1 | MODULE callcorrk_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
8 | albedo,albedo_equivalent,emis,mu0,pplev,pplay,pt, & |
---|
9 | zzlay,tsurf,fract,dist_star,aerosol,muvar, & |
---|
10 | dtlw,dtsw,fluxsurf_lw, & |
---|
11 | fluxsurf_sw,fluxsurfabs_sw,fluxtop_lw, & |
---|
12 | fluxabs_sw,fluxtop_dn, & |
---|
13 | OLR_nu,OSR_nu,GSR_nu, & |
---|
14 | int_dtaui,int_dtauv, & |
---|
15 | tau_col,cloudfrac,totcloudfrac, & |
---|
16 | clearsky,firstcall,lastcall) |
---|
17 | |
---|
18 | use mod_phys_lmdz_para, only : is_master |
---|
19 | use radinc_h, only: L_NSPECTV, L_NSPECTI, naerkind, banddir, corrkdir,& |
---|
20 | L_LEVELS, L_NGAUSS, L_NLEVRAD, L_NLAYRAD, L_REFVAR |
---|
21 | use radcommon_h, only: wrefvar, Cmk, fzeroi, fzerov, gasi, gasv, & |
---|
22 | glat_ig, gweight, pfgasref, pgasmax, pgasmin, & |
---|
23 | pgasref, tgasmax, tgasmin, tgasref, scalep, & |
---|
24 | ubari, wnoi, stellarf, glat, dwnv, dwni, tauray |
---|
25 | use datafile_mod, only: datadir |
---|
26 | use ioipsl_getin_p_mod, only: getin_p |
---|
27 | use gases_h, only: ngasmx |
---|
28 | use radii_mod, only : su_aer_radii, haze_reffrad_fix |
---|
29 | use aerosol_mod, only : iaero_haze |
---|
30 | use aeropacity_mod, only: aeropacity |
---|
31 | use aeroptproperties_mod, only: aeroptproperties |
---|
32 | use tracer_h, only: constants_epsi_generic,igcm_ch4_gas,igcm_n2,mmol |
---|
33 | use comcstfi_mod, only: pi, mugaz, cpp, r, g |
---|
34 | use callkeys_mod, only: varactive,diurnal,tracer,varfixed,satval, & |
---|
35 | diagdtau,kastprof,strictboundcorrk,specOLR, & |
---|
36 | tplanckmin,tplanckmax,global1d, & |
---|
37 | generic_condensation,aerohaze,haze_radproffix,& |
---|
38 | methane,carbox,cooling,nlte,strobel,& |
---|
39 | ch4fix,vmrch4_proffix,vmrch4fix |
---|
40 | use optcv_mod, only: optcv |
---|
41 | use optci_mod, only: optci |
---|
42 | use sfluxi_mod, only: sfluxi |
---|
43 | use sfluxv_mod, only: sfluxv |
---|
44 | use recombin_corrk_mod, only: corrk_recombin, call_recombin |
---|
45 | use generic_cloud_common_h, only: Psat_generic, epsi_generic |
---|
46 | use generic_tracer_index_mod, only: generic_tracer_index |
---|
47 | use planetwide_mod, only: planetwide_maxval, planetwide_minval |
---|
48 | use radcommon_h, only: wavev,wavei |
---|
49 | implicit none |
---|
50 | |
---|
51 | !================================================================== |
---|
52 | ! |
---|
53 | ! Purpose |
---|
54 | ! ------- |
---|
55 | ! Solve the radiative transfer using the correlated-k method for |
---|
56 | ! the gaseous absorption and the Toon et al. (1989) method for |
---|
57 | ! scatttering due to aerosols. |
---|
58 | ! |
---|
59 | ! Authors |
---|
60 | ! ------- |
---|
61 | ! Emmanuel 01/2001, Forget 09/2001 |
---|
62 | ! Robin Wordsworth (2009) |
---|
63 | ! |
---|
64 | !================================================================== |
---|
65 | |
---|
66 | !----------------------------------------------------------------------- |
---|
67 | ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid |
---|
68 | ! Layer #1 is the layer near the ground. |
---|
69 | ! Layer #nlayer is the layer at the top. |
---|
70 | !----------------------------------------------------------------------- |
---|
71 | |
---|
72 | |
---|
73 | ! INPUT |
---|
74 | INTEGER,INTENT(IN) :: ngrid ! Number of atmospheric columns. |
---|
75 | INTEGER,INTENT(IN) :: nlayer ! Number of atmospheric layers. |
---|
76 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! Tracers (kg/kg_of_air). |
---|
77 | INTEGER,INTENT(IN) :: nq ! Number of tracers. |
---|
78 | REAL,INTENT(IN) :: qsurf(ngrid,nq) ! Tracers on surface (kg.m-2). |
---|
79 | REAL,INTENT(IN) :: albedo(ngrid,L_NSPECTV) ! Spectral Short Wavelengths Albedo. By MT2015 |
---|
80 | REAL,INTENT(IN) :: emis(ngrid) ! Long Wave emissivity. |
---|
81 | REAL,INTENT(IN) :: mu0(ngrid) ! Cosine of sun incident angle. |
---|
82 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! Inter-layer pressure (Pa). |
---|
83 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! Mid-layer pressure (Pa). |
---|
84 | REAL,INTENT(IN) :: pt(ngrid,nlayer) ! Air temperature (K). |
---|
85 | REAL,INTENT(IN) :: zzlay(ngrid,nlayer) ! Mid-layer altitude |
---|
86 | REAL,INTENT(IN) :: tsurf(ngrid) ! Surface temperature (K). |
---|
87 | REAL,INTENT(IN) :: fract(ngrid) ! Fraction of day. |
---|
88 | REAL,INTENT(IN) :: dist_star ! Distance star-planet (AU). |
---|
89 | REAL,INTENT(IN) :: muvar(ngrid,nlayer+1) |
---|
90 | REAL,INTENT(IN) :: cloudfrac(ngrid,nlayer) ! Fraction of clouds (%). |
---|
91 | logical,intent(in) :: clearsky |
---|
92 | logical,intent(in) :: firstcall ! Signals first call to physics. |
---|
93 | logical,intent(in) :: lastcall ! Signals last call to physics. |
---|
94 | |
---|
95 | ! OUTPUT |
---|
96 | REAL,INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) ! Aerosol tau at reference wavelenght. |
---|
97 | REAL,INTENT(OUT) :: dtlw(ngrid,nlayer) ! Heating rate (K/s) due to LW radiation. |
---|
98 | REAL,INTENT(OUT) :: dtsw(ngrid,nlayer) ! Heating rate (K/s) due to SW radiation. |
---|
99 | REAL,INTENT(OUT) :: fluxsurf_lw(ngrid) ! Incident LW flux to surf (W/m2). |
---|
100 | REAL,INTENT(OUT) :: fluxsurf_sw(ngrid) ! Incident SW flux to surf (W/m2) |
---|
101 | REAL,INTENT(OUT) :: fluxsurfabs_sw(ngrid) ! Absorbed SW flux by the surface (W/m2). By MT2015. |
---|
102 | REAL,INTENT(OUT) :: fluxtop_lw(ngrid) ! Outgoing LW flux to space (W/m2). |
---|
103 | REAL,INTENT(OUT) :: fluxabs_sw(ngrid) ! SW flux absorbed by the planet (W/m2). |
---|
104 | REAL,INTENT(OUT) :: fluxtop_dn(ngrid) ! Incident top of atmosphere SW flux (W/m2). |
---|
105 | REAL,INTENT(OUT) :: OLR_nu(ngrid,L_NSPECTI) ! Outgoing LW radiation in each band (Normalized to the band width (W/m2/cm-1). |
---|
106 | REAL,INTENT(OUT) :: OSR_nu(ngrid,L_NSPECTV) ! Outgoing SW radiation in each band (Normalized to the band width (W/m2/cm-1). |
---|
107 | REAL,INTENT(OUT) :: GSR_nu(ngrid,L_NSPECTV) ! Surface SW radiation in each band (Normalized to the band width (W/m2/cm-1). |
---|
108 | REAL,INTENT(OUT) :: tau_col(ngrid) ! Diagnostic from aeropacity. |
---|
109 | REAL,INTENT(OUT) :: albedo_equivalent(ngrid) ! Spectrally Integrated Albedo. For Diagnostic. By MT2015 |
---|
110 | REAL,INTENT(OUT) :: totcloudfrac(ngrid) ! Column Fraction of clouds (%). |
---|
111 | REAL,INTENT(OUT) :: int_dtaui(ngrid,nlayer,L_NSPECTI) ! VI optical thickness of layers within narrowbands for diags (). |
---|
112 | REAL,INTENT(OUT) :: int_dtauv(ngrid,nlayer,L_NSPECTV) ! IR optical thickness of layers within narrowbands for diags (). |
---|
113 | |
---|
114 | |
---|
115 | |
---|
116 | |
---|
117 | |
---|
118 | ! Globally varying aerosol optical properties on GCM grid ; not needed everywhere so not in radcommon_h. |
---|
119 | ! made "save" variables so they are allocated once in for all, not because |
---|
120 | ! the values need be saved from a time step to the next |
---|
121 | REAL,SAVE,ALLOCATABLE :: QVISsQREF3d(:,:,:,:) |
---|
122 | REAL,SAVE,ALLOCATABLE :: omegaVIS3d(:,:,:,:) |
---|
123 | REAL,SAVE,ALLOCATABLE :: gVIS3d(:,:,:,:) |
---|
124 | !$OMP THREADPRIVATE(QVISsQREF3d,omegaVIS3d,gVIS3d) |
---|
125 | REAL,SAVE,ALLOCATABLE :: QIRsQREF3d(:,:,:,:) |
---|
126 | REAL,SAVE,ALLOCATABLE :: omegaIR3d(:,:,:,:) |
---|
127 | REAL,SAVE,ALLOCATABLE :: gIR3d(:,:,:,:) |
---|
128 | !$OMP THREADPRIVATE(QIRsQREF3d,omegaIR3d,gIR3d) |
---|
129 | |
---|
130 | ! REAL :: omegaREFvis3d(ngrid,nlayer,naerkind) |
