)*ptimestep |
---|
| 672 | write(*,*) 'dqcond*Dt l=1' , pdqc(1,1,1)*ptimestep |
---|
| 673 | end if |
---|
[3184] | 674 | |
---|
[3193] | 675 | ! *********************************************************** |
---|
| 676 | end if ! if (condsub) |
---|
[3195] | 677 | END DO ! loop on ig |
---|
[3193] | 678 | endif ! not fast |
---|
[3184] | 679 | |
---|
[3193] | 680 | ! ************ Option Olkin to prevent N2 effect in the south******** |
---|
| 681 | 112 continue |
---|
| 682 | if (olkin) then |
---|
| 683 | DO ig=1,klon |
---|
[3195] | 684 | if (latitude(ig).lt.0) then |
---|
[3193] | 685 | pdtsrfc(ig) = max(0.,pdtsrfc(ig)) |
---|
| 686 | pdpsrf(ig) = 0. |
---|
| 687 | pdicen2(ig) = 0. |
---|
[3195] | 688 | do l=1,klev |
---|
[3193] | 689 | pdtc(ig,l) = max(0.,zdtlatent(ig,l)) |
---|
| 690 | pduc(ig,l) = 0. |
---|
| 691 | pdvc(ig,l) = 0. |
---|
[3195] | 692 | do iq=1,nq |
---|
[3193] | 693 | pdqc(ig,l,iq) = 0 |
---|
| 694 | enddo |
---|
| 695 | end do |
---|
| 696 | end if |
---|
| 697 | END DO |
---|
| 698 | end if |
---|
| 699 | ! ******************************************************************* |
---|
[3184] | 700 | |
---|
[3193] | 701 | ! *************************************************************** |
---|
| 702 | ! Ecriture des diagnostiques |
---|
| 703 | ! *************************************************************** |
---|
[3184] | 704 | |
---|
[3195] | 705 | ! DO l=1,klev |
---|
[3193] | 706 | ! DO ig=1,klon |
---|
| 707 | ! Taux de cond en kg.m-2.pa-1.s-1 |
---|
| 708 | ! tconda1(ig,l)=zcondicea(ig,l)/(pplev(ig,l)-pplev(ig,l+1)) |
---|
| 709 | ! Taux de cond en kg.m-3.s-1 |
---|
| 710 | ! tconda2(ig,l)=tconda1(ig,l)*pplay(ig,l)*g/(r*pt(ig,l)) |
---|
| 711 | ! END DO |
---|
| 712 | ! END DO |
---|
[3195] | 713 | ! call WRITEDIAGFI(klon,'tconda1', & |
---|
[3193] | 714 | ! 'Taux de condensation N2 atmospherique /Pa', & |
---|
| 715 | ! 'kg.m-2.Pa-1.s-1',3,tconda1) |
---|
[3195] | 716 | ! call WRITEDIAGFI(klon,'tconda2', & |
---|
[3193] | 717 | ! 'Taux de condensation N2 atmospherique /m', & |
---|
| 718 | ! 'kg.m-3.s-1',3,tconda2) |
---|
[3184] | 719 | |
---|
| 720 | |
---|
[3193] | 721 | return |
---|
[3195] | 722 | end subroutine condense_n2 |
---|
[3184] | 723 | |
---|
[3193] | 724 | !------------------------------------------------------------------------- |
---|
[3184] | 725 | |
---|
[3193] | 726 | real function tcond_n2(p,vmr) |
---|
| 727 | ! Calculates the condensation temperature for N2 at pressure P and vmr |
---|
| 728 | implicit none |
---|
| 729 | real, intent(in):: p,vmr |
---|
| 730 | |
---|
| 731 | ! tcond_n2 = (1.)/(0.026315-0.0011877*log(.7143*p*vmr)) |
---|
| 732 | IF (p.ge.0.529995) then |
---|
| 733 | ! tcond Fray and Schmitt for N2 phase beta (T>35.6 K) FIT TB |
---|
| 734 | ! tcond_n2 = (1.)/(1./63.1470-296.925/(2.5e5*0.98)*log(1./(0.125570*1.e5)*p*vmr)) |
---|
| 735 | tcond_n2 = (1.)/(0.01583606505-1.211938776e-3*log(7.963685594e-5*p*vmr)) |
---|
| 736 | ELSE |
---|
| 737 | ! tcond Fray and Schmitt for N2 phase alpha(T<35.6 K) FIT BT |
---|
| 738 | ! tcond_n2 = (1.)/(1./35.6-296.925/(2.5e5*1.09)*log(1./(0.508059)*p*vmr)) |
---|
| 739 | tcond_n2 = (1.)/(1./35.6-1.089633028e-3*log(1.968275338*p*vmr)) |
---|
| 740 | ENDIF |
---|
| 741 | return |
---|
| 742 | end function tcond_n2 |
---|
| 743 | |
---|
[3184] | 744 | !------------------------------------------------------------------------- |
