[3184] | 1 | MODULE callcorrk_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
| 7 | subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
[3195] | 8 | albedo,albedo_equivalent,emis,mu0,pplev,pplay,pt, & |
---|
[3585] | 9 | zzlay,zzlev,tsurf,fract,dist_star,dtau_aer,muvar, & |
---|
[3184] | 10 | dtlw,dtsw,fluxsurf_lw, & |
---|
| 11 | fluxsurf_sw,fluxsurfabs_sw,fluxtop_lw, & |
---|
| 12 | fluxabs_sw,fluxtop_dn, & |
---|
| 13 | OLR_nu,OSR_nu,GSR_nu, & |
---|
| 14 | int_dtaui,int_dtauv, & |
---|
[3572] | 15 | tau_col,firstcall,lastcall) |
---|
[3184] | 16 | |
---|
| 17 | use mod_phys_lmdz_para, only : is_master |
---|
| 18 | use radinc_h, only: L_NSPECTV, L_NSPECTI, naerkind, banddir, corrkdir,& |
---|
| 19 | L_LEVELS, L_NGAUSS, L_NLEVRAD, L_NLAYRAD, L_REFVAR |
---|
| 20 | use radcommon_h, only: wrefvar, Cmk, fzeroi, fzerov, gasi, gasv, & |
---|
| 21 | glat_ig, gweight, pfgasref, pgasmax, pgasmin, & |
---|
| 22 | pgasref, tgasmax, tgasmin, tgasref, scalep, & |
---|
| 23 | ubari, wnoi, stellarf, glat, dwnv, dwni, tauray |
---|
| 24 | use datafile_mod, only: datadir |
---|
| 25 | use ioipsl_getin_p_mod, only: getin_p |
---|
| 26 | use gases_h, only: ngasmx |
---|
[3329] | 27 | use radii_mod, only : su_aer_radii, haze_reffrad_fix |
---|
[3195] | 28 | use aerosol_mod, only : iaero_haze |
---|
[3184] | 29 | use aeropacity_mod, only: aeropacity |
---|
| 30 | use aeroptproperties_mod, only: aeroptproperties |
---|
[3572] | 31 | use tracer_h, only: igcm_ch4_gas,igcm_n2,mmol |
---|
[3275] | 32 | use comcstfi_mod, only: pi, mugaz, cpp, r, g |
---|
[3572] | 33 | use callkeys_mod, only: diurnal,tracer,varfixed,satval, & |
---|
[3184] | 34 | diagdtau,kastprof,strictboundcorrk,specOLR, & |
---|
| 35 | tplanckmin,tplanckmax,global1d, & |
---|
[3572] | 36 | optichaze,haze_radproffix,& |
---|
[3275] | 37 | methane,carbox,cooling,nlte,strobel,& |
---|
[3585] | 38 | ch4fix,vmrch4_proffix,vmrch4fix,& |
---|
| 39 | callmufi |
---|
[3184] | 40 | use optcv_mod, only: optcv |
---|
| 41 | use optci_mod, only: optci |
---|
| 42 | use sfluxi_mod, only: sfluxi |
---|
| 43 | use sfluxv_mod, only: sfluxv |
---|
| 44 | use recombin_corrk_mod, only: corrk_recombin, call_recombin |
---|
| 45 | use planetwide_mod, only: planetwide_maxval, planetwide_minval |
---|
[3275] | 46 | use radcommon_h, only: wavev,wavei |
---|
[3585] | 47 | use mp2m_diagnostics |
---|
[3184] | 48 | implicit none |
---|
| 49 | |
---|
| 50 | !================================================================== |
---|
| 51 | ! |
---|
| 52 | ! Purpose |
---|
| 53 | ! ------- |
---|
| 54 | ! Solve the radiative transfer using the correlated-k method for |
---|
| 55 | ! the gaseous absorption and the Toon et al. (1989) method for |
---|
| 56 | ! scatttering due to aerosols. |
---|
| 57 | ! |
---|
| 58 | ! Authors |
---|
[3195] | 59 | ! ------- |
---|
[3184] | 60 | ! Emmanuel 01/2001, Forget 09/2001 |
---|
| 61 | ! Robin Wordsworth (2009) |
---|
| 62 | ! |
---|
| 63 | !================================================================== |
---|
| 64 | |
---|
| 65 | !----------------------------------------------------------------------- |
---|
| 66 | ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid |
---|
[3195] | 67 | ! Layer #1 is the layer near the ground. |
---|
[3184] | 68 | ! Layer #nlayer is the layer at the top. |
---|
| 69 | !----------------------------------------------------------------------- |
---|
| 70 | |
---|
| 71 | |
---|
| 72 | ! INPUT |
---|
| 73 | INTEGER,INTENT(IN) :: ngrid ! Number of atmospheric columns. |
---|
| 74 | INTEGER,INTENT(IN) :: nlayer ! Number of atmospheric layers. |
---|
| 75 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! Tracers (kg/kg_of_air). |
---|
| 76 | INTEGER,INTENT(IN) :: nq ! Number of tracers. |
---|
| 77 | REAL,INTENT(IN) :: qsurf(ngrid,nq) ! Tracers on surface (kg.m-2). |
---|
| 78 | REAL,INTENT(IN) :: albedo(ngrid,L_NSPECTV) ! Spectral Short Wavelengths Albedo. By MT2015 |
---|
| 79 | REAL,INTENT(IN) :: emis(ngrid) ! Long Wave emissivity. |
---|
| 80 | REAL,INTENT(IN) :: mu0(ngrid) ! Cosine of sun incident angle. |
---|
| 81 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! Inter-layer pressure (Pa). |
---|
| 82 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! Mid-layer pressure (Pa). |
---|
| 83 | REAL,INTENT(IN) :: pt(ngrid,nlayer) ! Air temperature (K). |
---|
[3275] | 84 | REAL,INTENT(IN) :: zzlay(ngrid,nlayer) ! Mid-layer altitude |
---|
[3585] | 85 | REAL,INTENT(IN) :: zzlev(ngrid,nlayer) ! Altitude at the layer boundaries. |
---|
[3184] | 86 | REAL,INTENT(IN) :: tsurf(ngrid) ! Surface temperature (K). |
---|
| 87 | REAL,INTENT(IN) :: fract(ngrid) ! Fraction of day. |
---|
| 88 | REAL,INTENT(IN) :: dist_star ! Distance star-planet (AU). |
---|
| 89 | REAL,INTENT(IN) :: muvar(ngrid,nlayer+1) |
---|
| 90 | logical,intent(in) :: firstcall ! Signals first call to physics. |
---|
| 91 | logical,intent(in) :: lastcall ! Signals last call to physics. |
---|
[3195] | 92 | |
---|
[3184] | 93 | ! OUTPUT |
---|
[3585] | 94 | REAL,INTENT(OUT) :: dtau_aer(ngrid,nlayer,naerkind) ! Aerosol tau at reference wavelenght. |
---|
| 95 | REAL,INTENT(OUT) :: dtlw(ngrid,nlayer) ! Heating rate (K/s) due to LW radiation. |
---|
| 96 | REAL,INTENT(OUT) :: dtsw(ngrid,nlayer) ! Heating rate (K/s) due to SW radiation. |
---|
| 97 | REAL,INTENT(OUT) :: fluxsurf_lw(ngrid) ! Incident LW flux to surf (W/m2). |
---|
| 98 | REAL,INTENT(OUT) :: fluxsurf_sw(ngrid) ! Incident SW flux to surf (W/m2) |
---|
| 99 | REAL,INTENT(OUT) :: fluxsurfabs_sw(ngrid) ! Absorbed SW flux by the surface (W/m2). By MT2015. |
---|
| 100 | REAL,INTENT(OUT) :: fluxtop_lw(ngrid) ! Outgoing LW flux to space (W/m2). |
---|
| 101 | REAL,INTENT(OUT) :: fluxabs_sw(ngrid) ! SW flux absorbed by the planet (W/m2). |
---|
| 102 | REAL,INTENT(OUT) :: fluxtop_dn(ngrid) ! Incident top of atmosphere SW flux (W/m2). |
---|
| 103 | REAL,INTENT(OUT) :: OLR_nu(ngrid,L_NSPECTI) ! Outgoing LW radiation in each band (Normalized to the band width (W/m2/cm-1). |
---|
| 104 | REAL,INTENT(OUT) :: OSR_nu(ngrid,L_NSPECTV) ! Outgoing SW radiation in each band (Normalized to the band width (W/m2/cm-1). |
---|
| 105 | REAL,INTENT(OUT) :: GSR_nu(ngrid,L_NSPECTV) ! Surface SW radiation in each band (Normalized to the band width (W/m2/cm-1). |
---|
| 106 | REAL,INTENT(OUT) :: tau_col(ngrid) ! Diagnostic from aeropacity. |
---|
| 107 | REAL,INTENT(OUT) :: albedo_equivalent(ngrid) ! Spectrally Integrated Albedo. For Diagnostic. By MT2015 |
---|
[3184] | 108 | REAL,INTENT(OUT) :: int_dtaui(ngrid,nlayer,L_NSPECTI) ! VI optical thickness of layers within narrowbands for diags (). |
---|
| 109 | REAL,INTENT(OUT) :: int_dtauv(ngrid,nlayer,L_NSPECTV) ! IR optical thickness of layers within narrowbands for diags (). |
---|
| 110 | |
---|
[3195] | 111 | |
---|
| 112 | |
---|
| 113 | |
---|
| 114 | |
---|
| 115 | ! Globally varying aerosol optical properties on GCM grid ; not needed everywhere so not in radcommon_h. |
---|
[3184] | 116 | ! made "save" variables so they are allocated once in for all, not because |
---|
| 117 | ! the values need be saved from a time step to the next |
---|
| 118 | REAL,SAVE,ALLOCATABLE :: QVISsQREF3d(:,:,:,:) |
---|
| 119 | REAL,SAVE,ALLOCATABLE :: omegaVIS3d(:,:,:,:) |
---|
| 120 | REAL,SAVE,ALLOCATABLE :: gVIS3d(:,:,:,:) |
---|
| 121 | !$OMP THREADPRIVATE(QVISsQREF3d,omegaVIS3d,gVIS3d) |
---|
| 122 | REAL,SAVE,ALLOCATABLE :: QIRsQREF3d(:,:,:,:) |