---|
131 | ! REAL :: omegaREFir3d(ngrid,nlayer,naerkind) ! not sure of the point of these... |
---|
132 | |
---|
133 | REAL,ALLOCATABLE,SAVE :: reffrad(:,:,:) ! aerosol effective radius (m) |
---|
134 | REAL,ALLOCATABLE,SAVE :: nueffrad(:,:,:) ! aerosol effective variance |
---|
135 | !$OMP THREADPRIVATE(reffrad,nueffrad) |
---|
136 | |
---|
137 | !----------------------------------------------------------------------- |
---|
138 | ! Declaration of the variables required by correlated-k subroutines |
---|
139 | ! Numbered from top to bottom (unlike in the GCM) |
---|
140 | !----------------------------------------------------------------------- |
---|
141 | |
---|
142 | REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) |
---|
143 | REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) |
---|
144 | |
---|
145 | ! Optical values for the optci/cv subroutines |
---|
146 | REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) |
---|
147 | ! NB: Arrays below are "save" to avoid reallocating them at every call |
---|
148 | ! not because their content needs be reused from call to the next |
---|
149 | REAL*8,allocatable,save :: dtaui(:,:,:) |
---|
150 | REAL*8,allocatable,save :: dtauv(:,:,:) |
---|
151 | REAL*8,allocatable,save :: cosbv(:,:,:) |
---|
152 | REAL*8,allocatable,save :: cosbi(:,:,:) |
---|
153 | REAL*8,allocatable,save :: wbari(:,:,:) |
---|
154 | REAL*8,allocatable,save :: wbarv(:,:,:) |
---|
155 | !$OMP THREADPRIVATE(dtaui,dtauv,cosbv,cosbi,wbari,wbarv) |
---|
156 | REAL*8,allocatable,save :: tauv(:,:,:) |
---|
157 | REAL*8,allocatable,save :: taucumv(:,:,:) |
---|
158 | REAL*8,allocatable,save :: taucumi(:,:,:) |
---|
159 | !$OMP THREADPRIVATE(tauv,taucumv,taucumi) |
---|
160 | REAL*8,allocatable,save :: tauaero(:,:) |
---|
161 | !$OMP THREADPRIVATE(tauaero) |
---|
162 | REAL*8 nfluxtopv,nfluxtopi,nfluxtop,fluxtopvdn |
---|
163 | real*8 nfluxtopv_nu(L_NSPECTV) |
---|
164 | REAL*8 nfluxoutv_nu(L_NSPECTV) ! Outgoing band-resolved VI flux at TOA (W/m2). |
---|
165 | REAL*8 nfluxtopi_nu(L_NSPECTI) ! Net band-resolved IR flux at TOA (W/m2). |
---|
166 | REAL*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) ! For 1D diagnostic. |
---|
167 | REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD) |
---|
168 | real*8 fmneti_nu(L_NLAYRAD,L_NSPECTI) ! |
---|
169 | real*8 fmnetv_nu(L_NLAYRAD,L_NSPECTV) ! |
---|
170 | REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD) |
---|
171 | REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD) |
---|
172 | REAL*8 albi,acosz |
---|
173 | REAL*8 albv(L_NSPECTV) ! Spectral Visible Albedo. |
---|
174 | |
---|
175 | INTEGER ig,l,k,nw,iaer,iq |
---|
176 | |
---|
177 | real*8,allocatable,save :: taugsurf(:,:) |
---|
178 | real*8,allocatable,save :: taugsurfi(:,:) |
---|
179 | !$OMP THREADPRIVATE(taugsurf,taugsurfi) |
---|
180 | real*8 qvar(L_LEVELS) ! Mixing ratio of variable component (mol/mol). index 1 is the top of the atmosphere, index L_LEVELS is the bottom |
---|
181 | |
---|
182 | ! Local aerosol optical properties for each column on RADIATIVE grid. |
---|
183 | real*8,save,allocatable :: QXVAER(:,:,:) ! Extinction coeff (QVISsQREF*QREFvis) |
---|
184 | real*8,save,allocatable :: QSVAER(:,:,:) |
---|
185 | real*8,save,allocatable :: GVAER(:,:,:) |
---|
186 | real*8,save,allocatable :: QXIAER(:,:,:) ! Extinction coeff (QIRsQREF*QREFir) |
---|
187 | real*8,save,allocatable :: QSIAER(:,:,:) |
---|
188 | real*8,save,allocatable :: GIAER(:,:,:) |
---|
189 | !$OMP THREADPRIVATE(QXVAER,QSVAER,GVAER,QXIAER,QSIAER,GIAER) |
---|
190 | real, dimension(:,:,:), save, allocatable :: QREFvis3d |
---|
191 | real, dimension(:,:,:), save, allocatable :: QREFir3d |
---|
192 | !$OMP THREADPRIVATE(QREFvis3d,QREFir3d) |
---|
193 | |
---|
194 | |
---|
195 | ! Miscellaneous : |
---|
196 | real*8 temp,temp1,temp2,pweight |
---|
197 | character(len=10) :: tmp1 |
---|
198 | character(len=10) :: tmp2 |
---|
199 | character(len=100) :: message |
---|
200 | character(len=10),parameter :: subname="callcorrk" |
---|
201 | |
---|
202 | ! For fixed water vapour profiles. |
---|
203 | integer i_var |
---|
204 | real RH |
---|
205 | real*8 pq_temp(nlayer) |
---|
206 | ! real(KIND=r8) :: pq_temp(nlayer) ! better F90 way.. DOESNT PORT TO F77!!! |
---|
207 | real psat,qsat |
---|
208 | |
---|
209 | logical OLRz |
---|
210 | real*8 NFLUXGNDV_nu(L_NSPECTV) |
---|
211 | |
---|
212 | ! Included by RW for runaway greenhouse 1D study. |
---|
213 | real vtmp(nlayer) |
---|
214 | REAL*8 muvarrad(L_LEVELS) |
---|
215 | |
---|
216 | ! Included by MT for albedo calculations. |
---|
217 | REAL*8 albedo_temp(L_NSPECTV) ! For equivalent albedo calculation. |
---|
218 | REAL*8 surface_stellar_flux ! Stellar flux reaching the surface. Useful for equivalent albedo calculation. |
---|
219 | |
---|
220 | ! NLTE factor for CH4 |
---|
221 | real eps_nlte_sw23(ngrid,nlayer) ! CH4 NLTE efficiency factor for zdtsw |
---|
222 | real eps_nlte_sw33(ngrid,nlayer) ! CH4 NLTE efficiency factor for zdtsw |
---|
223 | real eps_nlte_lw(ngrid,nlayer) ! CH4 NLTE efficiency factor for zdtsw |
---|
224 | integer Nfine,ifine |
---|
225 | parameter(Nfine=701) |
---|
226 | real,save :: levdat(Nfine),vmrdat(Nfine) |
---|
227 | REAL dtlw_hcn_c2h2(ngrid, nlayer) ! cooling rate (K/s) due to C2H2/HCN (diagnostic) |
---|
228 | real :: vmrch4(ngrid,nlayer) ! vmr ch4 from vmrch4_proffix |
---|
229 | |
---|
230 | REAL dtlw_nu(nlayer,L_NSPECTI) ! heating rate (K/s) due to LW in spectral bands |
---|
231 | REAL dtsw_nu(nlayer,L_NSPECTV) ! heating rate (K/s) due to SW in spectral bands |
---|
232 | |
---|
233 | ! local variable |
---|
234 | REAL dpp ! intermediate |
---|
235 | |
---|
236 | integer ok ! status (returned by NetCDF functions) |
---|
237 | |
---|
238 | integer igcm_generic_gas, igcm_generic_ice! index of the vap and ice of generic_tracer |
---|
239 | logical call_ice_gas_generic ! to call only one time the ice/vap pair of a tracer |
---|
240 | real, save :: metallicity ! metallicity of planet --- is not used here, but necessary to call function Psat_generic |
---|
241 | !$OMP THREADPRIVATE(metallicity) |
---|
242 | REAL, SAVE :: qvap_deep ! deep mixing ratio of water vapor when simulating bottom less planets |
---|
243 | !$OMP THREADPRIVATE(qvap_deep) |
---|
244 | |
---|
245 | REAL :: maxvalue,minvalue |
---|
246 | |
---|
247 | !=============================================================== |
---|
248 | ! I.a Initialization on first call |
---|
249 | !=============================================================== |
---|
250 | |
---|
251 | |
---|
252 | if(firstcall) then |
---|
253 | |
---|
254 | ! test on allocated necessary because of CLFvarying (two calls to callcorrk in physiq) |
---|
255 | if(.not.allocated(QVISsQREF3d)) then |
---|
256 | allocate(QVISsQREF3d(ngrid,nlayer,L_NSPECTV,naerkind)) |
---|
257 | endif |
---|
258 | if(.not.allocated(omegaVIS3d)) then |
---|
259 | allocate(omegaVIS3d(ngrid,nlayer,L_NSPECTV,naerkind)) |
---|
260 | endif |
---|
261 | if(.not.allocated(gVIS3d)) then |
---|
262 | allocate(gVIS3d(ngrid,nlayer,L_NSPECTV,naerkind)) |
---|
263 | endif |
---|
264 | if (.not.allocated(QIRsQREF3d)) then |
---|
265 | allocate(QIRsQREF3d(ngrid,nlayer,L_NSPECTI,naerkind)) |
---|
266 | endif |
---|
267 | if (.not.allocated(omegaIR3d)) then |
---|
268 | allocate(omegaIR3d(ngrid,nlayer,L_NSPECTI,naerkind)) |
---|
269 | endif |
---|
270 | if (.not.allocated(gIR3d)) then |
---|