---|
| 745 | |
---|
[3193] | 746 | real function pcond_n2(t,vmr) |
---|
| 747 | ! Calculates the condensation pressure for N2 at temperature T and vmr |
---|
| 748 | implicit none |
---|
| 749 | real, intent(in):: t,vmr |
---|
[3184] | 750 | |
---|
[3193] | 751 | ! tcond_n2 = (1.)/(0.026315-0.0011877*log(.7143*p*vmr)) |
---|
| 752 | IF (t.ge.35.6) then |
---|
[3195] | 753 | ! tcond Fray and Schmitt for N2 phase beta (T>35.6 K) FIT TB |
---|
[3193] | 754 | ! pcond_n2 = 0.125570*1.e5/vmr*exp((2.5e5*0.98)/296.925*(1./63.1470-1./t)) |
---|
| 755 | pcond_n2 = 0.125570e5/vmr*exp(825.1241896*(1./63.147-1./t)) |
---|
| 756 | ELSE |
---|
| 757 | ! tcond Fray and Schmitt for N2 phase alpha(T<35.6 K) FIT TB |
---|
| 758 | ! pcond_n2 = 0.508059/vmr*exp((2.5e5*1.09)/296.925*(1./35.6-1./t)) |
---|
| 759 | pcond_n2 = 0.508059/vmr*exp(917.7401701*(1./35.6-1./t)) |
---|
| 760 | ENDIF |
---|
| 761 | return |
---|
| 762 | end function pcond_n2 |
---|
[3184] | 763 | |
---|
[3193] | 764 | !------------------------------------------------------------------------- |
---|
[3184] | 765 | |
---|
[3193] | 766 | real function glob_average2d(var) |
---|
[3195] | 767 | ! Calculates the global average of variable var |
---|
[3193] | 768 | use comgeomfi_h |
---|
[3195] | 769 | use dimphy, only: klon |
---|
| 770 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat |
---|
| 771 | use geometry_mod, only: cell_area, latitude |
---|
| 772 | |
---|
[3193] | 773 | implicit none |
---|
[3184] | 774 | |
---|
[3193] | 775 | ! INTEGER klon |
---|
[3195] | 776 | REAL var(klon) |
---|
[3193] | 777 | INTEGER ig |
---|
[3184] | 778 | |
---|
[3193] | 779 | glob_average2d = 0. |
---|
[3195] | 780 | DO ig=2,klon-1 |
---|
| 781 | glob_average2d = glob_average2d + var(ig)*cell_area(ig) |
---|
[3193] | 782 | END DO |
---|
[3195] | 783 | glob_average2d = glob_average2d + var(1)*cell_area(1)*nbp_lon |
---|
| 784 | glob_average2d = glob_average2d + var(klon)*cell_area(klon)*nbp_lon |
---|
| 785 | glob_average2d = glob_average2d/(totarea+(cell_area(1)+cell_area(klon))*(nbp_lon-1)) |
---|
[3184] | 786 | |
---|
[3193] | 787 | end function glob_average2d |
---|
[3184] | 788 | |
---|
[3193] | 789 | ! ***************************************************************** |
---|
[3184] | 790 | |
---|
[3195] | 791 | subroutine vl1d(klev,q,pente_max,masse,w,qm) |
---|
| 792 | ! |
---|
[3193] | 793 | ! Operateur de moyenne inter-couche pour calcul de transport type |
---|
| 794 | ! Van-Leer " pseudo amont " dans la verticale |
---|
| 795 | ! q,w sont des arguments d'entree pour le s-pg .... |
---|
| 796 | ! masse : masse de la couche Dp/g |
---|
| 797 | ! w : masse d'atm ``transferee'' a chaque pas de temps (kg.m-2) |
---|
| 798 | ! pente_max = 2 conseillee |
---|
| 799 | ! -------------------------------------------------------------------- |
---|
| 800 | IMPLICIT NONE |
---|
[3184] | 801 | |
---|
[3193] | 802 | ! Arguments: |
---|
| 803 | ! ---------- |
---|
[3195] | 804 | integer klev |
---|
| 805 | real masse(klev),pente_max |
---|
| 806 | REAL q(klev),qm(klev+1) |
---|
| 807 | REAL w(klev+1) |
---|
[3193] | 808 | ! |
---|
[3195] | 809 | ! Local |
---|
[3193] | 810 | ! --------- |
---|
| 811 | ! |
---|
| 812 | INTEGER l |
---|
| 813 | ! |
---|
[3195] | 814 | real dzq(klev),dzqw(klev),adzqw(klev),dzqmax |
---|
[3193] | 815 | real sigw, Mtot, MQtot |
---|