---|
| 123 | REAL,SAVE,ALLOCATABLE :: omegaIR3d(:,:,:,:) |
---|
| 124 | REAL,SAVE,ALLOCATABLE :: gIR3d(:,:,:,:) |
---|
| 125 | !$OMP THREADPRIVATE(QIRsQREF3d,omegaIR3d,gIR3d) |
---|
| 126 | |
---|
| 127 | ! REAL :: omegaREFvis3d(ngrid,nlayer,naerkind) |
---|
| 128 | ! REAL :: omegaREFir3d(ngrid,nlayer,naerkind) ! not sure of the point of these... |
---|
| 129 | |
---|
| 130 | REAL,ALLOCATABLE,SAVE :: reffrad(:,:,:) ! aerosol effective radius (m) |
---|
| 131 | REAL,ALLOCATABLE,SAVE :: nueffrad(:,:,:) ! aerosol effective variance |
---|
| 132 | !$OMP THREADPRIVATE(reffrad,nueffrad) |
---|
| 133 | |
---|
| 134 | !----------------------------------------------------------------------- |
---|
| 135 | ! Declaration of the variables required by correlated-k subroutines |
---|
| 136 | ! Numbered from top to bottom (unlike in the GCM) |
---|
| 137 | !----------------------------------------------------------------------- |
---|
| 138 | |
---|
| 139 | REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) |
---|
| 140 | REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) |
---|
| 141 | |
---|
| 142 | ! Optical values for the optci/cv subroutines |
---|
| 143 | REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) |
---|
| 144 | ! NB: Arrays below are "save" to avoid reallocating them at every call |
---|
| 145 | ! not because their content needs be reused from call to the next |
---|
| 146 | REAL*8,allocatable,save :: dtaui(:,:,:) |
---|
| 147 | REAL*8,allocatable,save :: dtauv(:,:,:) |
---|
| 148 | REAL*8,allocatable,save :: cosbv(:,:,:) |
---|
| 149 | REAL*8,allocatable,save :: cosbi(:,:,:) |
---|
| 150 | REAL*8,allocatable,save :: wbari(:,:,:) |
---|
| 151 | REAL*8,allocatable,save :: wbarv(:,:,:) |
---|
| 152 | !$OMP THREADPRIVATE(dtaui,dtauv,cosbv,cosbi,wbari,wbarv) |
---|
| 153 | REAL*8,allocatable,save :: tauv(:,:,:) |
---|
| 154 | REAL*8,allocatable,save :: taucumv(:,:,:) |
---|
| 155 | REAL*8,allocatable,save :: taucumi(:,:,:) |
---|
| 156 | !$OMP THREADPRIVATE(tauv,taucumv,taucumi) |
---|
| 157 | REAL*8,allocatable,save :: tauaero(:,:) |
---|
| 158 | !$OMP THREADPRIVATE(tauaero) |
---|
| 159 | REAL*8 nfluxtopv,nfluxtopi,nfluxtop,fluxtopvdn |
---|
[3275] | 160 | real*8 nfluxtopv_nu(L_NSPECTV) |
---|
[3184] | 161 | REAL*8 nfluxoutv_nu(L_NSPECTV) ! Outgoing band-resolved VI flux at TOA (W/m2). |
---|
| 162 | REAL*8 nfluxtopi_nu(L_NSPECTI) ! Net band-resolved IR flux at TOA (W/m2). |
---|
| 163 | REAL*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) ! For 1D diagnostic. |
---|
| 164 | REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD) |
---|
[3275] | 165 | real*8 fmneti_nu(L_NLAYRAD,L_NSPECTI) ! |
---|
| 166 | real*8 fmnetv_nu(L_NLAYRAD,L_NSPECTV) ! |
---|
[3184] | 167 | REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD) |
---|
| 168 | REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD) |
---|
| 169 | REAL*8 albi,acosz |
---|
| 170 | REAL*8 albv(L_NSPECTV) ! Spectral Visible Albedo. |
---|
| 171 | |
---|
| 172 | INTEGER ig,l,k,nw,iaer,iq |
---|
| 173 | |
---|
| 174 | real*8,allocatable,save :: taugsurf(:,:) |
---|
| 175 | real*8,allocatable,save :: taugsurfi(:,:) |
---|
| 176 | !$OMP THREADPRIVATE(taugsurf,taugsurfi) |
---|
| 177 | real*8 qvar(L_LEVELS) ! Mixing ratio of variable component (mol/mol). index 1 is the top of the atmosphere, index L_LEVELS is the bottom |
---|
| 178 | |
---|
| 179 | ! Local aerosol optical properties for each column on RADIATIVE grid. |
---|
| 180 | real*8,save,allocatable :: QXVAER(:,:,:) ! Extinction coeff (QVISsQREF*QREFvis) |
---|
| 181 | real*8,save,allocatable :: QSVAER(:,:,:) |
---|
| 182 | real*8,save,allocatable :: GVAER(:,:,:) |
---|
| 183 | real*8,save,allocatable :: QXIAER(:,:,:) ! Extinction coeff (QIRsQREF*QREFir) |
---|
| 184 | real*8,save,allocatable :: QSIAER(:,:,:) |
---|
| 185 | real*8,save,allocatable :: GIAER(:,:,:) |
---|
| 186 | !$OMP THREADPRIVATE(QXVAER,QSVAER,GVAER,QXIAER,QSIAER,GIAER) |
---|
| 187 | real, dimension(:,:,:), save, allocatable :: QREFvis3d |
---|
| 188 | real, dimension(:,:,:), save, allocatable :: QREFir3d |
---|
| 189 | !$OMP THREADPRIVATE(QREFvis3d,QREFir3d) |
---|
| 190 | |
---|
| 191 | ! Miscellaneous : |
---|
[3585] | 192 | real*8 temp,temp1,temp2,pweight,sig |
---|
[3184] | 193 | character(len=10) :: tmp1 |
---|
| 194 | character(len=10) :: tmp2 |
---|
| 195 | character(len=100) :: message |
---|
| 196 | character(len=10),parameter :: subname="callcorrk" |
---|
| 197 | |
---|
| 198 | logical OLRz |
---|
| 199 | real*8 NFLUXGNDV_nu(L_NSPECTV) |
---|
| 200 | |
---|
| 201 | ! Included by RW for runaway greenhouse 1D study. |
---|
| 202 | real vtmp(nlayer) |
---|
| 203 | REAL*8 muvarrad(L_LEVELS) |
---|
[3195] | 204 | |
---|
| 205 | ! Included by MT for albedo calculations. |
---|
[3184] | 206 | REAL*8 albedo_temp(L_NSPECTV) ! For equivalent albedo calculation. |
---|
| 207 | REAL*8 surface_stellar_flux ! Stellar flux reaching the surface. Useful for equivalent albedo calculation. |
---|
[3195] | 208 | |
---|
[3275] | 209 | ! NLTE factor for CH4 |
---|
| 210 | real eps_nlte_sw23(ngrid,nlayer) ! CH4 NLTE efficiency factor for zdtsw |
---|
| 211 | real eps_nlte_sw33(ngrid,nlayer) ! CH4 NLTE efficiency factor for zdtsw |
---|
| 212 | real eps_nlte_lw(ngrid,nlayer) ! CH4 NLTE efficiency factor for zdtsw |
---|
| 213 | integer Nfine,ifine |
---|
| 214 | parameter(Nfine=701) |
---|
| 215 | real,save :: levdat(Nfine),vmrdat(Nfine) |
---|
[3329] | 216 | REAL dtlw_hcn_c2h2(ngrid, nlayer) ! cooling rate (K/s) due to C2H2/HCN (diagnostic) |
---|
[3275] | 217 | real :: vmrch4(ngrid,nlayer) ! vmr ch4 from vmrch4_proffix |
---|
| 218 | |
---|
| 219 | REAL dtlw_nu(nlayer,L_NSPECTI) ! heating rate (K/s) due to LW in spectral bands |
---|
| 220 | REAL dtsw_nu(nlayer,L_NSPECTV) ! heating rate (K/s) due to SW in spectral bands |
---|
| 221 | |
---|
[3184] | 222 | ! local variable |
---|
[3613] | 223 | REAL, save :: dpp ! intermediate |
---|
| 224 | !$OMP THREADPRIVATE(dpp) |
---|
[3275] | 225 | |
---|
[3184] | 226 | integer ok ! status (returned by NetCDF functions) |
---|
| 227 | |
---|
| 228 | REAL :: maxvalue,minvalue |
---|
| 229 | |
---|
| 230 | !=============================================================== |
---|
| 231 | ! I.a Initialization on first call |
---|
| 232 | !=============================================================== |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | if(firstcall) then |
---|
| 236 | |
---|
| 237 | ! test on allocated necessary because of CLFvarying (two calls to callcorrk in physiq) |
---|
| 238 | if(.not.allocated(QVISsQREF3d)) then |
---|
| 239 | allocate(QVISsQREF3d(ngrid,nlayer,L_NSPECTV,naerkind)) |
---|
| 240 | endif |
---|
| 241 | if(.not.allocated(omegaVIS3d)) then |
---|
| 242 | allocate(omegaVIS3d(ngrid,nlayer,L_NSPECTV,naerkind)) |
---|
| 243 | endif |
---|
| 244 | if(.not.allocated(gVIS3d)) then |
---|
| 245 | allocate(gVIS3d(ngrid,nlayer,L_NSPECTV,naerkind)) |
---|
| 246 | endif |
---|
| 247 | if (.not.allocated(QIRsQREF3d)) then |
---|
| 248 | allocate(QIRsQREF3d(ngrid,nlayer,L_NSPECTI,naerkind)) |
---|
| 249 | endif |
---|
| 250 | if (.not.allocated(omegaIR3d)) then |
---|
| 251 | allocate(omegaIR3d(ngrid,nlayer,L_NSPECTI,naerkind)) |
---|
| 252 | endif |
---|
| 253 | if (.not.allocated(gIR3d)) then |
---|
| 254 | allocate(gIR3d(ngrid,nlayer,L_NSPECTI,naerkind)) |
---|
| 255 | endif |
---|
| 256 | if (.not.allocated(tauaero)) then |
---|
