[3560] | 1 | MODULE MP2M_METHODS |
---|
| 2 | !============================================================================ |
---|
| 3 | ! |
---|
| 4 | ! Purpose |
---|
| 5 | ! ------- |
---|
| 6 | ! Model miscellaneous methods module. |
---|
| 7 | ! |
---|
| 8 | ! The module contains miscellaneous methods used in the haze of the model. |
---|
| 9 | ! The module contains nine methods: |
---|
| 10 | ! - mm_lambda_air |
---|
| 11 | ! - mm_eta_air |
---|
| 12 | ! - mm_ps2s |
---|
| 13 | ! - mm_qmean |
---|
| 14 | ! - mm_get_btk |
---|
| 15 | ! - mm_get_kco |
---|
| 16 | ! - mm_get_kfm |
---|
| 17 | ! |
---|
| 18 | ! Authors |
---|
| 19 | ! ------- |
---|
| 20 | ! B. de Batz de Trenquelléon, J. Burgalat (11/2024) |
---|
| 21 | ! |
---|
| 22 | !============================================================================ |
---|
| 23 | |
---|
| 24 | USE MP2M_MPREC |
---|
| 25 | USE MP2M_GLOBALS |
---|
| 26 | USE LINT_DSET |
---|
| 27 | USE LINT_LOCATORS |
---|
| 28 | IMPLICIT NONE |
---|
| 29 | |
---|
| 30 | PRIVATE |
---|
| 31 | |
---|
| 32 | PUBLIC :: mm_lambda_air, mm_eta_air, mm_ps2s, mm_qmean, mm_get_btk, mm_get_kfm, mm_get_kco |
---|
| 33 | |
---|
| 34 | |
---|
| 35 | CONTAINS |
---|
| 36 | |
---|
| 37 | !============================================================================ |
---|
| 38 | ! GENERAL METHODS |
---|
| 39 | !============================================================================ |
---|
| 40 | |
---|
| 41 | ELEMENTAL FUNCTION mm_lambda_air(T,P) RESULT(res) |
---|
| 42 | !! Get the air mean free path at given temperature and pressure. |
---|
| 43 | !! |
---|
| 44 | REAL(kind=mm_wp), INTENT(in) :: T ! Temperature (K). |
---|
| 45 | REAL(kind=mm_wp), INTENT(in) :: P ! Pressure level (Pa). |
---|
| 46 | REAL(kind=mm_wp) :: res ! Air mean free path (m). |
---|
| 47 | |
---|
| 48 | res = (mm_kboltz*T) / (dsqrt(2._mm_wp)*mm_pi*(2._mm_wp*mm_air_rad)**2*P) |
---|
| 49 | |
---|
| 50 | RETURN |
---|
| 51 | END FUNCTION mm_lambda_air |
---|
| 52 | |
---|
| 53 | |
---|
| 54 | ELEMENTAL FUNCTION mm_eta_air(T) RESULT (res) |
---|
| 55 | !! Get the air dynamical viscosity at a given temperature using Sutherland method. |
---|
| 56 | !! |
---|
| 57 | REAL(kind=mm_wp), INTENT(in) :: T ! Temperature (K). |
---|
| 58 | REAL(kind=mm_wp) :: res ! Air viscosity at given temperature (Pa.s-1). |
---|
| 59 | |
---|
| 60 | REAL(kind=mm_wp), PARAMETER :: eta0 = 1.74e-5_mm_wp |
---|
| 61 | REAL(kind=mm_wp), PARAMETER :: Tsut = 109._mm_wp |
---|
| 62 | REAL(kind=mm_wp), PARAMETER :: Tref = 293._mm_wp |
---|
| 63 | |
---|
| 64 | res = eta0 * dsqrt(T/Tref) * ((1._mm_wp + Tsut/Tref) / (1._mm_wp + Tsut/T)) |
---|
| 65 | |
---|
| 66 | RETURN |
---|
| 67 | END FUNCTION mm_eta_air |
---|
| 68 | |
---|
| 69 | |
---|
| 70 | !============================================================================ |
---|
| 71 | ! AEROSOL COAGULATION METHODS |