271 | allocate(gIR3d(ngrid,nlayer,L_NSPECTI,naerkind)) |
---|
272 | endif |
---|
273 | if (.not.allocated(tauaero)) then |
---|
274 | allocate(tauaero(L_LEVELS,naerkind)) |
---|
275 | endif |
---|
276 | |
---|
277 | if(.not.allocated(QXVAER)) then |
---|
278 | allocate(QXVAER(L_LEVELS,L_NSPECTV,naerkind), stat=ok) |
---|
279 | if (ok /= 0) then |
---|
280 | write(*,*) "memory allocation failed for QXVAER!" |
---|
281 | call abort_physic(subname,'allocation failure for QXVAER',1) |
---|
282 | endif |
---|
283 | endif |
---|
284 | if(.not.allocated(QSVAER)) then |
---|
285 | allocate(QSVAER(L_LEVELS,L_NSPECTV,naerkind), stat=ok) |
---|
286 | if (ok /= 0) then |
---|
287 | write(*,*) "memory allocation failed for QSVAER!" |
---|
288 | call abort_physic(subname,'allocation failure for QSVAER',1) |
---|
289 | endif |
---|
290 | endif |
---|
291 | if(.not.allocated(GVAER)) then |
---|
292 | allocate(GVAER(L_LEVELS,L_NSPECTV,naerkind), stat=ok) |
---|
293 | if (ok /= 0) then |
---|
294 | write(*,*) "memory allocation failed for GVAER!" |
---|
295 | call abort_physic(subname,'allocation failure for GVAER',1) |
---|
296 | endif |
---|
297 | endif |
---|
298 | if(.not.allocated(QXIAER)) then |
---|
299 | allocate(QXIAER(L_LEVELS,L_NSPECTI,naerkind), stat=ok) |
---|
300 | if (ok /= 0) then |
---|
301 | write(*,*) "memory allocation failed for QXIAER!" |
---|
302 | call abort_physic(subname,'allocation failure for QXIAER',1) |
---|
303 | endif |
---|
304 | endif |
---|
305 | if(.not.allocated(QSIAER)) then |
---|
306 | allocate(QSIAER(L_LEVELS,L_NSPECTI,naerkind), stat=ok) |
---|
307 | if (ok /= 0) then |
---|
308 | write(*,*) "memory allocation failed for QSIAER!" |
---|
309 | call abort_physic(subname,'allocation failure for QSIAER',1) |
---|
310 | endif |
---|
311 | endif |
---|
312 | if(.not.allocated(GIAER)) then |
---|
313 | allocate(GIAER(L_LEVELS,L_NSPECTI,naerkind), stat=ok) |
---|
314 | if (ok /= 0) then |
---|
315 | write(*,*) "memory allocation failed for GIAER!" |
---|
316 | call abort_physic(subname,'allocation failure for GIAER',1) |
---|
317 | endif |
---|
318 | endif |
---|
319 | |
---|
320 | !!! ALLOCATED instances are necessary because of CLFvarying (strategy to call callcorrk twice in physiq...) |
---|
321 | IF(.not.ALLOCATED(QREFvis3d))THEN |
---|
322 | ALLOCATE(QREFvis3d(ngrid,nlayer,naerkind), stat=ok) |
---|
323 | IF (ok/=0) THEN |
---|
324 | write(*,*) "memory allocation failed for QREFvis3d!" |
---|
325 | call abort_physic(subname,'allocation failure for QREFvis3d',1) |
---|
326 | ENDIF |
---|
327 | ENDIF |
---|
328 | IF(.not.ALLOCATED(QREFir3d)) THEN |
---|
329 | ALLOCATE(QREFir3d(ngrid,nlayer,naerkind), stat=ok) |
---|
330 | IF (ok/=0) THEN |
---|
331 | write(*,*) "memory allocation failed for QREFir3d!" |
---|
332 | call abort_physic(subname,'allocation failure for QREFir3d',1) |
---|
333 | ENDIF |
---|
334 | ENDIF |
---|
335 | ! Effective radius and variance of the aerosols |
---|
336 | IF(.not.ALLOCATED(reffrad)) THEN |
---|
337 | allocate(reffrad(ngrid,nlayer,naerkind), stat=ok) |
---|
338 | IF (ok/=0) THEN |
---|
339 | write(*,*) "memory allocation failed for reffrad!" |
---|
340 | call abort_physic(subname,'allocation failure for reffrad',1) |
---|
341 | ENDIF |
---|
342 | ENDIF |
---|
343 | IF(.not.ALLOCATED(nueffrad)) THEN |
---|
344 | allocate(nueffrad(ngrid,nlayer,naerkind), stat=ok) |
---|
345 | IF (ok/=0) THEN |
---|
346 | write(*,*) "memory allocation failed for nueffrad!" |
---|
347 | call abort_physic(subname,'allocation failure for nueffrad',1) |
---|
348 | ENDIF |
---|
349 | ENDIF |
---|
350 | |
---|
351 | if (is_master) call system('rm -f surf_vals_long.out') |
---|
352 | |
---|
353 | call su_aer_radii(ngrid,nlayer,reffrad,nueffrad) |
---|
354 | |
---|
355 | |
---|
356 | !-------------------------------------------------- |
---|
357 | ! Set up correlated k |
---|
358 | !-------------------------------------------------- |
---|
359 | |
---|
360 | !this block is now done at firstcall of physiq_mod |
---|
361 | ! print*, "callcorrk: Correlated-k data base folder:",trim(datadir) |
---|
362 | ! call getin_p("corrkdir",corrkdir) |
---|
363 | ! print*, "corrkdir = ",corrkdir |
---|
364 | ! write( tmp1, '(i3)' ) L_NSPECTI |
---|
365 | ! write( tmp2, '(i3)' ) L_NSPECTV |
---|
366 | ! banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) |
---|
367 | ! banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) |
---|
368 | |
---|
369 | ! call setspi ! Basic infrared properties. |
---|
370 | ! call setspv ! Basic visible properties. |
---|
371 | ! call sugas_corrk ! Set up gaseous absorption properties. |
---|
372 | ! call suaer_corrk ! Set up aerosol optical properties. |
---|
373 | |
---|
374 | |
---|
375 | ! now that L_NGAUSS has been initialized (by sugas_corrk) |
---|
376 | ! allocate related arrays |
---|
377 | if(.not.allocated(dtaui)) then |
---|
378 | ALLOCATE(dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS), stat=ok) |
---|
379 | if (ok/=0) then |
---|
380 | write(*,*) "memory allocation failed for dtaui!" |
---|
381 | call abort_physic(subname,'allocation failure for dtaui',1) |
---|
382 | endif |
---|
383 | endif |
---|
384 | if(.not.allocated(dtauv)) then |
---|
385 | ALLOCATE(dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS), stat=ok) |
---|
386 | if (ok/=0) then |
---|
387 | write(*,*) "memory allocation failed for dtauv!" |
---|
388 | call abort_physic(subname,'allocation failure for dtauv',1) |
---|
389 | endif |
---|
390 | endif |
---|
391 | if(.not.allocated(cosbv)) then |
---|
392 | ALLOCATE(cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS), stat=ok) |
---|
393 | if (ok/=0) then |
---|
394 | write(*,*) "memory allocation failed for cosbv!" |
---|
395 | call abort_physic(subname,'allocation failure for cobsv',1) |
---|
396 | endif |
---|
397 | endif |
---|
398 | if(.not.allocated(cosbi)) then |
---|
399 | ALLOCATE(cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS), stat=ok) |
---|
400 | if (ok/=0) then |
---|
401 | write(*,*) "memory allocation failed for cosbi!" |
---|
402 | call abort_physic(subname,'allocation failure for cobsi',1) |
---|
403 | endif |
---|
404 | endif |
---|
405 | if(.not.allocated(wbari)) then |
---|
406 | ALLOCATE(wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS), stat=ok) |
---|
407 | if (ok/=0) then |
---|
408 | write(*,*) "memory allocation failed for wbari!" |
---|
409 | call abort_physic(subname,'allocation failure for wbari',1) |
---|
410 | endif |
---|
411 | endif |
---|
412 | if(.not.allocated(wbarv)) then |
---|
413 | ALLOCATE(wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS), stat=ok) |
---|
414 | if (ok/=0) then |
---|
415 | write(*,*) "memory allocation failed for wbarv!" |
---|
416 | call abort_physic(subname,'allocation failure for wbarv',1) |
---|
417 | endif |
---|
418 | endif |
---|
419 | if(.not.allocated(tauv)) then |
---|
420 | ALLOCATE(tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS), stat=ok) |
---|
421 | if (ok/=0) then |
---|
422 | write(*,*) "memory allocation failed for tauv!" |
---|
423 | call abort_physic(subname,'allocation failure for tauv',1) |
---|
424 | endif |
---|
425 | endif |
---|
426 | if(.not.allocated(taucumv)) then |
---|
427 | ALLOCATE(taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS), stat=ok) |
---|
428 | if (ok/=0) then |
---|
429 | write(*,*) "memory allocation failed for taucumv!" |
---|
430 | call abort_physic(subname,'allocation failure for taucumv',1) |