| 257 | allocate(tauaero(L_LEVELS,naerkind)) |
---|
| 258 | endif |
---|
[3195] | 259 | |
---|
| 260 | if(.not.allocated(QXVAER)) then |
---|
[3184] | 261 | allocate(QXVAER(L_LEVELS,L_NSPECTV,naerkind), stat=ok) |
---|
| 262 | if (ok /= 0) then |
---|
| 263 | write(*,*) "memory allocation failed for QXVAER!" |
---|
| 264 | call abort_physic(subname,'allocation failure for QXVAER',1) |
---|
| 265 | endif |
---|
| 266 | endif |
---|
| 267 | if(.not.allocated(QSVAER)) then |
---|
| 268 | allocate(QSVAER(L_LEVELS,L_NSPECTV,naerkind), stat=ok) |
---|
| 269 | if (ok /= 0) then |
---|
| 270 | write(*,*) "memory allocation failed for QSVAER!" |
---|
| 271 | call abort_physic(subname,'allocation failure for QSVAER',1) |
---|
| 272 | endif |
---|
| 273 | endif |
---|
| 274 | if(.not.allocated(GVAER)) then |
---|
| 275 | allocate(GVAER(L_LEVELS,L_NSPECTV,naerkind), stat=ok) |
---|
| 276 | if (ok /= 0) then |
---|
| 277 | write(*,*) "memory allocation failed for GVAER!" |
---|
| 278 | call abort_physic(subname,'allocation failure for GVAER',1) |
---|
| 279 | endif |
---|
| 280 | endif |
---|
| 281 | if(.not.allocated(QXIAER)) then |
---|
| 282 | allocate(QXIAER(L_LEVELS,L_NSPECTI,naerkind), stat=ok) |
---|
| 283 | if (ok /= 0) then |
---|
| 284 | write(*,*) "memory allocation failed for QXIAER!" |
---|
| 285 | call abort_physic(subname,'allocation failure for QXIAER',1) |
---|
| 286 | endif |
---|
| 287 | endif |
---|
| 288 | if(.not.allocated(QSIAER)) then |
---|
| 289 | allocate(QSIAER(L_LEVELS,L_NSPECTI,naerkind), stat=ok) |
---|
| 290 | if (ok /= 0) then |
---|
| 291 | write(*,*) "memory allocation failed for QSIAER!" |
---|
| 292 | call abort_physic(subname,'allocation failure for QSIAER',1) |
---|
| 293 | endif |
---|
| 294 | endif |
---|
| 295 | if(.not.allocated(GIAER)) then |
---|
| 296 | allocate(GIAER(L_LEVELS,L_NSPECTI,naerkind), stat=ok) |
---|
| 297 | if (ok /= 0) then |
---|
| 298 | write(*,*) "memory allocation failed for GIAER!" |
---|
| 299 | call abort_physic(subname,'allocation failure for GIAER',1) |
---|
| 300 | endif |
---|
| 301 | endif |
---|
| 302 | |
---|
| 303 | !!! ALLOCATED instances are necessary because of CLFvarying (strategy to call callcorrk twice in physiq...) |
---|
| 304 | IF(.not.ALLOCATED(QREFvis3d))THEN |
---|
| 305 | ALLOCATE(QREFvis3d(ngrid,nlayer,naerkind), stat=ok) |
---|
| 306 | IF (ok/=0) THEN |
---|
| 307 | write(*,*) "memory allocation failed for QREFvis3d!" |
---|
| 308 | call abort_physic(subname,'allocation failure for QREFvis3d',1) |
---|
| 309 | ENDIF |
---|
| 310 | ENDIF |
---|
| 311 | IF(.not.ALLOCATED(QREFir3d)) THEN |
---|
| 312 | ALLOCATE(QREFir3d(ngrid,nlayer,naerkind), stat=ok) |
---|
| 313 | IF (ok/=0) THEN |
---|
| 314 | write(*,*) "memory allocation failed for QREFir3d!" |
---|
| 315 | call abort_physic(subname,'allocation failure for QREFir3d',1) |
---|
| 316 | ENDIF |
---|
| 317 | ENDIF |
---|
| 318 | ! Effective radius and variance of the aerosols |
---|
| 319 | IF(.not.ALLOCATED(reffrad)) THEN |
---|
| 320 | allocate(reffrad(ngrid,nlayer,naerkind), stat=ok) |
---|
| 321 | IF (ok/=0) THEN |
---|
| 322 | write(*,*) "memory allocation failed for reffrad!" |
---|
| 323 | call abort_physic(subname,'allocation failure for reffrad',1) |
---|
| 324 | ENDIF |
---|
| 325 | ENDIF |
---|
| 326 | IF(.not.ALLOCATED(nueffrad)) THEN |
---|
| 327 | allocate(nueffrad(ngrid,nlayer,naerkind), stat=ok) |
---|
| 328 | IF (ok/=0) THEN |
---|
| 329 | write(*,*) "memory allocation failed for nueffrad!" |
---|
| 330 | call abort_physic(subname,'allocation failure for nueffrad',1) |
---|
| 331 | ENDIF |
---|
| 332 | ENDIF |
---|
| 333 | |
---|
| 334 | if (is_master) call system('rm -f surf_vals_long.out') |
---|
| 335 | |
---|
| 336 | !-------------------------------------------------- |
---|
| 337 | ! Set up correlated k |
---|
| 338 | !-------------------------------------------------- |
---|
| 339 | |
---|
| 340 | !this block is now done at firstcall of physiq_mod |
---|
| 341 | ! print*, "callcorrk: Correlated-k data base folder:",trim(datadir) |
---|
| 342 | ! call getin_p("corrkdir",corrkdir) |
---|
| 343 | ! print*, "corrkdir = ",corrkdir |
---|
| 344 | ! write( tmp1, '(i3)' ) L_NSPECTI |
---|
| 345 | ! write( tmp2, '(i3)' ) L_NSPECTV |
---|
| 346 | ! banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) |
---|
| 347 | ! banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) |
---|
| 348 | |
---|
| 349 | ! call setspi ! Basic infrared properties. |
---|
| 350 | ! call setspv ! Basic visible properties. |
---|
| 351 | ! call sugas_corrk ! Set up gaseous absorption properties. |
---|
| 352 | ! call suaer_corrk ! Set up aerosol optical properties. |
---|
| 353 | |
---|
[3195] | 354 | |
---|
[3184] | 355 | ! now that L_NGAUSS has been initialized (by sugas_corrk) |
---|
| 356 | ! allocate related arrays |
---|
| 357 | if(.not.allocated(dtaui)) then |
---|
| 358 | ALLOCATE(dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS), stat=ok) |
---|
| 359 | if (ok/=0) then |
---|
| 360 | write(*,*) "memory allocation failed for dtaui!" |
---|
| 361 | call abort_physic(subname,'allocation failure for dtaui',1) |
---|
| 362 | endif |
---|
| 363 | endif |
---|
| 364 | if(.not.allocated(dtauv)) then |
---|
| 365 | ALLOCATE(dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS), stat=ok) |
---|
| 366 | if (ok/=0) then |
---|
| 367 | write(*,*) "memory allocation failed for dtauv!" |
---|
| 368 | call abort_physic(subname,'allocation failure for dtauv',1) |
---|
| 369 | endif |
---|
| 370 | endif |
---|
| 371 | if(.not.allocated(cosbv)) then |
---|
| 372 | ALLOCATE(cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS), stat=ok) |
---|
| 373 | if (ok/=0) then |
---|
| 374 | write(*,*) "memory allocation failed for cosbv!" |
---|
| 375 | call abort_physic(subname,'allocation failure for cobsv',1) |
---|
| 376 | endif |
---|
| 377 | endif |
---|
| 378 | if(.not.allocated(cosbi)) then |
---|
| 379 | ALLOCATE(cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS), stat=ok) |
---|
| 380 | if (ok/=0) then |
---|
| 381 | write(*,*) "memory allocation failed for cosbi!" |
---|
| 382 | call abort_physic(subname,'allocation failure for cobsi',1) |
---|
| 383 | endif |
---|
| 384 | endif |
---|
| 385 | if(.not.allocated(wbari)) then |
---|
| 386 | ALLOCATE(wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS), stat=ok) |
---|
| 387 | if (ok/=0) then |
---|
| 388 | write(*,*) "memory allocation failed for wbari!" |
---|
| 389 | call abort_physic(subname,'allocation failure for wbari',1) |
---|
| 390 | endif |
---|
| 391 | endif |
---|
| 392 | if(.not.allocated(wbarv)) then |
---|
| 393 | ALLOCATE(wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS), stat=ok) |
---|
| 394 | if (ok/=0) then |
---|
| 395 | write(*,*) "memory allocation failed for wbarv!" |
---|
| 396 | call abort_physic(subname,'allocation failure for wbarv',1) |
---|
| 397 | endif |
---|
| 398 | endif |
---|
| 399 | if(.not.allocated(tauv)) then |
---|
| 400 | ALLOCATE(tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS), stat=ok) |
---|
| 401 | if (ok/=0) then |
---|
| 402 | write(*,*) "memory allocation failed for tauv!" |
---|
| 403 | call abort_physic(subname,'allocation failure for tauv',1) |
---|
| 404 | endif |
---|
| 405 | endif |
---|
| 406 | if(.not.allocated(taucumv)) then |
---|
| 407 | ALLOCATE(taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS), stat=ok) |
---|
| 408 | if (ok/=0) then |
---|
