| 1 | MODULE MP2M_CLOUDS_METHODS |
|---|
| 2 | !============================================================================ |
|---|
| 3 | ! |
|---|
| 4 | ! Purpose |
|---|
| 5 | ! ------- |
|---|
| 6 | ! Cloud model miscellaneous methods module. |
|---|
| 7 | ! |
|---|
| 8 | ! The module contains miscellaneous methods used in the clouds of the model. |
|---|
| 9 | ! The module contains four interfaces (8 methods): |
|---|
| 10 | ! - mm_sigX | Compute surface tension |
|---|
| 11 | ! - mm_fshape | Compute shape factor |
|---|
| 12 | ! - mm_qsatX | Compute saturation molar mixing ratio |
|---|
| 13 | ! - mm_LheatX | Compute latent heat released |
|---|
| 14 | ! |
|---|
| 15 | ! Authors |
|---|
| 16 | ! ------- |
|---|
| 17 | ! B. de Batz de Trenquelléon (10/2025) |
|---|
| 18 | ! |
|---|
| 19 | !============================================================================ |
|---|
| 20 | |
|---|
| 21 | USE MP2M_MPREC |
|---|
| 22 | USE MP2M_GLOBALS |
|---|
| 23 | USE LINT_DSET |
|---|
| 24 | USE LINT_LOCATORS |
|---|
| 25 | IMPLICIT NONE |
|---|
| 26 | |
|---|
| 27 | PRIVATE |
|---|
| 28 | |
|---|
| 29 | PUBLIC :: mm_sigX, mm_fshape, mm_qsatX, mm_LheatX |
|---|
| 30 | |
|---|
| 31 | !============================================================================ |
|---|
| 32 | ! INTERFACES |
|---|
| 33 | !============================================================================ |
|---|
| 34 | |
|---|
| 35 | !! Interface to surface tension computation functions. |
|---|
| 36 | !! The method computes the surface tension of a given species at given temperature(s). |
|---|
| 37 | INTERFACE mm_sigX |
|---|
| 38 | MODULE PROCEDURE sigX_sc,sigX_ve |
|---|
| 39 | END INTERFACE mm_sigX |
|---|
| 40 | |
|---|
| 41 | !! Interface to shape factor computation functions. |
|---|
| 42 | !! The method computes the shape factor for the heterogeneous nucleation. |
|---|
| 43 | INTERFACE mm_fshape |
|---|
| 44 | MODULE PROCEDURE fshape_sc,fshape_ve |
|---|
| 45 | END INTERFACE mm_fshape |
|---|
| 46 | |
|---|
| 47 | !! Interface to saturation molar mixing ratio computation functions. |
|---|
| 48 | !! The method computes the molar mixing ratio at saturation of a given species at given temperature(s) |
|---|
| 49 | !! and pressure level(s). |
|---|
| 50 | INTERFACE mm_qsatX |
|---|
| 51 | MODULE PROCEDURE qsatX_sc,qsatX_ve |
|---|
| 52 | END INTERFACE mm_qsatX |
|---|
| 53 | |
|---|
| 54 | !! Interface to latent heat computation functions. |
|---|
| 55 | !! The method computes the latent heat released of a given species at given temperature(s). |
|---|
| 56 | INTERFACE mm_LheatX |
|---|
| 57 | MODULE PROCEDURE LheatX_sc,LheatX_ve |
|---|
| 58 | END INTERFACE mm_LheatX |
|---|
| 59 | |
|---|
| 60 | CONTAINS |
|---|
| 61 | |
|---|
| 62 | !============================================================================ |
|---|
| 63 | ! CLOUD CONDENSATION NUCLEI METHODS |
|---|
| 64 | !============================================================================ |
|---|
| 65 | |
|---|
| 66 | ! FUNCTION mm_sigX(temp,xESP): |
|---|
| 67 | ! xESP must always be given as a scalar. If temp is given as a vector, then the method |
|---|