[3195] | 816 | integer m |
---|
[3184] | 817 | |
---|
| 818 | |
---|
[3195] | 819 | ! On oriente tout dans le sens de la pression |
---|
[3193] | 820 | ! W > 0 WHEN DOWN !!!!!!!!!!!!! |
---|
[3184] | 821 | |
---|
[3195] | 822 | do l=2,klev |
---|
[3193] | 823 | dzqw(l)=q(l-1)-q(l) |
---|
| 824 | adzqw(l)=abs(dzqw(l)) |
---|
| 825 | enddo |
---|
[3184] | 826 | |
---|
[3195] | 827 | do l=2,klev-1 |
---|
[3193] | 828 | if(dzqw(l)*dzqw(l+1).gt.0.) then |
---|
| 829 | dzq(l)=0.5*(dzqw(l)+dzqw(l+1)) |
---|
| 830 | else |
---|
| 831 | dzq(l)=0. |
---|
| 832 | endif |
---|
| 833 | dzqmax=pente_max*min(adzqw(l),adzqw(l+1)) |
---|
| 834 | dzq(l)=sign(min(abs(dzq(l)),dzqmax),dzq(l)) |
---|
| 835 | enddo |
---|
[3184] | 836 | |
---|
[3193] | 837 | dzq(1)=0. |
---|
[3195] | 838 | dzq(klev)=0. |
---|
[3184] | 839 | |
---|
[3195] | 840 | do l = 1,klev-1 |
---|
[3184] | 841 | |
---|
[3193] | 842 | ! Regular scheme (transfered mass < layer mass) |
---|
| 843 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 844 | if(w(l+1).gt.0. .and. w(l+1).le.masse(l+1)) then |
---|
| 845 | sigw=w(l+1)/masse(l+1) |
---|
| 846 | qm(l+1)=(q(l+1)+0.5*(1.-sigw)*dzq(l+1)) |
---|
| 847 | else if(w(l+1).le.0. .and. -w(l+1).le.masse(l)) then |
---|
| 848 | sigw=w(l+1)/masse(l) |
---|
| 849 | qm(l+1)=(q(l)-0.5*(1.+sigw)*dzq(l)) |
---|
[3184] | 850 | |
---|
[3193] | 851 | ! Extended scheme (transfered mass > layer mass) |
---|
| 852 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 853 | else if(w(l+1).gt.0.) then |
---|
| 854 | m=l+1 |
---|
| 855 | Mtot = masse(m) |
---|
| 856 | MQtot = masse(m)*q(m) |
---|
[3438] | 857 | if (m.lt.klev) then ! because some compilers will have problems |
---|
| 858 | ! evaluating masse(klev+1) |
---|
[3195] | 859 | do while ((m.lt.klev).and.(w(l+1).gt.(Mtot+masse(m+1)))) |
---|
[3193] | 860 | m=m+1 |
---|
| 861 | Mtot = Mtot + masse(m) |
---|
| 862 | MQtot = MQtot + masse(m)*q(m) |
---|
[3438] | 863 | if (m.eq.klev) exit |
---|
[3193] | 864 | end do |
---|
[3438] | 865 | endif |
---|
[3195] | 866 | if (m.lt.klev) then |
---|
[3193] | 867 | sigw=(w(l+1)-Mtot)/masse(m+1) |
---|
| 868 | qm(l+1)= (1/w(l+1))*(MQtot + (w(l+1)-Mtot)* & |
---|
| 869 | (q(m+1)+0.5*(1.-sigw)*dzq(m+1)) ) |
---|
| 870 | else |
---|
| 871 | w(l+1) = Mtot |
---|
| 872 | qm(l+1) = Mqtot / Mtot |
---|
| 873 | write(*,*) 'top layer is disapearing !' |
---|
| 874 | stop |
---|
| 875 | end if |
---|
[3195] | 876 | else ! if(w(l+1).lt.0) |
---|
| 877 | m = l-1 |
---|
[3193] | 878 | Mtot = masse(m+1) |
---|
| 879 | MQtot = masse(m+1)*q(m+1) |
---|
| 880 | if (m.gt.0) then ! because some compilers will have problems |
---|
| 881 | ! evaluating masse(0) |
---|
| 882 | do while ((m.gt.0).and.(-w(l+1).gt.(Mtot+masse(m)))) |
---|
| 883 | m=m-1 |
---|
| 884 | Mtot = Mtot + masse(m+1) |
---|
| 885 | MQtot = MQtot + masse(m+1)*q(m+1) |
---|
| 886 | if (m.eq.0) exit |
---|
| 887 | end do |
---|
| 888 | endif |
---|
| 889 | if (m.gt.0) then |
---|
| 890 | sigw=(w(l+1)+Mtot)/masse(m) |
---|
[3195] | 891 | qm(l+1)= (-1/w(l+1))*(MQtot + (-w(l+1)-Mtot)* & |
---|
[3193] | 892 | (q(m)-0.5*(1.+sigw)*dzq(m)) ) |
---|
| 893 | else |
---|
| 894 | qm(l+1)= (-1/w(l+1))*(MQtot + (-w(l+1)-Mtot)*qm(1)) |
---|
[3195] | 895 | end if |
---|
[3193] | 896 | end if |
---|
| 897 | enddo |
---|
[3187] | 898 | |
---|
[3193] | 899 | return |
---|
| 900 | end subroutine vl1d |
---|