| 409 | write(*,*) "memory allocation failed for taucumv!" |
---|
| 410 | call abort_physic(subname,'allocation failure for taucumv',1) |
---|
| 411 | endif |
---|
| 412 | endif |
---|
| 413 | if(.not.allocated(taucumi)) then |
---|
| 414 | ALLOCATE(taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS), stat=ok) |
---|
| 415 | if (ok/=0) then |
---|
| 416 | write(*,*) "memory allocation failed for taucumi!" |
---|
| 417 | call abort_physic(subname,'allocation failure for taucumi',1) |
---|
| 418 | endif |
---|
| 419 | endif |
---|
| 420 | if(.not.allocated(taugsurf)) then |
---|
| 421 | ALLOCATE(taugsurf(L_NSPECTV,L_NGAUSS-1), stat=ok) |
---|
| 422 | if (ok/=0) then |
---|
| 423 | write(*,*) "memory allocation failed for taugsurf!" |
---|
| 424 | call abort_physic(subname,'allocation failure for taugsurf',1) |
---|
| 425 | endif |
---|
| 426 | endif |
---|
| 427 | if(.not.allocated(taugsurfi)) then |
---|
| 428 | ALLOCATE(taugsurfi(L_NSPECTI,L_NGAUSS-1), stat=ok) |
---|
| 429 | if (ok/=0) then |
---|
| 430 | write(*,*) "memory allocation failed for taugsurfi!" |
---|
| 431 | call abort_physic(subname,'allocation failure for taugsurfi',1) |
---|
| 432 | endif |
---|
| 433 | endif |
---|
| 434 | |
---|
| 435 | end if ! of if (firstcall) |
---|
| 436 | |
---|
| 437 | !======================================================================= |
---|
[3195] | 438 | ! I.b Initialization on every call |
---|
[3184] | 439 | !======================================================================= |
---|
[3195] | 440 | |
---|
[3184] | 441 | qxvaer(:,:,:)=0.0 |
---|
| 442 | qsvaer(:,:,:)=0.0 |
---|
| 443 | gvaer(:,:,:) =0.0 |
---|
| 444 | |
---|
| 445 | qxiaer(:,:,:)=0.0 |
---|
| 446 | qsiaer(:,:,:)=0.0 |
---|
| 447 | giaer(:,:,:) =0.0 |
---|
| 448 | |
---|
| 449 | OLR_nu(:,:) = 0. |
---|
| 450 | OSR_nu(:,:) = 0. |
---|
| 451 | GSR_nu(:,:) = 0. |
---|
| 452 | |
---|
| 453 | !-------------------------------------------------- |
---|
| 454 | ! Effective radius and variance of the aerosols |
---|
| 455 | !-------------------------------------------------- |
---|
[3585] | 456 | ! Radiative Hazes |
---|
[3572] | 457 | if (optichaze) then |
---|
[3585] | 458 | if (callmufi) then |
---|
| 459 | ! Spherical aerosols |
---|
| 460 | sig = 0.2 |
---|
| 461 | where (mp2m_rc_sph(:,:) > 1e-10) |
---|
| 462 | reffrad(:,:,1) = mp2m_rc_sph(:,:) * exp(5.*sig**2 / 2.) |
---|
| 463 | elsewhere |
---|
[3613] | 464 | reffrad(:,:,1) = 0d0 |
---|
[3585] | 465 | endwhere |
---|
| 466 | if (exp(sig**2) - 1 > 0.1) then |
---|
| 467 | nueffrad(:,:,1) = exp(sig**2) - 1 |
---|
| 468 | else |
---|
[3613] | 469 | nueffrad(:,:,1) = 0.1 |
---|
[3195] | 470 | endif |
---|
[3585] | 471 | ! Fractal aerosols |
---|
| 472 | sig = 0.35 |
---|
| 473 | where (mp2m_rc_fra(:,:) > 1e-10) |
---|
| 474 | reffrad(:,:,2) = mp2m_rc_fra(:,:) * exp(5.*sig**2 / 2.) |
---|
| 475 | elsewhere |
---|
| 476 | reffrad(:,:,2) = 0d0 |
---|
| 477 | endwhere |
---|
| 478 | if (exp(sig**2) - 1 > 0.1) then |
---|
| 479 | nueffrad(:,:,2) = exp(sig**2) - 1 |
---|
| 480 | else |
---|
[3613] | 481 | nueffrad(:,:,2) = 0.1 |
---|
[3444] | 482 | endif |
---|
[3613] | 483 | |
---|
[3195] | 484 | else |
---|
[3585] | 485 | do iaer=1,naerkind |
---|
| 486 | if ((iaer.eq.iaero_haze)) then |
---|
| 487 | call su_aer_radii(ngrid,nlayer,reffrad(1,1,iaer),nueffrad(1,1,iaer)) |
---|
| 488 | endif |
---|
| 489 | end do ! iaer = 1, naerkind. |
---|
| 490 | if (haze_radproffix) then |
---|
| 491 | call haze_reffrad_fix(ngrid,nlayer,zzlay,reffrad,nueffrad) |
---|
| 492 | if (is_master) print*, 'haze_radproffix=T : fixed profile for haze rad' |
---|
| 493 | else |
---|
| 494 | if (is_master) print*,'reffrad haze:',reffrad(1,1,iaero_haze) |
---|
| 495 | if (is_master) print*,'nueff haze',nueffrad(1,1,iaero_haze) |
---|
| 496 | endif ! end haze_radproffix |
---|
| 497 | endif ! end callmufi |
---|
| 498 | endif ! end radiative haze |
---|
[3184] | 499 | |
---|
| 500 | ! How much light do we get ? |
---|
| 501 | do nw=1,L_NSPECTV |
---|
| 502 | stel(nw)=stellarf(nw)/(dist_star**2) |
---|
| 503 | end do |
---|
| 504 | |
---|
[3572] | 505 | if (optichaze) then |
---|
[3184] | 506 | |
---|
[3197] | 507 | ! Get 3D aerosol optical properties. |
---|
| 508 | call aeroptproperties(ngrid,nlayer,reffrad,nueffrad, & |
---|
| 509 | QVISsQREF3d,omegaVIS3d,gVIS3d, & |
---|
| 510 | QIRsQREF3d,omegaIR3d,gIR3d, & |
---|
| 511 | QREFvis3d,QREFir3d) |
---|
[3195] | 512 | |
---|
[3197] | 513 | ! Get aerosol optical depths. |
---|
[3585] | 514 | call aeropacity(ngrid,nlayer,nq,pplay,pplev,zzlev,pt,pq,dtau_aer, & |
---|
[3197] | 515 | reffrad,nueffrad,QREFvis3d,QREFir3d, & |
---|
[3572] | 516 | tau_col) |
---|
[3197] | 517 | endif |
---|
| 518 | |
---|
[3275] | 519 | |
---|
[3195] | 520 | !----------------------------------------------------------------------- |
---|
[3275] | 521 | ! Prepare CH4 mixing ratio for radiative transfer |
---|
| 522 | IF (methane) then |
---|
| 523 | vmrch4(:,:)=0. |
---|
| 524 | |
---|
| 525 | if (ch4fix) then |
---|
| 526 | if (vmrch4_proffix) then |
---|
| 527 | !! Interpolate on the model vertical grid |
---|
| 528 | do ig=1,ngrid |
---|
| 529 | CALL interp_line(levdat,vmrdat,Nfine, & |
---|
| 530 | zzlay(ig,:)/1000.,vmrch4(ig,:),nlayer) |
---|
| 531 | enddo |
---|
| 532 | else |
---|
| 533 | vmrch4(:,:)=vmrch4fix |
---|
| 534 | endif |
---|
| 535 | else |
---|
| 536 | vmrch4(:,:)=pq(:,:,igcm_ch4_gas)*100.* & |
---|
| 537 | mmol(igcm_n2)/mmol(igcm_ch4_gas) |
---|
| 538 | endif |
---|
| 539 | ENDIF |
---|
| 540 | |
---|
| 541 | ! Prepare NON LTE correction in Pluto atmosphere |
---|
| 542 | IF (nlte) then |
---|
| 543 | CALL nlte_ch4(ngrid,nlayer,nq,pplay,pplev,pt,vmrch4,& |
---|
| 544 | eps_nlte_sw23,eps_nlte_sw33,eps_nlte_lw) |
---|
| 545 | ENDIF |
---|
| 546 | ! Net atmospheric radiative cooling rate from C2H2 (K.s-1): |
---|
| 547 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 548 | ! dtlw_hcn_c2h2=0. |
---|
| 549 | if (cooling) then |
---|
[3329] | 550 | CALL cooling_hcn_c2h2(ngrid,nlayer,pplay,& |
---|
| 551 | pt,dtlw_hcn_c2h2) |
---|
[3275] | 552 | endif |
---|
| 553 | |
---|
| 554 | |
---|
| 555 | !----------------------------------------------------------------------- |
---|
[3184] | 556 | do ig=1,ngrid ! Starting Big Loop over every GCM column |
---|
| 557 | !----------------------------------------------------------------------- |
---|
| 558 | |
---|
| 559 | |
---|
| 560 | !======================================================================= |
---|
| 561 | ! II. Transformation of the GCM variables |
---|
| 562 | !======================================================================= |
---|
| 563 | |
---|
| 564 | |
---|
| 565 | !----------------------------------------------------------------------- |
---|
| 566 | ! Aerosol optical properties Qext, Qscat and g. |
---|
| 567 | ! The transformation in the vertical is the same as for temperature. |
---|
| 568 | !----------------------------------------------------------------------- |
---|
[3195] | 569 | |
---|
| 570 | |
---|
[3444] | 571 | ! AF24: for now only consider one aerosol (=haze) |
---|
[3572] | 572 | if (optichaze) then |
---|
[3329] | 573 | do iaer=1,naerkind |
---|
| 574 | ! Shortwave. |
---|
| 575 | do nw=1,L_NSPECTV |
---|
[3195] | 576 | |
---|
[3329] | 577 | do l=1,nlayer |
---|
[3184] | 578 | |
---|
[3329] | 579 | temp1=QVISsQREF3d(ig,nlayer+1-l,nw,iaer) & |
---|
| 580 | *QREFvis3d(ig,nlayer+1-l,iaer) |