| 68 | ! computes the result for all the temperatures and returns a vector of same size than temp. |
|---|
| 69 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 70 | FUNCTION sigX_sc(temp,xESP) RESULT(res) |
|---|
| 71 | !! Get the surface tension between a given species and the air (scalar). |
|---|
| 72 | !! The method computes the surface tension equation as given in Reid et al. (1986) p. 637 (eq. 12-3.6). |
|---|
| 73 | !! |
|---|
| 74 | REAL(kind=mm_wp), INTENT(in) :: temp ! Temperature (K). |
|---|
| 75 | TYPE(mm_esp), INTENT(in) :: xESP ! Specie properties. |
|---|
| 76 | REAL(kind=mm_wp) :: res ! Surface tension (N.m-1). |
|---|
| 77 | |
|---|
| 78 | ! Local variables: |
|---|
| 79 | REAL(kind=mm_wp) :: Tr, Tbr, sig0, sig |
|---|
| 80 | |
|---|
| 81 | Tr = MIN(temp/xESP%Tc,0.99_mm_wp) |
|---|
| 82 | Tbr = xESP%Tb/xESP%Tc |
|---|
| 83 | |
|---|
| 84 | sig0 = 0.1196_mm_wp*(1._mm_wp+(Tbr*dlog(xESP%pc/1.01325_mm_wp))/(1._mm_wp-Tbr))-0.279_mm_wp |
|---|
| 85 | |
|---|
| 86 | sig = xESP%pc**(2._mm_wp/3._mm_wp) * xESP%Tc**(1._mm_wp/3._mm_wp) * sig0 * (1._mm_wp-Tr)**(11._mm_wp/9._mm_wp) |
|---|
| 87 | |
|---|
| 88 | ! Convertion (dyn/cm) --> (N/m): |
|---|
| 89 | res = sig*1e-3_mm_wp |
|---|
| 90 | RETURN |
|---|
| 91 | END FUNCTION sigX_sc |
|---|
| 92 | |
|---|
| 93 | FUNCTION sigX_ve(temp,xESP) RESULT(res) |
|---|
| 94 | !! Get the surface tension between a given species and the air (vector). |
|---|
| 95 | !! The method computes the surface tension equation as given in Reid et al. (1986) p. 637 (eq. 12-3.6). |
|---|
| 96 | !! |
|---|
| 97 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: temp ! Temperatures (K). |
|---|
| 98 | TYPE(mm_esp), INTENT(in) :: xESP ! Specie properties. |
|---|
| 99 | REAL(kind=mm_wp), DIMENSION(SIZE(temp)) :: res ! Surface tensions (N.m-1). |
|---|
| 100 | |
|---|
| 101 | ! Local variables: |
|---|
| 102 | INTEGER :: i |
|---|
| 103 | REAL(kind=mm_wp) :: Tr, Tbr, sig0, sig |
|---|
| 104 | |
|---|
| 105 | Tbr = xESP%Tb/xESP%Tc |
|---|
| 106 | |
|---|
| 107 | sig0 = 0.1196_mm_wp*(1._mm_wp+(Tbr*dlog(xESP%pc/1.01325_mm_wp))/(1._mm_wp-Tbr))-0.279_mm_wp |
|---|
| 108 | |
|---|
| 109 | DO i = 1, SIZE(temp) |
|---|
| 110 | Tr = MIN(temp(i)/xESP%Tc,0.99_mm_wp) |
|---|
| 111 | sig = xESP%pc**(2._mm_wp/3._mm_wp) * xESP%Tc**(1._mm_wp/3._mm_wp) * sig0 * (1._mm_wp-Tr)**(11._mm_wp/9._mm_wp) |
|---|
| 112 | |
|---|
| 113 | ! Convertion (dyn/cm) --> (N/m): |
|---|
| 114 | res(i) = sig*1e-3_mm_wp |
|---|
| 115 | ENDDO |
|---|
| 116 | RETURN |
|---|
| 117 | END FUNCTION sigX_ve |
|---|
| 118 | |
|---|
| 119 | |
|---|
| 120 | ! FUNCTION mm_fshape(m,x): |
|---|
| 121 | ! Where m is cosine of the contact angle and x the curvature radius. m must always be |
|---|
| 122 | ! given as a scalar. If x is given as a vector, then the method compute the result for each |
|---|
| 123 | ! value of x and and returns a vector of same size than x. |
|---|
| 124 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 125 | FUNCTION fshape_sc(m,x) RESULT(res) |
|---|
| 126 | !! Get the shape factor of a ccn (scalar). |
|---|
| 127 | !! The method computes the shape factor for the heterogeneous nucleation on a fractal particle. |