---|
| 72 | !============================================================================ |
---|
| 73 | |
---|
| 74 | FUNCTION mm_ps2s(rcs,k,flow) RESULT(res) |
---|
| 75 | !! Get the proportion of aerosols that remains in the spherical mode during SS coagulation. |
---|
| 76 | !! |
---|
| 77 | !! From __k__ and __flow__ values, the method selects one of the four probability datasets |
---|
| 78 | !! in mm_globals(module) module (for instance mm_pco0p) and interpolates linearly probability |
---|
| 79 | !! for the given value of __rcs__, __T__ and __P__. |
---|
| 80 | !! |
---|
| 81 | !! @Warning |
---|
| 82 | !! Here, the method assumes the datasets define the probability for __spherical__ particles to |
---|
| 83 | !! be transferred in the __fractal__ mode, but returns the proportion of particles that remains |
---|
| 84 | !! in the mode (which is expected by MP2M model). |
---|
| 85 | !! |
---|
| 86 | ! Characteristic radius of the spherical size-distribution (m). |
---|
| 87 | REAL(kind=mm_wp), INTENT(in) :: rcs |
---|
| 88 | ! Order of the moment (0 or 3 expected). |
---|
| 89 | INTEGER, INTENT(in) :: k |
---|
| 90 | ! Flow regime indicator (0: Continuous - Kn << 1, 1: Free-Molecular - Kn >> 1). |
---|
| 91 | INTEGER, INTENT(in) :: flow |
---|
| 92 | |
---|
| 93 | ! Proportion of spherical particles that stay in the spherical mode during SS coagulation. |
---|
| 94 | REAL(kind=mm_wp) :: res |
---|
| 95 | |
---|
| 96 | ! Local variable. |
---|
| 97 | TYPE(dset1d), POINTER :: pp |
---|
| 98 | |
---|
| 99 | res = 1._mm_wp |
---|
| 100 | IF (rcs <= 0.0_mm_wp .OR. .NOT.mm_w_ps2s) RETURN |
---|
| 101 | |
---|
| 102 | SELECT CASE(k+flow) |
---|
| 103 | CASE(0) ; pp => mm_pco0p ! 0 = 0 + 0 -> M0 / CO |
---|
| 104 | CASE(1) ; pp => mm_pfm0p ! 1 = 0 + 1 -> M0 / FM |
---|
| 105 | CASE(3) ; pp => mm_pco3p ! 3 = 3 + 0 -> M3 / CO |
---|
| 106 | CASE(4) ; pp => mm_pfm3p ! 4 = 3 + 1 -> M3 / FM |
---|
| 107 | CASE DEFAULT ; RETURN |
---|
| 108 | END SELECT |
---|
| 109 | |
---|
| 110 | IF (.NOT.hdcd_lint_dset(rcs,pp,locate_reg_ext,res)) THEN |
---|
| 111 | WRITE(*,'(a)') "mp2m_methods:ps2s_sc: Cannot interpolate transfert probability" |
---|
| 112 | call EXIT(10) |
---|
| 113 | ELSE |
---|
| 114 | ! Sanity check: bound probability value between 0 and 1. |
---|
| 115 | res = MAX(0.0_mm_wp,MIN(res,1.0_mm_wp)) |
---|
| 116 | ! We have interpolated f = 1 - p and we need p ! |
---|
| 117 | res = 1._mm_wp - res |
---|
| 118 | ENDIF |
---|
| 119 | END FUNCTION mm_ps2s |
---|
| 120 | |
---|
| 121 | |
---|
| 122 | FUNCTION mm_qmean(rc1,rc2,order,modes,T) RESULT(res) |
---|
| 123 | !! Get the electric correction for coagulation kernel. |
---|
| 124 | !! |
---|
| 125 | !! The method computes the eletric charging correction to apply to the coagulation |
---|
| 126 | !! kernel as a function of the temperature and the characteristic radius of the |