---|
[3184] | 581 | |
---|
[3329] | 582 | temp2=QVISsQREF3d(ig,max(nlayer-l,1),nw,iaer) & |
---|
| 583 | *QREFvis3d(ig,max(nlayer-l,1),iaer) |
---|
[3184] | 584 | |
---|
[3329] | 585 | qxvaer(2*l,nw,iaer) = temp1 |
---|
| 586 | qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
[3184] | 587 | |
---|
[3329] | 588 | temp1=temp1*omegavis3d(ig,nlayer+1-l,nw,iaer) |
---|
| 589 | temp2=temp2*omegavis3d(ig,max(nlayer-l,1),nw,iaer) |
---|
[3184] | 590 | |
---|
[3329] | 591 | qsvaer(2*l,nw,iaer) = temp1 |
---|
| 592 | qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
[3184] | 593 | |
---|
[3329] | 594 | temp1=gvis3d(ig,nlayer+1-l,nw,iaer) |
---|
| 595 | temp2=gvis3d(ig,max(nlayer-l,1),nw,iaer) |
---|
[3184] | 596 | |
---|
[3329] | 597 | gvaer(2*l,nw,iaer) = temp1 |
---|
| 598 | gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
[3184] | 599 | |
---|
[3329] | 600 | end do ! nlayer |
---|
[3184] | 601 | |
---|
[3329] | 602 | qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer) |
---|
| 603 | qxvaer(2*nlayer+1,nw,iaer)=0. |
---|
[3184] | 604 | |
---|
[3329] | 605 | qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer) |
---|
| 606 | qsvaer(2*nlayer+1,nw,iaer)=0. |
---|
[3184] | 607 | |
---|
[3329] | 608 | gvaer(1,nw,iaer)=gvaer(2,nw,iaer) |
---|
| 609 | gvaer(2*nlayer+1,nw,iaer)=0. |
---|
[3184] | 610 | |
---|
[3329] | 611 | end do ! L_NSPECTV |
---|
[3195] | 612 | |
---|
[3329] | 613 | do nw=1,L_NSPECTI |
---|
| 614 | ! Longwave |
---|
| 615 | do l=1,nlayer |
---|
[3184] | 616 | |
---|
[3329] | 617 | temp1=QIRsQREF3d(ig,nlayer+1-l,nw,iaer) & |
---|
| 618 | *QREFir3d(ig,nlayer+1-l,iaer) |
---|
[3184] | 619 | |
---|
[3329] | 620 | temp2=QIRsQREF3d(ig,max(nlayer-l,1),nw,iaer) & |
---|
| 621 | *QREFir3d(ig,max(nlayer-l,1),iaer) |
---|
[3184] | 622 | |
---|
[3329] | 623 | qxiaer(2*l,nw,iaer) = temp1 |
---|
| 624 | qxiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
[3184] | 625 | |
---|
[3329] | 626 | temp1=temp1*omegair3d(ig,nlayer+1-l,nw,iaer) |
---|
| 627 | temp2=temp2*omegair3d(ig,max(nlayer-l,1),nw,iaer) |
---|
[3184] | 628 | |
---|
[3329] | 629 | qsiaer(2*l,nw,iaer) = temp1 |
---|
| 630 | qsiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
[3184] | 631 | |
---|
[3329] | 632 | temp1=gir3d(ig,nlayer+1-l,nw,iaer) |
---|
| 633 | temp2=gir3d(ig,max(nlayer-l,1),nw,iaer) |
---|
[3184] | 634 | |
---|
[3329] | 635 | giaer(2*l,nw,iaer) = temp1 |
---|
| 636 | giaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
[3184] | 637 | |
---|
[3329] | 638 | end do ! nlayer |
---|
[3184] | 639 | |
---|
[3329] | 640 | qxiaer(1,nw,iaer)=qxiaer(2,nw,iaer) |
---|
| 641 | qxiaer(2*nlayer+1,nw,iaer)=0. |
---|
[3184] | 642 | |
---|
[3329] | 643 | qsiaer(1,nw,iaer)=qsiaer(2,nw,iaer) |
---|
| 644 | qsiaer(2*nlayer+1,nw,iaer)=0. |
---|
[3184] | 645 | |
---|
[3329] | 646 | giaer(1,nw,iaer)=giaer(2,nw,iaer) |
---|
| 647 | giaer(2*nlayer+1,nw,iaer)=0. |
---|
[3184] | 648 | |
---|
[3329] | 649 | end do ! L_NSPECTI |
---|
[3195] | 650 | |
---|
[3329] | 651 | end do ! naerkind |
---|
[3184] | 652 | |
---|
[3329] | 653 | ! Test / Correct for freaky s. s. albedo values. |
---|
| 654 | do iaer=1,naerkind |
---|
| 655 | do k=1,L_LEVELS |
---|
[3184] | 656 | |
---|
[3329] | 657 | do nw=1,L_NSPECTV |
---|
| 658 | if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then |
---|
| 659 | message='Serious problems with qsvaer values' |
---|
| 660 | call abort_physic(subname,message,1) |
---|
| 661 | endif |
---|
| 662 | if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then |
---|
| 663 | qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer) |
---|
| 664 | endif |
---|
| 665 | end do |
---|
[3184] | 666 | |
---|
[3329] | 667 | do nw=1,L_NSPECTI |
---|
| 668 | if(qsiaer(k,nw,iaer).gt.1.05*qxiaer(k,nw,iaer))then |
---|
| 669 | message='Serious problems with qsvaer values' |
---|
| 670 | call abort_physic(subname,message,1) |
---|
| 671 | endif |
---|
| 672 | if(qsiaer(k,nw,iaer).gt.qxiaer(k,nw,iaer))then |
---|
| 673 | qsiaer(k,nw,iaer)=qxiaer(k,nw,iaer) |
---|
| 674 | endif |
---|
| 675 | end do |
---|
[3184] | 676 | |
---|
[3329] | 677 | end do ! L_LEVELS |
---|
| 678 | end do ! naerkind |
---|
[3572] | 679 | end if ! optichaze |
---|
[3184] | 680 | |
---|
| 681 | !----------------------------------------------------------------------- |
---|
| 682 | ! Aerosol optical depths |
---|
| 683 | !----------------------------------------------------------------------- |
---|
[3572] | 684 | if (optichaze) then |
---|
[3329] | 685 | do iaer=1,naerkind ! a bug was here |
---|
[3184] | 686 | do k=0,nlayer-1 |
---|
[3195] | 687 | |
---|
[3184] | 688 | pweight=(pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/ & |
---|
| 689 | (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1)) |
---|
[3585] | 690 | ! As 'dtau_aer' is at reference (visible) wavelenght we scale it as |
---|
[3184] | 691 | ! it will be multplied by qxi/v in optci/v |
---|
[3585] | 692 | temp=dtau_aer(ig,L_NLAYRAD-k,iaer)/QREFvis3d(ig,L_NLAYRAD-k,iaer) |
---|
[3184] | 693 | tauaero(2*k+2,iaer)=max(temp*pweight,0.d0) |
---|
| 694 | tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.d0) |
---|
| 695 | |
---|
| 696 | end do |
---|
| 697 | ! boundary conditions |
---|
| 698 | tauaero(1,iaer) = tauaero(2,iaer) |
---|
| 699 | !tauaero(1,iaer) = 0. |
---|
[3195] | 700 | !JL18 at time of testing, the two above conditions gave the same results bit for bit. |
---|
| 701 | |
---|
[3184] | 702 | end do ! naerkind |
---|
[3375] | 703 | else |
---|
| 704 | tauaero(:,:)=0 |
---|
[3572] | 705 | end if ! optichaze |
---|
[3184] | 706 | |
---|
| 707 | ! Albedo and Emissivity. |
---|
| 708 | albi=1-emis(ig) ! Long Wave. |
---|
| 709 | DO nw=1,L_NSPECTV ! Short Wave loop. |
---|
| 710 | albv(nw)=albedo(ig,nw) |
---|
| 711 | ENDDO |
---|
| 712 | |
---|
| 713 | acosz=mu0(ig) ! Cosine of sun incident angle : 3D simulations or local 1D simulations using latitude. |
---|
| 714 | |
---|
| 715 | !----------------------------------------------------------------------- |
---|
[3572] | 716 | ! Methane Vapor |
---|
[3184] | 717 | !----------------------------------------------------------------------- |
---|
[3572] | 718 | if (methane) then |
---|
| 719 | do l=1,nlayer |
---|
| 720 | qvar(2*l) = vmrch4(ig,nlayer+1-l)/100.* & |
---|
| 721 | mmol(igcm_ch4_gas)/mmol(igcm_n2) |
---|
| 722 | qvar(2*l+1) = ((vmrch4(ig,nlayer+1-l)+vmrch4(ig, & |
---|
| 723 | max(nlayer-l,1)))/2.)/100.* & |
---|
| 724 | mmol(igcm_ch4_gas)/mmol(igcm_n2) |
---|
| 725 | end do |
---|
| 726 | qvar(1)=qvar(2) |
---|
[3613] | 727 | |
---|
[3572] | 728 | else |
---|
[3184] | 729 | do k=1,L_LEVELS |
---|
| 730 | qvar(k) = 1.0D-7 |
---|
| 731 | end do |
---|
[3572] | 732 | end if ! end methane |
---|
[3184] | 733 | |
---|
| 734 | !----------------------------------------------------------------------- |
---|
| 735 | ! kcm mode only ! |
---|
| 736 | !----------------------------------------------------------------------- |
---|
| 737 | |
---|
| 738 | DO l=1,nlayer |
---|
[3613] | 739 | muvarrad(2*l) = muvar(ig,nlayer+2-l) |
---|
[3572] | 740 | muvarrad(2*l+1) = (muvar(ig,nlayer+2-l)+muvar(ig,max(nlayer+1-l,1)))/2 |
---|
[3184] | 741 | END DO |
---|
[3195] | 742 | |
---|
[3184] | 743 | muvarrad(1) = muvarrad(2) |
---|
[3195] | 744 | muvarrad(2*nlayer+1)=muvar(ig,1) |
---|
| 745 | |
---|
[3184] | 746 | ! Keep values inside limits for which we have radiative transfer coefficients !!! |
---|