|---|
| 128 | !! Details about the shape factor can be found in Fletcher et al. (1958). |
|---|
| 129 | !! |
|---|
| 130 | REAL(kind=mm_wp), INTENT(in) :: m ! Cosine of the contact angle. |
|---|
| 131 | REAL(kind=mm_wp), INTENT(in) :: x ! Curvature radius (r_particle/r*). |
|---|
| 132 | REAL(kind=mm_wp) :: res ! Shape factor value. |
|---|
| 133 | |
|---|
| 134 | ! Local variables: |
|---|
| 135 | REAL(kind=mm_wp) :: phi, a, b, c |
|---|
| 136 | |
|---|
| 137 | IF (x > 3000._mm_wp) THEN |
|---|
| 138 | res = ((2._mm_wp+m) * (1._mm_wp-m)**2) / 4._mm_wp |
|---|
| 139 | ELSE |
|---|
| 140 | phi = dsqrt(1._mm_wp-2._mm_wp*m*x+x**2) |
|---|
| 141 | a = 1._mm_wp + ((1._mm_wp-m*x)/phi)**3 |
|---|
| 142 | b = (x**3) * (2._mm_wp - 3._mm_wp*(x-m)/phi + ((x-m)/phi)**3) |
|---|
| 143 | c = 3._mm_wp*m*(x**2) * ((x-m)/phi-1._mm_wp) |
|---|
| 144 | res = 0.5_mm_wp*(a + b + c) |
|---|
| 145 | ENDIF |
|---|
| 146 | RETURN |
|---|
| 147 | END FUNCTION fshape_sc |
|---|
| 148 | |
|---|
| 149 | FUNCTION fshape_ve(m,x) RESULT(res) |
|---|
| 150 | !! Get the shape factor of a ccn (vector). |
|---|
| 151 | !! The method computes the shape factor for the heterogeneous nucleation on a fractal particle. |
|---|
| 152 | !! Details about the shape factor can be found in Fletcher et al. (1958). |
|---|
| 153 | !! |
|---|
| 154 | REAL(kind=mm_wp), INTENT(in) :: m ! Cosine of the contact angle. |
|---|
| 155 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: x ! Curvature radii (r_particle/r*). |
|---|
| 156 | REAL(kind=mm_wp), DIMENSION(SIZE(x)) :: res ! Shape factor value. |
|---|
| 157 | |
|---|
| 158 | ! Local variables: |
|---|
| 159 | REAL(kind=mm_wp), DIMENSION(SIZE(x)) :: phi, a, b, c |
|---|
| 160 | |
|---|
| 161 | WHERE(x > 3000._mm_wp) |
|---|
| 162 | res = ((2._mm_wp+m) * (1._mm_wp-m)**2) / 4._mm_wp |
|---|
| 163 | ELSEWHERE |
|---|
| 164 | phi = dsqrt(1._mm_wp-2._mm_wp*m*x+x**2) |
|---|
| 165 | a = 1._mm_wp + ((1._mm_wp-m*x)/phi)**3 |
|---|
| 166 | b = (x**3) * (2._mm_wp - 3._mm_wp*(x-m)/phi + ((x-m)/phi)**3) |
|---|
| 167 | c = 3._mm_wp*m*(x**2) * ((x-m)/phi-1._mm_wp) |
|---|
| 168 | res = 0.5_mm_wp*(a + b + c) |
|---|
| 169 | ENDWHERE |
|---|
| 170 | RETURN |
|---|
| 171 | END FUNCTION fshape_ve |
|---|
| 172 | |
|---|
| 173 | !============================================================================ |
|---|
| 174 | ! CONDENSATION METHODS |
|---|
| 175 | !============================================================================ |
|---|
| 176 | |
|---|
| 177 | ! FUNCTION mm_qsatX(temp,pres,xESP) |
|---|
| 178 | ! xESP must always be given as a scalar. If temp and pres are given as a vector, |
|---|
| 179 | ! then the method computes the result for each couple of (temperature, pressure) and returns |
|---|
| 180 | ! a vector of same size than temp. |
|---|
| 181 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 182 | FUNCTION qsatX_sc(temp,pres,xESP) RESULT(res) |
|---|
| 183 | !! Get the molar mixing ratio of a given species at saturation (scalar). |
|---|
| 184 | !! Compute saturation molar mixing ratio for condensable tracers. |
|---|
| 185 | !! |
|---|
| 186 | !! @warning: |
|---|