---|
431 | endif |
---|
432 | endif |
---|
433 | if(.not.allocated(taucumi)) then |
---|
434 | ALLOCATE(taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS), stat=ok) |
---|
435 | if (ok/=0) then |
---|
436 | write(*,*) "memory allocation failed for taucumi!" |
---|
437 | call abort_physic(subname,'allocation failure for taucumi',1) |
---|
438 | endif |
---|
439 | endif |
---|
440 | if(.not.allocated(taugsurf)) then |
---|
441 | ALLOCATE(taugsurf(L_NSPECTV,L_NGAUSS-1), stat=ok) |
---|
442 | if (ok/=0) then |
---|
443 | write(*,*) "memory allocation failed for taugsurf!" |
---|
444 | call abort_physic(subname,'allocation failure for taugsurf',1) |
---|
445 | endif |
---|
446 | endif |
---|
447 | if(.not.allocated(taugsurfi)) then |
---|
448 | ALLOCATE(taugsurfi(L_NSPECTI,L_NGAUSS-1), stat=ok) |
---|
449 | if (ok/=0) then |
---|
450 | write(*,*) "memory allocation failed for taugsurfi!" |
---|
451 | call abort_physic(subname,'allocation failure for taugsurfi',1) |
---|
452 | endif |
---|
453 | endif |
---|
454 | |
---|
455 | |
---|
456 | if(varfixed .and. (generic_condensation .or. methane .or. carbox))then |
---|
457 | write(*,*) "Deep generic tracer vapor mixing ratio ? (no effect if negative) " |
---|
458 | qvap_deep=-1. ! default value |
---|
459 | call getin_p("qvap_deep",qvap_deep) |
---|
460 | write(*,*) " qvap_deep = ",qvap_deep |
---|
461 | |
---|
462 | metallicity=0.0 ! default value --- is not used here but necessary to call function Psat_generic |
---|
463 | call getin_p("metallicity",metallicity) ! --- is not used here but necessary to call function Psat_generic |
---|
464 | endif |
---|
465 | |
---|
466 | end if ! of if (firstcall) |
---|
467 | |
---|
468 | !======================================================================= |
---|
469 | ! I.b Initialization on every call |
---|
470 | !======================================================================= |
---|
471 | |
---|
472 | qxvaer(:,:,:)=0.0 |
---|
473 | qsvaer(:,:,:)=0.0 |
---|
474 | gvaer(:,:,:) =0.0 |
---|
475 | |
---|
476 | qxiaer(:,:,:)=0.0 |
---|
477 | qsiaer(:,:,:)=0.0 |
---|
478 | giaer(:,:,:) =0.0 |
---|
479 | |
---|
480 | OLR_nu(:,:) = 0. |
---|
481 | OSR_nu(:,:) = 0. |
---|
482 | GSR_nu(:,:) = 0. |
---|
483 | |
---|
484 | !-------------------------------------------------- |
---|
485 | ! Effective radius and variance of the aerosols |
---|
486 | !-------------------------------------------------- |
---|
487 | if (aerohaze) then |
---|
488 | do iaer=1,naerkind |
---|
489 | if ((iaer.eq.iaero_haze)) then |
---|
490 | call su_aer_radii(ngrid,nlayer,reffrad(1,1,iaer), & |
---|
491 | nueffrad(1,1,iaer)) |
---|
492 | endif |
---|
493 | end do !iaer=1,naerkind. |
---|
494 | if (haze_radproffix) then |
---|
495 | print*, 'haze_radproffix=T : fixed profile for haze rad' |
---|
496 | else |
---|
497 | print*,'reffrad haze:',reffrad(1,1,iaero_haze) |
---|
498 | print*,'nueff haze',nueffrad(1,1,iaero_haze) |
---|
499 | endif |
---|
500 | endif |
---|
501 | |
---|
502 | |
---|
503 | ! How much light do we get ? |
---|
504 | do nw=1,L_NSPECTV |
---|
505 | stel(nw)=stellarf(nw)/(dist_star**2) |
---|
506 | end do |
---|
507 | |
---|
508 | if (aerohaze) then |
---|
509 | if (haze_radproffix) then |
---|
510 | call haze_reffrad_fix(ngrid,nlayer,zzlay,& |
---|
511 | reffrad,nueffrad) |
---|
512 | endif |
---|
513 | |
---|
514 | ! Get 3D aerosol optical properties. |
---|
515 | call aeroptproperties(ngrid,nlayer,reffrad,nueffrad, & |
---|
516 | QVISsQREF3d,omegaVIS3d,gVIS3d, & |
---|
517 | QIRsQREF3d,omegaIR3d,gIR3d, & |
---|
518 | QREFvis3d,QREFir3d) |
---|
519 | |
---|
520 | ! Get aerosol optical depths. |
---|
521 | call aeropacity(ngrid,nlayer,nq,pplay,pplev, pt,pq,aerosol, & |
---|
522 | reffrad,nueffrad,QREFvis3d,QREFir3d, & |
---|
523 | tau_col,cloudfrac,totcloudfrac,clearsky) |
---|
524 | endif |
---|
525 | |
---|
526 | |
---|
527 | !----------------------------------------------------------------------- |
---|
528 | ! Prepare CH4 mixing ratio for radiative transfer |
---|
529 | IF (methane) then |
---|
530 | vmrch4(:,:)=0. |
---|
531 | |
---|
532 | if (ch4fix) then |
---|
533 | if (vmrch4_proffix) then |
---|
534 | !! Interpolate on the model vertical grid |
---|
535 | do ig=1,ngrid |
---|
536 | CALL interp_line(levdat,vmrdat,Nfine, & |
---|
537 | zzlay(ig,:)/1000.,vmrch4(ig,:),nlayer) |
---|
538 | enddo |
---|
539 | else |
---|
540 | vmrch4(:,:)=vmrch4fix |
---|
541 | endif |
---|
542 | else |
---|
543 | vmrch4(:,:)=pq(:,:,igcm_ch4_gas)*100.* & |
---|
544 | mmol(igcm_n2)/mmol(igcm_ch4_gas) |
---|
545 | endif |
---|
546 | ENDIF |
---|
547 | |
---|
548 | ! Prepare NON LTE correction in Pluto atmosphere |
---|
549 | IF (nlte) then |
---|
550 | CALL nlte_ch4(ngrid,nlayer,nq,pplay,pplev,pt,vmrch4,& |
---|
551 | eps_nlte_sw23,eps_nlte_sw33,eps_nlte_lw) |
---|
552 | ENDIF |
---|
553 | ! Net atmospheric radiative cooling rate from C2H2 (K.s-1): |
---|
554 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
555 | ! dtlw_hcn_c2h2=0. |
---|
556 | if (cooling) then |
---|
557 | CALL cooling_hcn_c2h2(ngrid,nlayer,pplay,& |
---|
558 | pt,dtlw_hcn_c2h2) |
---|
559 | endif |
---|
560 | |
---|
561 | |
---|
562 | !----------------------------------------------------------------------- |
---|
563 | do ig=1,ngrid ! Starting Big Loop over every GCM column |
---|
564 | !----------------------------------------------------------------------- |
---|
565 | |
---|
566 | |
---|
567 | !======================================================================= |
---|
568 | ! II. Transformation of the GCM variables |
---|
569 | !======================================================================= |
---|
570 | |
---|
571 | |
---|
572 | !----------------------------------------------------------------------- |
---|
573 | ! Aerosol optical properties Qext, Qscat and g. |
---|
574 | ! The transformation in the vertical is the same as for temperature. |
---|
575 | !----------------------------------------------------------------------- |
---|
576 | |
---|
577 | |
---|
578 | ! AF24: for now only consider one aerosol (=haze) |
---|
579 | if (aerohaze) then |
---|
580 | do iaer=1,naerkind |
---|
581 | ! Shortwave. |
---|
582 | do nw=1,L_NSPECTV |
---|
583 | |
---|
584 | do l=1,nlayer |
---|
585 | |
---|
586 | temp1=QVISsQREF3d(ig,nlayer+1-l,nw,iaer) & |
---|
587 | *QREFvis3d(ig,nlayer+1-l,iaer) |
---|
588 | |
---|
589 | temp2=QVISsQREF3d(ig,max(nlayer-l,1),nw,iaer) & |
---|
590 | *QREFvis3d(ig,max(nlayer-l,1),iaer) |
---|
591 | |
---|
592 | qxvaer(2*l,nw,iaer) = temp1 |
---|
593 | qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
594 | |
---|
595 | temp1=temp1*omegavis3d(ig,nlayer+1-l,nw,iaer) |
---|
596 | temp2=temp2*omegavis3d(ig,max(nlayer-l,1),nw,iaer) |
---|
597 | |
---|
598 | qsvaer(2*l,nw,iaer) = temp1 |
---|
599 | qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
600 | |
---|
601 | temp1=gvis3d(ig,nlayer+1-l,nw,iaer) |
---|
602 | temp2=gvis3d(ig,max(nlayer-l,1),nw,iaer) |
---|
603 | |
---|
604 | gvaer(2*l,nw,iaer) = temp1 |
---|
605 | gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
606 | |
---|
607 | end do ! nlayer |
---|
608 | |
---|
609 | qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer) |
---|
610 | qxvaer(2*nlayer+1,nw,iaer)=0. |
---|
611 | |
---|
612 | qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer) |
---|
613 | qsvaer(2*nlayer+1,nw,iaer)=0. |
---|
614 | |
---|
615 | gvaer(1,nw,iaer)=gvaer(2,nw,iaer) |