| 747 | if(L_REFVAR.gt.1)then ! (there was a bug here) |
---|
| 748 | do k=1,L_LEVELS |
---|
| 749 | if(qvar(k).lt.wrefvar(1))then |
---|
| 750 | qvar(k)=wrefvar(1)+1.0e-8 |
---|
| 751 | elseif(qvar(k).gt.wrefvar(L_REFVAR))then |
---|
| 752 | qvar(k)=wrefvar(L_REFVAR)-1.0e-8 |
---|
| 753 | endif |
---|
| 754 | end do |
---|
| 755 | endif |
---|
| 756 | |
---|
| 757 | !----------------------------------------------------------------------- |
---|
| 758 | ! Pressure and temperature |
---|
| 759 | !----------------------------------------------------------------------- |
---|
| 760 | |
---|
| 761 | DO l=1,nlayer |
---|
| 762 | plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep |
---|
| 763 | plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep |
---|
| 764 | tlevrad(2*l) = pt(ig,nlayer+1-l) |
---|
| 765 | tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2 |
---|
| 766 | END DO |
---|
[3195] | 767 | |
---|
[3184] | 768 | plevrad(1) = 0. |
---|
[3361] | 769 | !!plevrad(2) = 0. !! JL18 enabling this line puts the radiative top at p=0 which was the idea before, but does not seem to perform best after all. |
---|
[3195] | 770 | |
---|
[3184] | 771 | tlevrad(1) = tlevrad(2) |
---|
| 772 | tlevrad(2*nlayer+1)=tsurf(ig) |
---|
[3195] | 773 | |
---|
| 774 | pmid(1) = pplay(ig,nlayer)/scalep |
---|
[3184] | 775 | pmid(2) = pmid(1) |
---|
| 776 | |
---|
| 777 | tmid(1) = tlevrad(2) |
---|
| 778 | tmid(2) = tmid(1) |
---|
[3195] | 779 | |
---|
[3184] | 780 | DO l=1,L_NLAYRAD-1 |
---|
| 781 | tmid(2*l+1) = tlevrad(2*l+1) |
---|
| 782 | tmid(2*l+2) = tlevrad(2*l+1) |
---|
| 783 | pmid(2*l+1) = plevrad(2*l+1) |
---|
| 784 | pmid(2*l+2) = plevrad(2*l+1) |
---|
| 785 | END DO |
---|
| 786 | pmid(L_LEVELS) = plevrad(L_LEVELS) |
---|
| 787 | tmid(L_LEVELS) = tlevrad(L_LEVELS) |
---|
| 788 | |
---|
| 789 | !!Alternative interpolation: |
---|
| 790 | ! pmid(3) = pmid(1) |
---|
[3195] | 791 | ! pmid(4) = pmid(1) |
---|
[3184] | 792 | ! tmid(3) = tmid(1) |
---|
| 793 | ! tmid(4) = tmid(1) |
---|
| 794 | ! DO l=2,L_NLAYRAD-1 |
---|
| 795 | ! tmid(2*l+1) = tlevrad(2*l) |
---|
| 796 | ! tmid(2*l+2) = tlevrad(2*l) |
---|
| 797 | ! pmid(2*l+1) = plevrad(2*l) |
---|
| 798 | ! pmid(2*l+2) = plevrad(2*l) |
---|
| 799 | ! END DO |
---|
| 800 | ! pmid(L_LEVELS) = plevrad(L_LEVELS-1) |
---|
| 801 | ! tmid(L_LEVELS) = tlevrad(L_LEVELS-1) |
---|
| 802 | |
---|
| 803 | ! Test for out-of-bounds pressure. |
---|
| 804 | if(plevrad(3).lt.pgasmin)then |
---|
[3547] | 805 | print*,'Warning: minimum pressure is outside the radiative' |
---|
[3184] | 806 | print*,'transfer kmatrix bounds, exiting.' |
---|
[3547] | 807 | print*,'Pressure:', plevrad(3), 'Pa' |
---|
[3184] | 808 | message="Minimum pressure outside of kmatrix bounds" |
---|
[3547] | 809 | !call abort_physic(subname,message,1) |
---|
[3184] | 810 | elseif(plevrad(L_LEVELS).gt.pgasmax)then |
---|
| 811 | print*,'Maximum pressure is outside the radiative' |
---|
| 812 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 813 | message="Minimum pressure outside of kmatrix bounds" |
---|
| 814 | call abort_physic(subname,message,1) |
---|
| 815 | endif |
---|
| 816 | |
---|
| 817 | ! Test for out-of-bounds temperature. |
---|
| 818 | ! -- JVO 20 : Also add a sanity test checking that tlevrad is |
---|
| 819 | ! within Planck function temperature boundaries, |
---|
| 820 | ! which would cause gfluxi/sfluxi to crash. |
---|
| 821 | do k=1,L_LEVELS |
---|
| 822 | |
---|
| 823 | if(tlevrad(k).lt.tgasmin)then |
---|
| 824 | print*,'Minimum temperature is outside the radiative' |
---|
| 825 | print*,'transfer kmatrix bounds' |
---|
| 826 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
| 827 | print*,"tgasmin=",tgasmin |
---|
| 828 | if (strictboundcorrk) then |
---|
| 829 | message="Minimum temperature outside of kmatrix bounds" |
---|
| 830 | call abort_physic(subname,message,1) |
---|
| 831 | else |
---|
| 832 | print*,'***********************************************' |
---|
[3195] | 833 | print*,'we allow model to continue with tlevrad<tgasmin' |
---|
[3184] | 834 | print*,' ... we assume we know what you are doing ... ' |
---|
| 835 | print*,' ... but do not let this happen too often ... ' |
---|
| 836 | print*,'***********************************************' |
---|
| 837 | !tlevrad(k)=tgasmin ! Used in the source function ! |
---|
| 838 | endif |
---|
| 839 | elseif(tlevrad(k).gt.tgasmax)then |
---|
| 840 | print*,'Maximum temperature is outside the radiative' |
---|
| 841 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 842 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
| 843 | print*,"tgasmax=",tgasmax |
---|
| 844 | if (strictboundcorrk) then |
---|
| 845 | message="Maximum temperature outside of kmatrix bounds" |
---|
| 846 | call abort_physic(subname,message,1) |
---|
| 847 | else |
---|
| 848 | print*,'***********************************************' |
---|
[3195] | 849 | print*,'we allow model to continue with tlevrad>tgasmax' |
---|
[3184] | 850 | print*,' ... we assume we know what you are doing ... ' |
---|
| 851 | print*,' ... but do not let this happen too often ... ' |
---|
| 852 | print*,'***********************************************' |
---|
| 853 | !tlevrad(k)=tgasmax ! Used in the source function ! |
---|
| 854 | endif |
---|
| 855 | endif |
---|
| 856 | |
---|
| 857 | if (tlevrad(k).lt.tplanckmin) then |
---|
| 858 | print*,'Minimum temperature is outside the boundaries for' |
---|
| 859 | print*,'Planck function integration set in callphys.def, aborting.' |
---|
| 860 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
| 861 | print*,"tplanckmin=",tplanckmin |
---|
| 862 | message="Minimum temperature outside Planck function bounds - Change tplanckmin in callphys.def" |
---|
| 863 | call abort_physic(subname,message,1) |
---|
| 864 | else if (tlevrad(k).gt.tplanckmax) then |
---|
| 865 | print*,'Maximum temperature is outside the boundaries for' |
---|
| 866 | print*,'Planck function integration set in callphys.def, aborting.' |
---|
| 867 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
| 868 | print*,"tplanckmax=",tplanckmax |
---|
| 869 | message="Maximum temperature outside Planck function bounds - Change tplanckmax in callphys.def" |
---|
| 870 | call abort_physic(subname,message,1) |
---|
| 871 | endif |
---|
| 872 | |
---|
| 873 | enddo |
---|
| 874 | |
---|
| 875 | do k=1,L_NLAYRAD+1 |
---|
| 876 | if(tmid(k).lt.tgasmin)then |
---|
| 877 | print*,'Minimum temperature is outside the radiative' |
---|
| 878 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 879 | print*,"k=",k," tmid(k)=",tmid(k) |
---|
| 880 | print*,"tgasmin=",tgasmin |
---|
| 881 | if (strictboundcorrk) then |
---|
| 882 | message="Minimum temperature outside of kmatrix bounds" |
---|
| 883 | call abort_physic(subname,message,1) |
---|
| 884 | else |
---|
| 885 | print*,'***********************************************' |
---|
| 886 | print*,'we allow model to continue but with tmid=tgasmin' |
---|
| 887 | print*,' ... we assume we know what you are doing ... ' |
---|
| 888 | print*,' ... but do not let this happen too often ... ' |
---|
| 889 | print*,'***********************************************' |
---|
| 890 | tmid(k)=tgasmin |
---|
| 891 | endif |
---|
| 892 | elseif(tmid(k).gt.tgasmax)then |
---|
| 893 | print*,'Maximum temperature is outside the radiative' |
---|
| 894 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 895 | print*,"k=",k," tmid(k)=",tmid(k) |