| 187 | !! The formula depends on the species (and the reference)! |
|---|
| 188 | !! |
|---|
| 189 | REAL(kind=mm_wp), INTENT(in) :: temp ! Temperature (K). |
|---|
| 190 | REAL(kind=mm_wp), INTENT(in) :: pres ! Pressure level (Pa). |
|---|
| 191 | TYPE(mm_esp), INTENT(in) :: xESP ! Specie properties. |
|---|
| 192 | REAL(kind=mm_wp) :: res ! Saturation molar mixing ratio (mol/mol). |
|---|
| 193 | |
|---|
| 194 | ! Local variables: |
|---|
| 195 | REAL(kind=mm_wp) :: fp, fsat |
|---|
| 196 | |
|---|
| 197 | fp = (1.0e5 / pres) |
|---|
| 198 | |
|---|
| 199 | ! C2H2, C6H6, HCN: Fray & Schmitt (2009) |
|---|
| 200 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 201 | if ((xESP%name == 'C2H2').OR.(xESP%name == 'C6H6').OR.(xESP%name == 'HCN')) then |
|---|
| 202 | fsat = xESP%a0_sat + xESP%a1_sat/temp + xESP%a2_sat/temp**2 + xESP%a3_sat/temp**3 + & |
|---|
| 203 | xESP%a4_sat/temp**4 + xESP%a5_sat/temp**5 + xESP%a6_sat/temp**6 |
|---|
| 204 | |
|---|
| 205 | fsat = exp(fsat) |
|---|
| 206 | |
|---|
| 207 | ! C2H6: Dykyj et al. (1999) |
|---|
| 208 | ! C4H2: Orton et al. (2014) |
|---|
| 209 | !~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 210 | else if ((xESP%name == 'C2H6').OR.(xESP%name == 'C4H2')) then |
|---|
| 211 | fsat = xESP%a0_sat + xESP%a1_sat/(temp+xESP%a2_sat) |
|---|
| 212 | |
|---|
| 213 | fsat = 10.**(fsat) |
|---|
| 214 | |
|---|
| 215 | ! Otherwise: error |
|---|
| 216 | !~~~~~~~~~~~~~~~~~ |
|---|
| 217 | else |
|---|
| 218 | write(*,'(a)') "[qsatX_sc] This is a fatal error..." |
|---|
| 219 | write(*,'(a)') "Species no found for condensation!" |
|---|
| 220 | call exit(111) |
|---|
| 221 | endif |
|---|
| 222 | |
|---|
| 223 | res = fp * fsat |
|---|
| 224 | RETURN |
|---|
| 225 | END FUNCTION qsatX_sc |
|---|
| 226 | |
|---|
| 227 | FUNCTION qsatX_ve(temp,pres,xESP) RESULT(res) |
|---|
| 228 | !! Get the molar mixing ratio of a given species at saturation (vector). |
|---|
| 229 | !! Compute saturation molar mixing ratio for condensable tracers. |
|---|
| 230 | !! |
|---|
| 231 | !! @warning: |
|---|
| 232 | !! The formula depends on the species (and the reference)! |
|---|
| 233 | !! |
|---|
| 234 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: temp ! Temperatures (K). |
|---|
| 235 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: pres ! Pressure levels (Pa). |
|---|
| 236 | TYPE(mm_esp), INTENT(in) :: xESP ! Specie properties. |
|---|
| 237 | REAL(kind=mm_wp), DIMENSION(SIZE(temp)) :: res ! Saturation molar mixing ratio (mol/mol). |
|---|
| 238 | |
|---|
| 239 | REAL(kind=mm_wp), DIMENSION(SIZE(temp)) :: fp, fsat |
|---|
| 240 | |
|---|
| 241 | fp = (1.0e5 / pres) |
|---|
| 242 | |
|---|
| 243 | ! C2H2, C6H6, HCN: Fray & Schmitt (2009) |
|---|
| 244 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 245 | if ((xESP%name == 'C2H2').OR.(xESP%name == 'C6H6').OR.(xESP%name == 'HCN')) then |
|---|
| 246 | fsat = xESP%a0_sat + xESP%a1_sat/temp + xESP%a2_sat/temp**2 + xESP%a3_sat/temp**3 + & |
|---|
| 247 | xESP%a4_sat/temp**4 + xESP%a5_sat/temp**5 + xESP%a6_sat/temp**6 |
|---|
| 248 | |
|---|
| 249 | fsat = exp(fsat) |
|---|
| 250 | |
|---|
| 251 | ! C2H6: Dykyj et al. (1999) |