---|
616 | gvaer(2*nlayer+1,nw,iaer)=0. |
---|
617 | |
---|
618 | end do ! L_NSPECTV |
---|
619 | |
---|
620 | do nw=1,L_NSPECTI |
---|
621 | ! Longwave |
---|
622 | do l=1,nlayer |
---|
623 | |
---|
624 | temp1=QIRsQREF3d(ig,nlayer+1-l,nw,iaer) & |
---|
625 | *QREFir3d(ig,nlayer+1-l,iaer) |
---|
626 | |
---|
627 | temp2=QIRsQREF3d(ig,max(nlayer-l,1),nw,iaer) & |
---|
628 | *QREFir3d(ig,max(nlayer-l,1),iaer) |
---|
629 | |
---|
630 | qxiaer(2*l,nw,iaer) = temp1 |
---|
631 | qxiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
632 | |
---|
633 | temp1=temp1*omegair3d(ig,nlayer+1-l,nw,iaer) |
---|
634 | temp2=temp2*omegair3d(ig,max(nlayer-l,1),nw,iaer) |
---|
635 | |
---|
636 | qsiaer(2*l,nw,iaer) = temp1 |
---|
637 | qsiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
638 | |
---|
639 | temp1=gir3d(ig,nlayer+1-l,nw,iaer) |
---|
640 | temp2=gir3d(ig,max(nlayer-l,1),nw,iaer) |
---|
641 | |
---|
642 | giaer(2*l,nw,iaer) = temp1 |
---|
643 | giaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
644 | |
---|
645 | end do ! nlayer |
---|
646 | |
---|
647 | qxiaer(1,nw,iaer)=qxiaer(2,nw,iaer) |
---|
648 | qxiaer(2*nlayer+1,nw,iaer)=0. |
---|
649 | |
---|
650 | qsiaer(1,nw,iaer)=qsiaer(2,nw,iaer) |
---|
651 | qsiaer(2*nlayer+1,nw,iaer)=0. |
---|
652 | |
---|
653 | giaer(1,nw,iaer)=giaer(2,nw,iaer) |
---|
654 | giaer(2*nlayer+1,nw,iaer)=0. |
---|
655 | |
---|
656 | end do ! L_NSPECTI |
---|
657 | |
---|
658 | end do ! naerkind |
---|
659 | |
---|
660 | ! Test / Correct for freaky s. s. albedo values. |
---|
661 | do iaer=1,naerkind |
---|
662 | do k=1,L_LEVELS |
---|
663 | |
---|
664 | do nw=1,L_NSPECTV |
---|
665 | if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then |
---|
666 | message='Serious problems with qsvaer values' |
---|
667 | call abort_physic(subname,message,1) |
---|
668 | endif |
---|
669 | if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then |
---|
670 | qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer) |
---|
671 | endif |
---|
672 | end do |
---|
673 | |
---|
674 | do nw=1,L_NSPECTI |
---|
675 | if(qsiaer(k,nw,iaer).gt.1.05*qxiaer(k,nw,iaer))then |
---|
676 | message='Serious problems with qsvaer values' |
---|
677 | call abort_physic(subname,message,1) |
---|
678 | endif |
---|
679 | if(qsiaer(k,nw,iaer).gt.qxiaer(k,nw,iaer))then |
---|
680 | qsiaer(k,nw,iaer)=qxiaer(k,nw,iaer) |
---|
681 | endif |
---|
682 | end do |
---|
683 | |
---|
684 | end do ! L_LEVELS |
---|
685 | end do ! naerkind |
---|
686 | end if ! aerohaze |
---|
687 | |
---|
688 | !----------------------------------------------------------------------- |
---|
689 | ! Aerosol optical depths |
---|
690 | !----------------------------------------------------------------------- |
---|
691 | if (aerohaze) then |
---|
692 | do iaer=1,naerkind ! a bug was here |
---|
693 | do k=0,nlayer-1 |
---|
694 | |
---|
695 | pweight=(pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/ & |
---|
696 | (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1)) |
---|
697 | ! As 'aerosol' is at reference (visible) wavelenght we scale it as |
---|
698 | ! it will be multplied by qxi/v in optci/v |
---|
699 | temp=aerosol(ig,L_NLAYRAD-k,iaer)/QREFvis3d(ig,L_NLAYRAD-k,iaer) |
---|
700 | tauaero(2*k+2,iaer)=max(temp*pweight,0.d0) |
---|
701 | tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.d0) |
---|
702 | |
---|
703 | end do |
---|
704 | ! boundary conditions |
---|
705 | tauaero(1,iaer) = tauaero(2,iaer) |
---|
706 | !tauaero(1,iaer) = 0. |
---|
707 | !JL18 at time of testing, the two above conditions gave the same results bit for bit. |
---|
708 | |
---|
709 | end do ! naerkind |
---|
710 | else |
---|
711 | tauaero(:,:)=0 |
---|
712 | end if ! aerohaze |
---|
713 | |
---|
714 | ! Albedo and Emissivity. |
---|
715 | albi=1-emis(ig) ! Long Wave. |
---|
716 | DO nw=1,L_NSPECTV ! Short Wave loop. |
---|
717 | albv(nw)=albedo(ig,nw) |
---|
718 | ENDDO |
---|
719 | |
---|
720 | acosz=mu0(ig) ! Cosine of sun incident angle : 3D simulations or local 1D simulations using latitude. |
---|
721 | |
---|
722 | |
---|
723 | !----------------------------------------------------------------------- |
---|
724 | ! GCS (Generic Condensable Specie) Vapor |
---|
725 | ! If you have GCS tracers and they are : variable & radiatively active |
---|
726 | ! |
---|
727 | ! NC22 |
---|
728 | !----------------------------------------------------------------------- |
---|
729 | |
---|
730 | if (generic_condensation .or. methane .or. carbox) then |
---|
731 | |
---|
732 | ! IF (methane) then |
---|
733 | |
---|
734 | ! do l=1,nlayer |
---|
735 | ! qvar(2*l) = vmrch4(ig,nlayer+1-l)/100.* & |
---|
736 | ! mmol(igcm_ch4_gas)/mmol(igcm_n2) |
---|
737 | ! qvar(2*l+1) = ((vmrch4(ig,nlayer+1-l)+vmrch4(ig, & |
---|
738 | ! max(nlayer-l,1)))/2.)/100.* & |
---|
739 | ! mmol(igcm_ch4_gas)/mmol(igcm_n2) |
---|
740 | ! end do |
---|
741 | ! qvar(1)=qvar(2) |
---|
742 | |
---|
743 | ! ELSE |
---|
744 | |
---|
745 | ! For now, only one GCS tracer can be both variable and radiatively active |
---|
746 | ! If you set two GCS tracers, that are variable and radiatively active, |
---|
747 | ! the last one in tracer.def will be chosen as the one that will be vadiatively active |
---|
748 | |
---|
749 | do iq=1,nq |
---|
750 | |
---|
751 | call generic_tracer_index(nq,iq,igcm_generic_gas,igcm_generic_ice,call_ice_gas_generic) |
---|
752 | |
---|
753 | if (call_ice_gas_generic) then ! to call only one time the ice/vap pair of a tracer |
---|
754 | |
---|
755 | if(varactive)then |
---|
756 | |
---|
757 | i_var=igcm_generic_gas |
---|
758 | do l=1,nlayer |
---|
759 | qvar(2*l) = pq(ig,nlayer+1-l,i_var) |
---|
760 | qvar(2*l+1) = pq(ig,nlayer+1-l,i_var) |
---|
761 | !JL13index qvar(2*l+1) = (pq(ig,nlayer+1-l,i_var)+pq(ig,max(nlayer-l,1),i_var))/2 |
---|
762 | !JL13index ! Average approximation as for temperature... |
---|
763 | end do |
---|
764 | qvar(1)=qvar(2) |
---|
765 | |
---|
766 | elseif(varfixed .and. (qvap_deep .ge. 0))then |
---|
767 | |
---|
768 | do l=1,nlayer ! Here we will assign fixed water vapour profiles globally. |
---|
769 | |
---|
770 | call Psat_generic(pt(ig,l),pplay(ig,l),metallicity,psat,qsat) |
---|
771 | |
---|
772 | if (qsat .lt. qvap_deep) then |
---|
773 | pq_temp(l) = qsat ! fully saturated everywhere |
---|
774 | else |
---|
775 | pq_temp(l) = qvap_deep |
---|
776 | end if |
---|
777 | |
---|
778 | end do |
---|
779 | |
---|
780 | do l=1,nlayer |
---|
781 | qvar(2*l) = pq_temp(nlayer+1-l) |
---|
782 | qvar(2*l+1) = (pq_temp(nlayer+1-l)+pq_temp(max(nlayer-l,1)))/2 |
---|
783 | end do |
---|
784 | |
---|
785 | qvar(1)=qvar(2) |
---|
786 | |
---|
787 | else |
---|
788 | do k=1,L_LEVELS |
---|
789 | qvar(k) = 1.0D-7 |
---|
790 | end do |
---|
791 | end if ! varactive/varfixed |
---|
792 | |
---|
793 | endif |
---|
794 | |
---|
795 | end do ! do iq=1,nq loop on tracers |
---|
796 | |
---|
797 | end if ! if (generic_condensation) |
---|
798 | |
---|
799 | !----------------------------------------------------------------------- |
---|
800 | ! No Water vapor and No GCS (Generic Condensable Specie) vapor |
---|
801 | !----------------------------------------------------------------------- |
---|
802 | |
---|
803 | if (.not. (generic_condensation .or. methane .or. carbox)) then |
---|
804 | do k=1,L_LEVELS |
---|
805 | qvar(k) = 1.0D-7 |
---|
806 | end do |
---|
807 | end if ! if (.not. generic_condensation) |
---|
808 | |
---|