---|
| 127 | !! mode involved in the coagulation. |
---|
| 128 | !! Here the electric charging correction is computed using linear interpolation from |
---|
| 129 | !! pre-tabulated values. |
---|
| 130 | !! |
---|
| 131 | !! @Warning: |
---|
| 132 | !! Modes are referred by a two letters uppercase string with the combination of: |
---|
| 133 | !! - S : spherical mode |
---|
| 134 | !! - F : fractal mode |
---|
| 135 | !! |
---|
| 136 | REAL(kind=mm_wp), INTENT(in) :: rc1 ! Characteristic radius of the first mode (m). |
---|
| 137 | REAL(kind=mm_wp), INTENT(in) :: rc2 ! Characteristic radius of the the second mode (m). |
---|
| 138 | INTEGER, INTENT(in) :: order ! Moment's order (0 or 3 expected). |
---|
| 139 | CHARACTER(len=2), INTENT(in) :: modes ! Interaction mode (combination of [S,F]). |
---|
| 140 | REAL(kind=mm_wp), INTENT(in) :: T ! Temperature (K). |
---|
| 141 | |
---|
| 142 | ! Electric charging correction. |
---|
| 143 | REAL(kind=mm_wp) :: res |
---|
| 144 | |
---|
| 145 | ! Local variable. |
---|
| 146 | INTEGER :: chx |
---|
| 147 | REAL(kind=mm_wp) :: r_tmp, t_tmp |
---|
| 148 | |
---|
| 149 | chx = 0 |
---|
| 150 | IF (.NOT.mm_w_qe) THEN |
---|
| 151 | res = 1._mm_wp |
---|
| 152 | RETURN |
---|
| 153 | ENDIF |
---|
| 154 | |
---|
| 155 | IF (SCAN(modes(1:1),"sS") /= 0) chx = chx + 1 |
---|
| 156 | IF (SCAN(modes(2:2),"sS") /= 0) chx = chx + 1 |
---|
| 157 | IF (SCAN(modes(1:1),"fF") /= 0) chx = chx + 3 |
---|
| 158 | IF (SCAN(modes(2:2),"fF") /= 0) chx = chx + 3 |
---|
| 159 | |
---|
| 160 | chx = chx + order |
---|
| 161 | |
---|
| 162 | SELECT CASE(chx) |
---|
| 163 | ! M0/SS: |
---|
| 164 | CASE(2) |
---|
| 165 | res = 1._mm_wp |
---|
| 166 | ! M0/SF: |
---|
| 167 | CASE(4) |
---|
| 168 | ! Fix max values of input parameters |
---|
| 169 | r_tmp = MAX(MIN(log(rc1),mm_qbsf0_e(2,2)),mm_qbsf0_e(2,1)) |
---|
| 170 | t_tmp = MAX(MIN(T,mm_qbsf0_e(1,2)),mm_qbsf0_e(1,1)) |
---|
| 171 | ! Interpolates values |
---|
| 172 | IF (.NOT.hdcd_lint_dset(t_tmp,r_tmp,mm_qbsf0,locate_reg,res)) THEN |
---|
| 173 | WRITE(*,'(a)') "mp2m_methods:mm_qmean: Cannot interpolate mean Qelec" |
---|
| 174 | call EXIT(10) |
---|
| 175 | ENDIF |
---|
| 176 | ! M3/SS: |
---|
| 177 | CASE(5) |
---|
| 178 | res = 1._mm_wp |
---|
| 179 | ! M0/FF: |
---|
| 180 | CASE(6) |
---|
| 181 | ! Fix max values of input parameters |
---|
| 182 | r_tmp = MAX(MIN(log(rc1),mm_qbff0_e(2,2)),mm_qbff0_e(2,1)) |
---|
| 183 | t_tmp = MAX(MIN(T,mm_qbff0_e(1,2)),mm_qbff0_e(1,1)) |
---|
| 184 | ! Interpolates values |
---|
| 185 | IF (.NOT.hdcd_lint_dset(t_tmp,r_tmp,mm_qbff0,locate_reg,res)) THEN |
---|
| 186 | WRITE(*,'(a)') "mp2m_methods:mm_qmean: Cannot interpolate mean Qelec" |
---|
| 187 | call EXIT(10) |
---|
| 188 | ENDIF |
---|
| 189 | ! M3/SF: |
---|
| 190 | CASE(7) |
---|
| 191 | ! Fix max values of input parameters |