---|
| 896 | print*,"tgasmax=",tgasmax |
---|
| 897 | if (strictboundcorrk) then |
---|
| 898 | message="Maximum temperature outside of kmatrix bounds" |
---|
| 899 | call abort_physic(subname,message,1) |
---|
| 900 | else |
---|
| 901 | print*,'***********************************************' |
---|
| 902 | print*,'we allow model to continue but with tmid=tgasmax' |
---|
| 903 | print*,' ... we assume we know what you are doing ... ' |
---|
| 904 | print*,' ... but do not let this happen too often ... ' |
---|
| 905 | print*,'***********************************************' |
---|
| 906 | tmid(k)=tgasmax |
---|
| 907 | endif |
---|
| 908 | endif |
---|
| 909 | enddo |
---|
| 910 | |
---|
| 911 | !======================================================================= |
---|
| 912 | ! III. Calling the main radiative transfer subroutines |
---|
| 913 | !======================================================================= |
---|
| 914 | |
---|
| 915 | ! ---------------------------------------------------------------- |
---|
| 916 | ! Recombine reference corrk tables if needed - Added by JVO, 2020. |
---|
| 917 | if (corrk_recombin) then |
---|
| 918 | call call_recombin(ig,nlayer,pq(ig,:,:),pplay(ig,:),pt(ig,:),qvar(:),tmid(:),pmid(:)) |
---|
| 919 | endif |
---|
| 920 | ! ---------------------------------------------------------------- |
---|
| 921 | |
---|
| 922 | Cmk= 0.01 * 1.0 / (glat(ig) * mugaz * 1.672621e-27) ! q_main=1.0 assumed. |
---|
| 923 | glat_ig=glat(ig) |
---|
| 924 | |
---|
| 925 | !----------------------------------------------------------------------- |
---|
| 926 | ! Short Wave Part |
---|
| 927 | !----------------------------------------------------------------------- |
---|
| 928 | |
---|
| 929 | if(fract(ig) .ge. 1.0e-4) then ! Only during daylight. |
---|
| 930 | if((ngrid.eq.1).and.(global1d))then |
---|
| 931 | do nw=1,L_NSPECTV |
---|
| 932 | stel_fract(nw)= stel(nw)* 0.25 / acosz ! globally averaged = divide by 4, and we correct for solar zenith angle |
---|
| 933 | end do |
---|
| 934 | else |
---|
| 935 | do nw=1,L_NSPECTV |
---|
| 936 | stel_fract(nw)= stel(nw) * fract(ig) |
---|
| 937 | end do |
---|
| 938 | endif |
---|
| 939 | |
---|
| 940 | call optcv(dtauv,tauv,taucumv,plevrad, & |
---|
| 941 | qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero, & |
---|
| 942 | tmid,pmid,taugsurf,qvar,muvarrad) |
---|
| 943 | |
---|
[3275] | 944 | call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, & |
---|
| 945 | acosz,stel_fract,nfluxtopv,fluxtopvdn,nfluxoutv_nu,& |
---|
| 946 | nfluxgndv_nu,nfluxtopv_nu, & |
---|
| 947 | fmnetv,fmnetv_nu,fluxupv,fluxdnv,fzerov,taugsurf) |
---|
[3184] | 948 | |
---|
| 949 | else ! During the night, fluxes = 0. |
---|
| 950 | nfluxtopv = 0.0d0 |
---|
| 951 | fluxtopvdn = 0.0d0 |
---|
[3613] | 952 | nfluxtopv_nu(:) = 0.0d0 |
---|
[3184] | 953 | nfluxoutv_nu(:) = 0.0d0 |
---|
| 954 | nfluxgndv_nu(:) = 0.0d0 |
---|
[3613] | 955 | fmnetv_nu(:,:)=0.0 |
---|
[3184] | 956 | do l=1,L_NLAYRAD |
---|
| 957 | fmnetv(l)=0.0d0 |
---|
| 958 | fluxupv(l)=0.0d0 |
---|
| 959 | fluxdnv(l)=0.0d0 |
---|
| 960 | end do |
---|
| 961 | end if |
---|
| 962 | |
---|
| 963 | |
---|
| 964 | ! Equivalent Albedo Calculation (for OUTPUT). MT2015 |
---|
[3195] | 965 | if(fract(ig) .ge. 1.0e-4) then ! equivalent albedo makes sense only during daylight. |
---|
| 966 | surface_stellar_flux=sum(nfluxgndv_nu(1:L_NSPECTV)) |
---|
[3184] | 967 | if(surface_stellar_flux .gt. 1.0e-3) then ! equivalent albedo makes sense only if the stellar flux received by the surface is positive. |
---|
[3195] | 968 | DO nw=1,L_NSPECTV |
---|
[3184] | 969 | albedo_temp(nw)=albedo(ig,nw)*nfluxgndv_nu(nw) |
---|
| 970 | ENDDO |
---|
| 971 | albedo_temp(1:L_NSPECTV)=albedo_temp(1:L_NSPECTV)/surface_stellar_flux |
---|
| 972 | albedo_equivalent(ig)=sum(albedo_temp(1:L_NSPECTV)) |
---|
| 973 | else |
---|
| 974 | albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. |
---|
| 975 | endif |
---|
| 976 | else |
---|
| 977 | albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. |
---|
| 978 | endif |
---|
| 979 | |
---|
| 980 | |
---|
| 981 | !----------------------------------------------------------------------- |
---|
| 982 | ! Long Wave Part |
---|
| 983 | !----------------------------------------------------------------------- |
---|
| 984 | |
---|
| 985 | call optci(plevrad,tlevrad,dtaui,taucumi, & |
---|
| 986 | qxiaer,qsiaer,giaer,cosbi,wbari,tauaero,tmid,pmid, & |
---|
| 987 | taugsurfi,qvar,muvarrad) |
---|
| 988 | |
---|
| 989 | call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi, & |
---|
[3195] | 990 | wnoi,dwni,cosbi,wbari,nfluxtopi,nfluxtopi_nu, & |
---|
[3275] | 991 | fmneti,fmneti_nu,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi) |
---|
[3184] | 992 | |
---|
| 993 | !----------------------------------------------------------------------- |
---|
| 994 | ! Transformation of the correlated-k code outputs |
---|
| 995 | ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) |
---|
| 996 | |
---|
| 997 | ! Flux incident at the top of the atmosphere |
---|
[3195] | 998 | fluxtop_dn(ig)=fluxtopvdn |
---|
[3184] | 999 | |
---|
| 1000 | fluxtop_lw(ig) = real(nfluxtopi) |
---|
| 1001 | fluxabs_sw(ig) = real(-nfluxtopv) |
---|
| 1002 | fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD)) |
---|
| 1003 | fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD)) |
---|
[3195] | 1004 | |
---|
| 1005 | ! Flux absorbed by the surface. By MT2015. |
---|
[3184] | 1006 | fluxsurfabs_sw(ig) = fluxsurf_sw(ig)*(1.-albedo_equivalent(ig)) |
---|
| 1007 | |
---|
| 1008 | if(fluxtop_dn(ig).lt.0.0)then |
---|
| 1009 | print*,'Achtung! fluxtop_dn has lost the plot!' |
---|
| 1010 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
| 1011 | print*,'acosz=',acosz |
---|
[3585] | 1012 | print*,'dtau_aer=',dtau_aer(ig,:,:) |
---|
[3184] | 1013 | print*,'temp= ',pt(ig,:) |
---|
| 1014 | print*,'pplay= ',pplay(ig,:) |
---|
| 1015 | message="Achtung! fluxtop_dn has lost the plot!" |
---|
| 1016 | call abort_physic(subname,message,1) |
---|
| 1017 | endif |
---|
| 1018 | |
---|
| 1019 | ! Spectral output, for exoplanet observational comparison |
---|
| 1020 | if(specOLR)then |
---|
[3195] | 1021 | do nw=1,L_NSPECTI |
---|
[3184] | 1022 | OLR_nu(ig,nw)=nfluxtopi_nu(nw)/DWNI(nw) !JL Normalize to the bandwidth |
---|
| 1023 | end do |
---|
[3195] | 1024 | do nw=1,L_NSPECTV |
---|
[3184] | 1025 | GSR_nu(ig,nw)=nfluxgndv_nu(nw)/DWNV(nw) |
---|
| 1026 | OSR_nu(ig,nw)=nfluxoutv_nu(nw)/DWNV(nw) !JL Normalize to the bandwidth |
---|
| 1027 | end do |
---|
| 1028 | endif |
---|
| 1029 | |
---|
| 1030 | ! Finally, the heating rates |
---|
[3275] | 1031 | DO l=2,L_NLAYRAD |
---|
| 1032 | ! dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) & |
---|
| 1033 | ! *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
| 1034 | dpp = glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
| 1035 | do nw=1,L_NSPECTV |
---|
| 1036 | dtsw_nu(L_NLAYRAD+1-l,nw)= & |
---|
| 1037 | (fmnetv_nu(l,nw)-fmnetv_nu(l-1,nw))*dpp |
---|
| 1038 | end do |
---|
[3184] | 1039 | |
---|
[3275] | 1040 | ! dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1)) & |
---|
| 1041 | ! *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
| 1042 | do nw=1,L_NSPECTI |
---|
| 1043 | dtlw_nu(L_NLAYRAD+1-l,nw)= & |
---|
| 1044 | (fmneti_nu(l,nw)-fmneti_nu(l-1,nw))*dpp |
---|
| 1045 | end do |
---|