809 | |
---|
810 | if(.not.kastprof)then |
---|
811 | ! IMPORTANT: Now convert from kg/kg to mol/mol. |
---|
812 | do k=1,L_LEVELS |
---|
813 | if (generic_condensation .or. methane .or. carbox) then |
---|
814 | do iq=1,nq |
---|
815 | call generic_tracer_index(nq,iq,igcm_generic_gas,igcm_generic_ice,call_ice_gas_generic) |
---|
816 | if (call_ice_gas_generic) then ! to call only one time the ice/vap pair of a tracer |
---|
817 | if(.not. varactive .or. i_var.eq.iq)then |
---|
818 | |
---|
819 | epsi_generic=constants_epsi_generic(iq) |
---|
820 | |
---|
821 | qvar(k) = qvar(k)/(epsi_generic+qvar(k)*(1.-epsi_generic)) |
---|
822 | endif |
---|
823 | |
---|
824 | endif |
---|
825 | end do ! do iq=1,nq loop on tracers |
---|
826 | endif |
---|
827 | end do |
---|
828 | end if |
---|
829 | |
---|
830 | !----------------------------------------------------------------------- |
---|
831 | ! kcm mode only ! |
---|
832 | !----------------------------------------------------------------------- |
---|
833 | |
---|
834 | DO l=1,nlayer |
---|
835 | muvarrad(2*l) = muvar(ig,nlayer+2-l) |
---|
836 | muvarrad(2*l+1) = (muvar(ig,nlayer+2-l)+muvar(ig,max(nlayer+1-l,1)))/2 |
---|
837 | END DO |
---|
838 | |
---|
839 | muvarrad(1) = muvarrad(2) |
---|
840 | muvarrad(2*nlayer+1)=muvar(ig,1) |
---|
841 | |
---|
842 | ! Keep values inside limits for which we have radiative transfer coefficients !!! |
---|
843 | if(L_REFVAR.gt.1)then ! (there was a bug here) |
---|
844 | do k=1,L_LEVELS |
---|
845 | if(qvar(k).lt.wrefvar(1))then |
---|
846 | qvar(k)=wrefvar(1)+1.0e-8 |
---|
847 | elseif(qvar(k).gt.wrefvar(L_REFVAR))then |
---|
848 | qvar(k)=wrefvar(L_REFVAR)-1.0e-8 |
---|
849 | endif |
---|
850 | end do |
---|
851 | endif |
---|
852 | |
---|
853 | !----------------------------------------------------------------------- |
---|
854 | ! Pressure and temperature |
---|
855 | !----------------------------------------------------------------------- |
---|
856 | |
---|
857 | DO l=1,nlayer |
---|
858 | plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep |
---|
859 | plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep |
---|
860 | tlevrad(2*l) = pt(ig,nlayer+1-l) |
---|
861 | tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2 |
---|
862 | END DO |
---|
863 | |
---|
864 | plevrad(1) = 0. |
---|
865 | !!plevrad(2) = 0. !! JL18 enabling this line puts the radiative top at p=0 which was the idea before, but does not seem to perform best after all. |
---|
866 | |
---|
867 | tlevrad(1) = tlevrad(2) |
---|
868 | tlevrad(2*nlayer+1)=tsurf(ig) |
---|
869 | |
---|
870 | pmid(1) = pplay(ig,nlayer)/scalep |
---|
871 | pmid(2) = pmid(1) |
---|
872 | |
---|
873 | tmid(1) = tlevrad(2) |
---|
874 | tmid(2) = tmid(1) |
---|
875 | |
---|
876 | DO l=1,L_NLAYRAD-1 |
---|
877 | tmid(2*l+1) = tlevrad(2*l+1) |
---|
878 | tmid(2*l+2) = tlevrad(2*l+1) |
---|
879 | pmid(2*l+1) = plevrad(2*l+1) |
---|
880 | pmid(2*l+2) = plevrad(2*l+1) |
---|
881 | END DO |
---|
882 | pmid(L_LEVELS) = plevrad(L_LEVELS) |
---|
883 | tmid(L_LEVELS) = tlevrad(L_LEVELS) |
---|
884 | |
---|
885 | !!Alternative interpolation: |
---|
886 | ! pmid(3) = pmid(1) |
---|
887 | ! pmid(4) = pmid(1) |
---|
888 | ! tmid(3) = tmid(1) |
---|
889 | ! tmid(4) = tmid(1) |
---|
890 | ! DO l=2,L_NLAYRAD-1 |
---|
891 | ! tmid(2*l+1) = tlevrad(2*l) |
---|
892 | ! tmid(2*l+2) = tlevrad(2*l) |
---|
893 | ! pmid(2*l+1) = plevrad(2*l) |
---|
894 | ! pmid(2*l+2) = plevrad(2*l) |
---|
895 | ! END DO |
---|
896 | ! pmid(L_LEVELS) = plevrad(L_LEVELS-1) |
---|
897 | ! tmid(L_LEVELS) = tlevrad(L_LEVELS-1) |
---|
898 | |
---|
899 | ! Test for out-of-bounds pressure. |
---|
900 | if(plevrad(3).lt.pgasmin)then |
---|
901 | print*,'Minimum pressure is outside the radiative' |
---|
902 | print*,'transfer kmatrix bounds, exiting.' |
---|
903 | message="Minimum pressure outside of kmatrix bounds" |
---|
904 | call abort_physic(subname,message,1) |
---|
905 | elseif(plevrad(L_LEVELS).gt.pgasmax)then |
---|
906 | print*,'Maximum pressure is outside the radiative' |
---|
907 | print*,'transfer kmatrix bounds, exiting.' |
---|
908 | message="Minimum pressure outside of kmatrix bounds" |
---|
909 | call abort_physic(subname,message,1) |
---|
910 | endif |
---|
911 | |
---|
912 | ! Test for out-of-bounds temperature. |
---|
913 | ! -- JVO 20 : Also add a sanity test checking that tlevrad is |
---|
914 | ! within Planck function temperature boundaries, |
---|
915 | ! which would cause gfluxi/sfluxi to crash. |
---|
916 | do k=1,L_LEVELS |
---|
917 | |
---|
918 | if(tlevrad(k).lt.tgasmin)then |
---|
919 | print*,'Minimum temperature is outside the radiative' |
---|
920 | print*,'transfer kmatrix bounds' |
---|
921 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
922 | print*,"tgasmin=",tgasmin |
---|
923 | if (strictboundcorrk) then |
---|
924 | message="Minimum temperature outside of kmatrix bounds" |
---|
925 | call abort_physic(subname,message,1) |
---|
926 | else |
---|
927 | print*,'***********************************************' |
---|
928 | print*,'we allow model to continue with tlevrad<tgasmin' |
---|
929 | print*,' ... we assume we know what you are doing ... ' |
---|
930 | print*,' ... but do not let this happen too often ... ' |
---|
931 | print*,'***********************************************' |
---|
932 | !tlevrad(k)=tgasmin ! Used in the source function ! |
---|
933 | endif |
---|
934 | elseif(tlevrad(k).gt.tgasmax)then |
---|
935 | print*,'Maximum temperature is outside the radiative' |
---|
936 | print*,'transfer kmatrix bounds, exiting.' |
---|
937 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
938 | print*,"tgasmax=",tgasmax |
---|
939 | if (strictboundcorrk) then |
---|
940 | message="Maximum temperature outside of kmatrix bounds" |
---|
941 | call abort_physic(subname,message,1) |
---|
942 | else |
---|
943 | print*,'***********************************************' |
---|
944 | print*,'we allow model to continue with tlevrad>tgasmax' |
---|
945 | print*,' ... we assume we know what you are doing ... ' |
---|
946 | print*,' ... but do not let this happen too often ... ' |
---|
947 | print*,'***********************************************' |
---|
948 | !tlevrad(k)=tgasmax ! Used in the source function ! |
---|
949 | endif |
---|
950 | endif |
---|
951 | |
---|
952 | if (tlevrad(k).lt.tplanckmin) then |
---|
953 | print*,'Minimum temperature is outside the boundaries for' |
---|
954 | print*,'Planck function integration set in callphys.def, aborting.' |
---|
955 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
956 | print*,"tplanckmin=",tplanckmin |
---|
957 | message="Minimum temperature outside Planck function bounds - Change tplanckmin in callphys.def" |
---|
958 | call abort_physic(subname,message,1) |
---|
959 | else if (tlevrad(k).gt.tplanckmax) then |
---|
960 | print*,'Maximum temperature is outside the boundaries for' |
---|
961 | print*,'Planck function integration set in callphys.def, aborting.' |
---|
962 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
963 | print*,"tplanckmax=",tplanckmax |
---|
964 | message="Maximum temperature outside Planck function bounds - Change tplanckmax in callphys.def" |
---|
965 | call abort_physic(subname,message,1) |
---|
966 | endif |
---|
967 | |
---|
968 | enddo |
---|
969 | |
---|
970 | do k=1,L_NLAYRAD+1 |
---|
971 | if(tmid(k).lt.tgasmin)then |
---|
972 | print*,'Minimum temperature is outside the radiative' |
---|