---|
| 192 | r_tmp = MAX(MIN(log(rc1),mm_qbsf3_e(2,2)),mm_qbsf3_e(2,1)) |
---|
| 193 | t_tmp = MAX(MIN(T,mm_qbsf3_e(1,2)),mm_qbsf3_e(1,1)) |
---|
| 194 | ! Interpolates values |
---|
| 195 | IF (.NOT.hdcd_lint_dset(t_tmp,r_tmp,mm_qbsf3,locate_reg,res)) THEN |
---|
| 196 | WRITE(*,'(a)') "mp2m_methods:mm_qmean: Cannot interpolate mean Qelec" |
---|
| 197 | call EXIT(10) |
---|
| 198 | ENDIF |
---|
| 199 | ! Anything else: |
---|
| 200 | CASE DEFAULT |
---|
| 201 | res = 1._mm_wp |
---|
| 202 | END SELECT |
---|
| 203 | |
---|
| 204 | RETURN |
---|
| 205 | END FUNCTION mm_qmean |
---|
| 206 | |
---|
| 207 | |
---|
| 208 | PURE FUNCTION mm_get_btk(t,k) RESULT(res) |
---|
| 209 | !! Get the value of the Free-Molecular regime coagulation pre-factor b^t_k. |
---|
| 210 | !! |
---|
| 211 | !! @Note |
---|
| 212 | !! __k__ can only be one of the following value: 0 or 3. __t__ ranges only from 1 to 5. |
---|
| 213 | !! |
---|
| 214 | INTEGER, INTENT(in) :: t ! Index of the b^t_k coefficient. |
---|
| 215 | INTEGER, INTENT(in) :: k ! Moment order of the b^t_k coefficient. |
---|
| 216 | |
---|
| 217 | ! b^t_k coefficient. |
---|
| 218 | REAL(kind=mm_wp) :: res |
---|
| 219 | |
---|
| 220 | ! Sanity check: |
---|
| 221 | IF (.NOT.(k == 3 .OR. k == 0)) THEN |
---|
| 222 | res = 0._mm_wp |
---|
| 223 | ENDIF |
---|
| 224 | |
---|
| 225 | ! Sanity check: |
---|
| 226 | IF (t > 5 .OR. t < 1) THEN |
---|
| 227 | res = 0._mm_wp |
---|
| 228 | ENDIF |
---|
| 229 | |
---|
| 230 | IF (k == 0) THEN |
---|
| 231 | res = mm_bt0(t) |
---|
| 232 | |
---|
| 233 | ELSE IF (k == 3) THEN |
---|
| 234 | res = mm_bt3(t) |
---|
| 235 | ENDIF |
---|
| 236 | |
---|
| 237 | RETURN |
---|
| 238 | END FUNCTION mm_get_btk |
---|
| 239 | |
---|
| 240 | |
---|
| 241 | ELEMENTAL FUNCTION mm_get_kco(T) RESULT(res) |
---|
| 242 | !! Get the Continuous regime (Kn << 1) thermodynamics pre-factor of the coagulation kernel. |
---|
| 243 | !! |
---|
| 244 | REAL(kind=mm_wp), INTENT(in) :: T ! Temperature (K). |
---|
| 245 | REAL(kind=mm_wp) :: res ! Continuous regime thermodynamics pre-factor (m3.s-1). |
---|
| 246 | |
---|
| 247 | res = (2._mm_wp*mm_kboltz*T) / (3._mm_wp*mm_eta_air(T)) |
---|
| 248 | |
---|
| 249 | RETURN |
---|
| 250 | END FUNCTION mm_get_kco |
---|
| 251 | |
---|
| 252 | |
---|
| 253 | ELEMENTAL FUNCTION mm_get_kfm(T) RESULT(res) |
---|
| 254 | !! Get the Free-Molecular regime (Kn >> 1) thermodynamics pre-factor of the coagulation kernel. |
---|
| 255 | !! |
---|
| 256 | REAL(kind=mm_wp), INTENT(in) :: T ! Temperature (K). |
---|
| 257 | REAL(kind=mm_wp) :: res ! Free-Molecular regime thermodynamics pre-factor (m^(5/2).s-1). |
---|
| 258 | |
---|
| 259 | res = (6._mm_wp*mm_kboltz*T / mm_rhoaer)**(0.5_mm_wp) |
---|
| 260 | |
---|
| 261 | RETURN |
---|
| 262 | END FUNCTION mm_get_kfm |
---|
| 263 | |
---|
| 264 | END MODULE MP2M_METHODS |
---|