|---|
| 252 | ! C4H2: Orton et al. (2014) |
|---|
| 253 | !~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 254 | else if ((xESP%name == 'C2H6').OR.(xESP%name == 'C4H2')) then |
|---|
| 255 | fsat = xESP%a0_sat + xESP%a1_sat/(temp+xESP%a2_sat) |
|---|
| 256 | |
|---|
| 257 | fsat = 10.**(fsat) |
|---|
| 258 | |
|---|
| 259 | ! Otherwise: error |
|---|
| 260 | !~~~~~~~~~~~~~~~~~ |
|---|
| 261 | else |
|---|
| 262 | write(*,'(a)') "[qsatX_ve] This is a fatal error..." |
|---|
| 263 | write(*,'(a)') "Species no found for condensation!" |
|---|
| 264 | call exit(111) |
|---|
| 265 | endif |
|---|
| 266 | |
|---|
| 267 | res = fp * fsat |
|---|
| 268 | RETURN |
|---|
| 269 | END FUNCTION qsatX_ve |
|---|
| 270 | |
|---|
| 271 | |
|---|
| 272 | ! FUNCTION mm_LheatX(temp,xESP): |
|---|
| 273 | ! xESP must always be given as a scalar. If temp is given as a vector, then the method |
|---|
| 274 | ! computes the result for all the temperatures and returns a vector of same size than temp. |
|---|
| 275 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|---|
| 276 | FUNCTION LheatX_sc(temp,xESP) RESULT(res) |
|---|
| 277 | !! Compute latent heat of a given species at given temperature (scalar). |
|---|
| 278 | !! The method computes the latent heat equation as given in Reid et al. (1986) p. 220 (eq. 7-9.4). |
|---|
| 279 | !! |
|---|
| 280 | REAL(kind=mm_wp), INTENT(in) :: temp ! Temperature (K). |
|---|
| 281 | TYPE(mm_esp), INTENT(in) :: xESP ! Specie properties. |
|---|
| 282 | REAL(kind=mm_wp) :: res ! Latent heat of given species at given temperature (J.kg-1). |
|---|
| 283 | |
|---|
| 284 | ! Local variables: |
|---|
| 285 | REAL(kind=mm_wp) :: Tr, ftm |
|---|
| 286 | |
|---|
| 287 | Tr = temp / xESP%Tc |
|---|
| 288 | ftm = MAX(1._mm_wp - Tr,1.e-3_mm_wp) |
|---|
| 289 | |
|---|
| 290 | res = (7.08_mm_wp*ftm**0.354_mm_wp + 10.95_mm_wp*xESP%w*ftm**0.456_mm_wp) * mm_rgas * xESP%Tc / xESP%masmol |
|---|
| 291 | RETURN |
|---|
| 292 | END FUNCTION LheatX_sc |
|---|
| 293 | |
|---|
| 294 | FUNCTION LheatX_ve(temp,xESP) RESULT(res) |
|---|
| 295 | !! Compute latent heat of a given species at given temperature (vector). |
|---|
| 296 | !! The method computes the latent heat equation as given in Reid et al. (1986) p. 220 (eq. 7-9.4). |
|---|
| 297 | !! |
|---|
| 298 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: temp ! Temperatures (K). |
|---|
| 299 | TYPE(mm_esp), INTENT(in) :: xESP ! Specie properties. |
|---|
| 300 | REAL(kind=mm_wp), DIMENSION(SIZE(temp)) :: res ! Latent heat of given species at given temperatures (J.kg-1). |
|---|
| 301 | |
|---|
| 302 | ! Local variables: |
|---|
| 303 | INTEGER :: i |
|---|
| 304 | REAL(kind=mm_wp) :: Tr, ftm |
|---|
| 305 | |
|---|
| 306 | DO i=1,SIZE(temp) |
|---|
| 307 | Tr = temp(i) / xESP%Tc |
|---|
| 308 | ftm = MAX(1._mm_wp - Tr,1.e-3_mm_wp) |
|---|
| 309 | |
|---|
| 310 | res(i) = (7.08_mm_wp*ftm**0.354_mm_wp + 10.95_mm_wp*xESP%w*ftm**0.456_mm_wp) * & |
|---|
| 311 | mm_rgas * xESP%Tc / xESP%masmol |
|---|
| 312 | ENDDO |
|---|
| 313 | RETURN |
|---|
| 314 | END FUNCTION LheatX_ve |
|---|
| 315 | |
|---|
| 316 | END MODULE MP2M_CLOUDS_METHODS |
|---|