973 | print*,'transfer kmatrix bounds, exiting.' |
---|
974 | print*,"k=",k," tmid(k)=",tmid(k) |
---|
975 | print*,"tgasmin=",tgasmin |
---|
976 | if (strictboundcorrk) then |
---|
977 | message="Minimum temperature outside of kmatrix bounds" |
---|
978 | call abort_physic(subname,message,1) |
---|
979 | else |
---|
980 | print*,'***********************************************' |
---|
981 | print*,'we allow model to continue but with tmid=tgasmin' |
---|
982 | print*,' ... we assume we know what you are doing ... ' |
---|
983 | print*,' ... but do not let this happen too often ... ' |
---|
984 | print*,'***********************************************' |
---|
985 | tmid(k)=tgasmin |
---|
986 | endif |
---|
987 | elseif(tmid(k).gt.tgasmax)then |
---|
988 | print*,'Maximum temperature is outside the radiative' |
---|
989 | print*,'transfer kmatrix bounds, exiting.' |
---|
990 | print*,"k=",k," tmid(k)=",tmid(k) |
---|
991 | print*,"tgasmax=",tgasmax |
---|
992 | if (strictboundcorrk) then |
---|
993 | message="Maximum temperature outside of kmatrix bounds" |
---|
994 | call abort_physic(subname,message,1) |
---|
995 | else |
---|
996 | print*,'***********************************************' |
---|
997 | print*,'we allow model to continue but with tmid=tgasmax' |
---|
998 | print*,' ... we assume we know what you are doing ... ' |
---|
999 | print*,' ... but do not let this happen too often ... ' |
---|
1000 | print*,'***********************************************' |
---|
1001 | tmid(k)=tgasmax |
---|
1002 | endif |
---|
1003 | endif |
---|
1004 | enddo |
---|
1005 | |
---|
1006 | !======================================================================= |
---|
1007 | ! III. Calling the main radiative transfer subroutines |
---|
1008 | !======================================================================= |
---|
1009 | |
---|
1010 | ! ---------------------------------------------------------------- |
---|
1011 | ! Recombine reference corrk tables if needed - Added by JVO, 2020. |
---|
1012 | if (corrk_recombin) then |
---|
1013 | call call_recombin(ig,nlayer,pq(ig,:,:),pplay(ig,:),pt(ig,:),qvar(:),tmid(:),pmid(:)) |
---|
1014 | endif |
---|
1015 | ! ---------------------------------------------------------------- |
---|
1016 | |
---|
1017 | Cmk= 0.01 * 1.0 / (glat(ig) * mugaz * 1.672621e-27) ! q_main=1.0 assumed. |
---|
1018 | glat_ig=glat(ig) |
---|
1019 | |
---|
1020 | !----------------------------------------------------------------------- |
---|
1021 | ! Short Wave Part |
---|
1022 | !----------------------------------------------------------------------- |
---|
1023 | |
---|
1024 | if(fract(ig) .ge. 1.0e-4) then ! Only during daylight. |
---|
1025 | if((ngrid.eq.1).and.(global1d))then |
---|
1026 | do nw=1,L_NSPECTV |
---|
1027 | stel_fract(nw)= stel(nw)* 0.25 / acosz ! globally averaged = divide by 4, and we correct for solar zenith angle |
---|
1028 | end do |
---|
1029 | else |
---|
1030 | do nw=1,L_NSPECTV |
---|
1031 | stel_fract(nw)= stel(nw) * fract(ig) |
---|
1032 | end do |
---|
1033 | endif |
---|
1034 | |
---|
1035 | call optcv(dtauv,tauv,taucumv,plevrad, & |
---|
1036 | qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero, & |
---|
1037 | tmid,pmid,taugsurf,qvar,muvarrad) |
---|
1038 | |
---|
1039 | call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, & |
---|
1040 | acosz,stel_fract,nfluxtopv,fluxtopvdn,nfluxoutv_nu,& |
---|
1041 | nfluxgndv_nu,nfluxtopv_nu, & |
---|
1042 | fmnetv,fmnetv_nu,fluxupv,fluxdnv,fzerov,taugsurf) |
---|
1043 | |
---|
1044 | else ! During the night, fluxes = 0. |
---|
1045 | nfluxtopv = 0.0d0 |
---|
1046 | fluxtopvdn = 0.0d0 |
---|
1047 | nfluxoutv_nu(:) = 0.0d0 |
---|
1048 | nfluxgndv_nu(:) = 0.0d0 |
---|
1049 | do l=1,L_NLAYRAD |
---|
1050 | fmnetv(l)=0.0d0 |
---|
1051 | fmnetv_nu(l,:)=0.0d0 |
---|
1052 | fluxupv(l)=0.0d0 |
---|
1053 | fluxdnv(l)=0.0d0 |
---|
1054 | end do |
---|
1055 | end if |
---|
1056 | |
---|
1057 | |
---|
1058 | ! Equivalent Albedo Calculation (for OUTPUT). MT2015 |
---|
1059 | if(fract(ig) .ge. 1.0e-4) then ! equivalent albedo makes sense only during daylight. |
---|
1060 | surface_stellar_flux=sum(nfluxgndv_nu(1:L_NSPECTV)) |
---|
1061 | if(surface_stellar_flux .gt. 1.0e-3) then ! equivalent albedo makes sense only if the stellar flux received by the surface is positive. |
---|
1062 | DO nw=1,L_NSPECTV |
---|
1063 | albedo_temp(nw)=albedo(ig,nw)*nfluxgndv_nu(nw) |
---|
1064 | ENDDO |
---|
1065 | albedo_temp(1:L_NSPECTV)=albedo_temp(1:L_NSPECTV)/surface_stellar_flux |
---|
1066 | albedo_equivalent(ig)=sum(albedo_temp(1:L_NSPECTV)) |
---|
1067 | else |
---|
1068 | albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. |
---|
1069 | endif |
---|
1070 | else |
---|
1071 | albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. |
---|
1072 | endif |
---|
1073 | |
---|
1074 | |
---|
1075 | !----------------------------------------------------------------------- |
---|
1076 | ! Long Wave Part |
---|
1077 | !----------------------------------------------------------------------- |
---|
1078 | |
---|
1079 | call optci(plevrad,tlevrad,dtaui,taucumi, & |
---|
1080 | qxiaer,qsiaer,giaer,cosbi,wbari,tauaero,tmid,pmid, & |
---|
1081 | taugsurfi,qvar,muvarrad) |
---|
1082 | |
---|
1083 | call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi, & |
---|
1084 | wnoi,dwni,cosbi,wbari,nfluxtopi,nfluxtopi_nu, & |
---|
1085 | fmneti,fmneti_nu,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi) |
---|
1086 | |
---|
1087 | !----------------------------------------------------------------------- |
---|
1088 | ! Transformation of the correlated-k code outputs |
---|
1089 | ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) |
---|
1090 | |
---|
1091 | ! Flux incident at the top of the atmosphere |
---|
1092 | fluxtop_dn(ig)=fluxtopvdn |
---|
1093 | |
---|
1094 | fluxtop_lw(ig) = real(nfluxtopi) |
---|
1095 | fluxabs_sw(ig) = real(-nfluxtopv) |
---|
1096 | fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD)) |
---|
1097 | fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD)) |
---|
1098 | |
---|
1099 | ! Flux absorbed by the surface. By MT2015. |
---|
1100 | fluxsurfabs_sw(ig) = fluxsurf_sw(ig)*(1.-albedo_equivalent(ig)) |
---|
1101 | |
---|
1102 | if(fluxtop_dn(ig).lt.0.0)then |
---|
1103 | print*,'Achtung! fluxtop_dn has lost the plot!' |
---|
1104 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
1105 | print*,'acosz=',acosz |
---|
1106 | print*,'aerosol=',aerosol(ig,:,:) |
---|
1107 | print*,'temp= ',pt(ig,:) |
---|
1108 | print*,'pplay= ',pplay(ig,:) |
---|
1109 | message="Achtung! fluxtop_dn has lost the plot!" |
---|
1110 | call abort_physic(subname,message,1) |
---|
1111 | endif |
---|
1112 | |
---|
1113 | ! Spectral output, for exoplanet observational comparison |
---|
1114 | if(specOLR)then |
---|
1115 | do nw=1,L_NSPECTI |
---|
1116 | OLR_nu(ig,nw)=nfluxtopi_nu(nw)/DWNI(nw) !JL Normalize to the bandwidth |
---|
1117 | end do |
---|
1118 | do nw=1,L_NSPECTV |
---|
1119 | GSR_nu(ig,nw)=nfluxgndv_nu(nw)/DWNV(nw) |
---|
1120 | OSR_nu(ig,nw)=nfluxoutv_nu(nw)/DWNV(nw) !JL Normalize to the bandwidth |
---|
1121 | end do |
---|
1122 | endif |
---|
1123 | |
---|
1124 | ! Finally, the heating rates |
---|
1125 | DO l=2,L_NLAYRAD |
---|
1126 | ! dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) & |
---|
1127 | ! *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
1128 | dpp = glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