[3195] | 1046 | END DO |
---|
[3184] | 1047 | |
---|
| 1048 | ! These are values at top of atmosphere |
---|
[3275] | 1049 | ! dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) & |
---|
| 1050 | ! *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(2))) |
---|
| 1051 | ! dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) & |
---|
| 1052 | ! *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(2))) |
---|
| 1053 | dpp = g/(cpp*scalep*(plevrad(3)-plevrad(1))) |
---|
| 1054 | do nw=1,L_NSPECTV |
---|
| 1055 | dtsw_nu(L_NLAYRAD,nw)= & |
---|
| 1056 | (fmnetv_nu(1,nw)-nfluxtopv_nu(nw))*dpp |
---|
| 1057 | end do |
---|
| 1058 | do nw=1,L_NSPECTI |
---|
| 1059 | dtlw_nu(L_NLAYRAD,nw)= & |
---|
| 1060 | (fmneti_nu(1,nw)-nfluxtopi_nu(nw))*dpp |
---|
| 1061 | end do |
---|
[3184] | 1062 | |
---|
| 1063 | ! Optical thickness diagnostics (added by JVO) |
---|
| 1064 | if (diagdtau) then |
---|
| 1065 | do l=1,L_NLAYRAD |
---|
| 1066 | do nw=1,L_NSPECTV |
---|
| 1067 | int_dtauv(ig,l,nw) = 0.0d0 |
---|
| 1068 | DO k=1,L_NGAUSS |
---|
| 1069 | ! Output exp(-tau) because gweight ponderates exp and not tau itself |
---|
| 1070 | int_dtauv(ig,l,nw)= int_dtauv(ig,l,nw) + exp(-dtauv(l,nw,k))*gweight(k) |
---|
| 1071 | ENDDO |
---|
| 1072 | enddo |
---|
| 1073 | do nw=1,L_NSPECTI |
---|
| 1074 | int_dtaui(ig,l,nw) = 0.0d0 |
---|
| 1075 | DO k=1,L_NGAUSS |
---|
| 1076 | ! Output exp(-tau) because gweight ponderates exp and not tau itself |
---|
| 1077 | int_dtaui(ig,l,nw)= int_dtaui(ig,l,nw) + exp(-dtaui(l,nw,k))*gweight(k) |
---|
| 1078 | ENDDO |
---|
| 1079 | enddo |
---|
| 1080 | enddo |
---|
[3195] | 1081 | endif |
---|
[3184] | 1082 | |
---|
[3275] | 1083 | ! ********************************************************** |
---|
| 1084 | ! NON NLTE correction in Pluto atmosphere |
---|
| 1085 | ! And conversion of LW spectral heating rates to total rates |
---|
| 1086 | ! ********************************************************** |
---|
[3184] | 1087 | |
---|
[3275] | 1088 | if (.not.nlte) then |
---|
| 1089 | eps_nlte_sw23(ig,:) =1. ! IF no NLTE |
---|
| 1090 | eps_nlte_sw33(ig,:) =1. ! IF no NLTE |
---|
| 1091 | eps_nlte_lw(ig,:) =1. ! IF no NLTE |
---|
| 1092 | endif |
---|
| 1093 | |
---|
| 1094 | do l=1,nlayer |
---|
| 1095 | |
---|
| 1096 | !LW |
---|
| 1097 | dtlw(ig,l) =0. |
---|
| 1098 | ! dtlw_co(ig,l) =0. ! only for diagnostic |
---|
| 1099 | do nw=1,L_NSPECTI |
---|
| 1100 | ! wewei : wavelength in micrometer |
---|
| 1101 | if ((wavei(nw).gt.6.).and.(wavei(nw).lt.9)) then |
---|
| 1102 | dtlw_nu(l,nw)=dtlw_nu(l,nw)*eps_nlte_lw(ig,l) |
---|
| 1103 | else |
---|
| 1104 | !dtlw_nu(l,nw)=1.*dtlw_nu(l,nw) ! no CO correction (Strobbel 1996) |
---|
| 1105 | dtlw_nu(l,nw)=0.33*dtlw_nu(l,nw) ! CO correction (Strobbel 1996) |
---|
| 1106 | ! dtlw_co(ig,l)=dtlw_co(ig,l)+ dtlw_nu(l,nw) ! diagnostic |
---|
| 1107 | end if |
---|
| 1108 | dtlw(ig,l)=dtlw(ig,l)+ dtlw_nu(l,nw) !average now on each wavelength |
---|
| 1109 | end do |
---|
| 1110 | ! adding c2h2 if cooling active |
---|
[3592] | 1111 | dtlw(ig,l)=dtlw(ig,l)+dtlw_hcn_c2h2(ig,l) |
---|
[3275] | 1112 | |
---|
| 1113 | !SW |
---|
| 1114 | dtsw(ig,l) =0. |
---|
| 1115 | |
---|
| 1116 | if (strobel) then |
---|
| 1117 | |
---|
| 1118 | do nw=1,L_NSPECTV |
---|
| 1119 | if ((wavev(nw).gt.2).and.(wavev(nw).lt.2.6)) then |
---|
| 1120 | dtsw_nu(l,nw)=dtsw_nu(l,nw)*eps_nlte_sw23(ig,l) |
---|
| 1121 | elseif ((wavev(nw).gt.3).and.(wavev(nw).lt.3.6)) then |
---|
| 1122 | dtsw_nu(l,nw)=dtsw_nu(l,nw)*eps_nlte_sw33(ig,l) |
---|
| 1123 | else |
---|
| 1124 | dtsw_nu(l,nw)=dtsw_nu(l,nw) |
---|
| 1125 | end if |
---|
| 1126 | dtsw(ig,l)=dtsw(ig,l)+ dtsw_nu(l,nw) |
---|
| 1127 | end do |
---|
| 1128 | |
---|
| 1129 | else ! total heating rates multiplied by nlte coef |
---|
| 1130 | |
---|
| 1131 | do nw=1,L_NSPECTV |
---|
| 1132 | dtsw_nu(l,nw)=dtsw_nu(l,nw)*eps_nlte_sw23(ig,l) |
---|
| 1133 | dtsw(ig,l)=dtsw(ig,l)+ dtsw_nu(l,nw) |
---|
| 1134 | enddo |
---|
| 1135 | |
---|
| 1136 | endif |
---|
| 1137 | |
---|
| 1138 | |
---|
| 1139 | end do |
---|
| 1140 | ! ********************************************************** |
---|
| 1141 | |
---|
| 1142 | |
---|
[3195] | 1143 | !----------------------------------------------------------------------- |
---|
[3184] | 1144 | end do ! End of big loop over every GCM column. |
---|
| 1145 | !----------------------------------------------------------------------- |
---|
| 1146 | |
---|
| 1147 | |
---|
| 1148 | !----------------------------------------------------------------------- |
---|
| 1149 | ! Additional diagnostics |
---|
| 1150 | !----------------------------------------------------------------------- |
---|
| 1151 | |
---|
| 1152 | ! IR spectral output, for exoplanet observational comparison |
---|
| 1153 | if(lastcall.and.(ngrid.eq.1))then ! could disable the 1D output, they are in the diagfi and diagspec... JL12 |
---|
| 1154 | |
---|
| 1155 | print*,'Saving scalar quantities in surf_vals.out...' |
---|
| 1156 | print*,'psurf = ', pplev(1,1),' Pa' |
---|
| 1157 | open(116,file='surf_vals.out') |
---|
| 1158 | write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1), & |
---|
[3195] | 1159 | real(-nfluxtopv),real(nfluxtopi) |
---|
[3184] | 1160 | close(116) |
---|
| 1161 | |
---|
| 1162 | |
---|
| 1163 | ! USEFUL COMMENT - Do Not Remove. |
---|
| 1164 | ! |
---|
| 1165 | ! if(specOLR)then |
---|
| 1166 | ! open(117,file='OLRnu.out') |
---|
| 1167 | ! do nw=1,L_NSPECTI |
---|
| 1168 | ! write(117,*) OLR_nu(1,nw) |
---|
| 1169 | ! enddo |
---|
| 1170 | ! close(117) |
---|
| 1171 | ! |
---|
| 1172 | ! open(127,file='OSRnu.out') |
---|
| 1173 | ! do nw=1,L_NSPECTV |
---|
| 1174 | ! write(127,*) OSR_nu(1,nw) |
---|
| 1175 | ! enddo |
---|
| 1176 | ! close(127) |
---|
| 1177 | ! endif |
---|
| 1178 | |
---|
| 1179 | ! OLR vs altitude: do it as a .txt file. |
---|
| 1180 | OLRz=.false. |
---|
| 1181 | if(OLRz)then |
---|
| 1182 | print*,'saving IR vertical flux for OLRz...' |
---|
| 1183 | open(118,file='OLRz_plevs.out') |
---|
| 1184 | open(119,file='OLRz.out') |
---|
| 1185 | do l=1,L_NLAYRAD |
---|
| 1186 | write(118,*) plevrad(2*l) |
---|
| 1187 | do nw=1,L_NSPECTI |
---|
[3195] | 1188 | write(119,*) fluxupi_nu(l,nw) |
---|
[3184] | 1189 | enddo |
---|
[3195] | 1190 | enddo |
---|
[3184] | 1191 | close(118) |
---|
| 1192 | close(119) |
---|
| 1193 | endif |
---|
| 1194 | |
---|
| 1195 | endif |
---|
| 1196 | |
---|
| 1197 | ! See physiq.F for explanations about CLFvarying. This is temporary. |
---|
| 1198 | if (lastcall) then |
---|
| 1199 | IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi ) |
---|
| 1200 | IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv ) |
---|
| 1201 | !$OMP BARRIER |
---|
| 1202 | !$OMP MASTER |
---|
| 1203 | IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref ) |
---|
| 1204 | IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref ) |
---|
| 1205 | IF( ALLOCATED( wrefvar ) ) DEALLOCATE( wrefvar ) |
---|
| 1206 | IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref ) |
---|
| 1207 | IF( ALLOCATED( gweight ) ) DEALLOCATE( gweight ) |
---|
| 1208 | !$OMP END MASTER |
---|
| 1209 | !$OMP BARRIER |
---|
| 1210 | IF ( ALLOCATED(reffrad)) DEALLOCATE(reffrad) |
---|
| 1211 | IF ( ALLOCATED(nueffrad)) DEALLOCATE(nueffrad) |
---|
| 1212 | endif |
---|
| 1213 | |
---|
| 1214 | |
---|
| 1215 | end subroutine callcorrk |
---|
| 1216 | |
---|
| 1217 | END MODULE callcorrk_mod |
---|