1129 | do nw=1,L_NSPECTV |
---|
1130 | dtsw_nu(L_NLAYRAD+1-l,nw)= & |
---|
1131 | (fmnetv_nu(l,nw)-fmnetv_nu(l-1,nw))*dpp |
---|
1132 | end do |
---|
1133 | |
---|
1134 | ! dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1)) & |
---|
1135 | ! *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
1136 | do nw=1,L_NSPECTI |
---|
1137 | dtlw_nu(L_NLAYRAD+1-l,nw)= & |
---|
1138 | (fmneti_nu(l,nw)-fmneti_nu(l-1,nw))*dpp |
---|
1139 | end do |
---|
1140 | END DO |
---|
1141 | |
---|
1142 | ! These are values at top of atmosphere |
---|
1143 | ! dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) & |
---|
1144 | ! *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(2))) |
---|
1145 | ! dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) & |
---|
1146 | ! *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(2))) |
---|
1147 | dpp = g/(cpp*scalep*(plevrad(3)-plevrad(1))) |
---|
1148 | do nw=1,L_NSPECTV |
---|
1149 | dtsw_nu(L_NLAYRAD,nw)= & |
---|
1150 | (fmnetv_nu(1,nw)-nfluxtopv_nu(nw))*dpp |
---|
1151 | end do |
---|
1152 | do nw=1,L_NSPECTI |
---|
1153 | dtlw_nu(L_NLAYRAD,nw)= & |
---|
1154 | (fmneti_nu(1,nw)-nfluxtopi_nu(nw))*dpp |
---|
1155 | end do |
---|
1156 | |
---|
1157 | ! Optical thickness diagnostics (added by JVO) |
---|
1158 | if (diagdtau) then |
---|
1159 | do l=1,L_NLAYRAD |
---|
1160 | do nw=1,L_NSPECTV |
---|
1161 | int_dtauv(ig,l,nw) = 0.0d0 |
---|
1162 | DO k=1,L_NGAUSS |
---|
1163 | ! Output exp(-tau) because gweight ponderates exp and not tau itself |
---|
1164 | int_dtauv(ig,l,nw)= int_dtauv(ig,l,nw) + exp(-dtauv(l,nw,k))*gweight(k) |
---|
1165 | ENDDO |
---|
1166 | enddo |
---|
1167 | do nw=1,L_NSPECTI |
---|
1168 | int_dtaui(ig,l,nw) = 0.0d0 |
---|
1169 | DO k=1,L_NGAUSS |
---|
1170 | ! Output exp(-tau) because gweight ponderates exp and not tau itself |
---|
1171 | int_dtaui(ig,l,nw)= int_dtaui(ig,l,nw) + exp(-dtaui(l,nw,k))*gweight(k) |
---|
1172 | ENDDO |
---|
1173 | enddo |
---|
1174 | enddo |
---|
1175 | endif |
---|
1176 | |
---|
1177 | ! ********************************************************** |
---|
1178 | ! NON NLTE correction in Pluto atmosphere |
---|
1179 | ! And conversion of LW spectral heating rates to total rates |
---|
1180 | ! ********************************************************** |
---|
1181 | |
---|
1182 | if (.not.nlte) then |
---|
1183 | eps_nlte_sw23(ig,:) =1. ! IF no NLTE |
---|
1184 | eps_nlte_sw33(ig,:) =1. ! IF no NLTE |
---|
1185 | eps_nlte_lw(ig,:) =1. ! IF no NLTE |
---|
1186 | endif |
---|
1187 | |
---|
1188 | do l=1,nlayer |
---|
1189 | |
---|
1190 | !LW |
---|
1191 | dtlw(ig,l) =0. |
---|
1192 | ! dtlw_co(ig,l) =0. ! only for diagnostic |
---|
1193 | do nw=1,L_NSPECTI |
---|
1194 | ! wewei : wavelength in micrometer |
---|
1195 | if ((wavei(nw).gt.6.).and.(wavei(nw).lt.9)) then |
---|
1196 | dtlw_nu(l,nw)=dtlw_nu(l,nw)*eps_nlte_lw(ig,l) |
---|
1197 | else |
---|
1198 | !dtlw_nu(l,nw)=1.*dtlw_nu(l,nw) ! no CO correction (Strobbel 1996) |
---|
1199 | dtlw_nu(l,nw)=0.33*dtlw_nu(l,nw) ! CO correction (Strobbel 1996) |
---|
1200 | ! dtlw_co(ig,l)=dtlw_co(ig,l)+ dtlw_nu(l,nw) ! diagnostic |
---|
1201 | end if |
---|
1202 | dtlw(ig,l)=dtlw(ig,l)+ dtlw_nu(l,nw) !average now on each wavelength |
---|
1203 | end do |
---|
1204 | ! adding c2h2 if cooling active |
---|
1205 | ! dtlw(ig,l)=dtlw(ig,l)+dtlw_hcn_c2h2(ig,l) |
---|
1206 | |
---|
1207 | !SW |
---|
1208 | dtsw(ig,l) =0. |
---|
1209 | |
---|
1210 | if (strobel) then |
---|
1211 | |
---|
1212 | do nw=1,L_NSPECTV |
---|
1213 | if ((wavev(nw).gt.2).and.(wavev(nw).lt.2.6)) then |
---|
1214 | dtsw_nu(l,nw)=dtsw_nu(l,nw)*eps_nlte_sw23(ig,l) |
---|
1215 | elseif ((wavev(nw).gt.3).and.(wavev(nw).lt.3.6)) then |
---|
1216 | dtsw_nu(l,nw)=dtsw_nu(l,nw)*eps_nlte_sw33(ig,l) |
---|
1217 | else |
---|
1218 | dtsw_nu(l,nw)=dtsw_nu(l,nw) |
---|
1219 | end if |
---|
1220 | dtsw(ig,l)=dtsw(ig,l)+ dtsw_nu(l,nw) |
---|
1221 | end do |
---|
1222 | |
---|
1223 | else ! total heating rates multiplied by nlte coef |
---|
1224 | |
---|
1225 | do nw=1,L_NSPECTV |
---|
1226 | dtsw_nu(l,nw)=dtsw_nu(l,nw)*eps_nlte_sw23(ig,l) |
---|
1227 | dtsw(ig,l)=dtsw(ig,l)+ dtsw_nu(l,nw) |
---|
1228 | enddo |
---|
1229 | |
---|
1230 | endif |
---|
1231 | |
---|
1232 | |
---|
1233 | end do |
---|
1234 | ! ********************************************************** |
---|
1235 | |
---|
1236 | |
---|
1237 | !----------------------------------------------------------------------- |
---|
1238 | end do ! End of big loop over every GCM column. |
---|
1239 | !----------------------------------------------------------------------- |
---|
1240 | |
---|
1241 | |
---|
1242 | !----------------------------------------------------------------------- |
---|
1243 | ! Additional diagnostics |
---|
1244 | !----------------------------------------------------------------------- |
---|
1245 | |
---|
1246 | ! IR spectral output, for exoplanet observational comparison |
---|
1247 | if(lastcall.and.(ngrid.eq.1))then ! could disable the 1D output, they are in the diagfi and diagspec... JL12 |
---|
1248 | |
---|
1249 | print*,'Saving scalar quantities in surf_vals.out...' |
---|
1250 | print*,'psurf = ', pplev(1,1),' Pa' |
---|
1251 | open(116,file='surf_vals.out') |
---|
1252 | write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1), & |
---|
1253 | real(-nfluxtopv),real(nfluxtopi) |
---|
1254 | close(116) |
---|
1255 | |
---|
1256 | |
---|
1257 | ! USEFUL COMMENT - Do Not Remove. |
---|
1258 | ! |
---|
1259 | ! if(specOLR)then |
---|
1260 | ! open(117,file='OLRnu.out') |
---|
1261 | ! do nw=1,L_NSPECTI |
---|
1262 | ! write(117,*) OLR_nu(1,nw) |
---|
1263 | ! enddo |
---|
1264 | ! close(117) |
---|
1265 | ! |
---|
1266 | ! open(127,file='OSRnu.out') |
---|
1267 | ! do nw=1,L_NSPECTV |
---|
1268 | ! write(127,*) OSR_nu(1,nw) |
---|
1269 | ! enddo |
---|
1270 | ! close(127) |
---|
1271 | ! endif |
---|
1272 | |
---|
1273 | ! OLR vs altitude: do it as a .txt file. |
---|
1274 | OLRz=.false. |
---|
1275 | if(OLRz)then |
---|
1276 | print*,'saving IR vertical flux for OLRz...' |
---|
1277 | open(118,file='OLRz_plevs.out') |
---|
1278 | open(119,file='OLRz.out') |
---|
1279 | do l=1,L_NLAYRAD |
---|
1280 | write(118,*) plevrad(2*l) |
---|
1281 | do nw=1,L_NSPECTI |
---|
1282 | write(119,*) fluxupi_nu(l,nw) |
---|
1283 | enddo |
---|
1284 | enddo |
---|
1285 | close(118) |
---|
1286 | close(119) |
---|
1287 | endif |
---|
1288 | |
---|
1289 | endif |
---|
1290 | |
---|
1291 | ! See physiq.F for explanations about CLFvarying. This is temporary. |
---|
1292 | if (lastcall) then |
---|
1293 | IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi ) |
---|
1294 | IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv ) |
---|
1295 | !$OMP BARRIER |
---|
1296 | !$OMP MASTER |
---|
1297 | IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref ) |
---|
1298 | IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref ) |
---|
1299 | IF( ALLOCATED( wrefvar ) ) DEALLOCATE( wrefvar ) |
---|
1300 | IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref ) |
---|
1301 | IF( ALLOCATED( gweight ) ) DEALLOCATE( gweight ) |
---|
1302 | !$OMP END MASTER |
---|
1303 | !$OMP BARRIER |
---|
1304 | IF ( ALLOCATED(reffrad)) DEALLOCATE(reffrad) |
---|
1305 | IF ( ALLOCATED(nueffrad)) DEALLOCATE(nueffrad) |
---|
1306 | endif |
---|
1307 | |
---|
1308 | |
---|
1309 | end subroutine callcorrk |
---|
1310 | |
---|
1311 | END MODULE callcorrk_mod |
---|