[3175] | 1 | SUBROUTINE vdifc(ngrid,nlay,nq,ppopsk, |
---|
| 2 | $ ptimestep,pcapcal,lecrit, |
---|
| 3 | $ pplay,pplev,pzlay,pzlev,pz0, |
---|
| 4 | $ pu,pv,ph,pq,pt,ptsrf,pemis,pqsurf, |
---|
| 5 | $ pdufi,pdvfi,pdhfi,pdqfi,pdtfi,pfluxsrf, |
---|
| 6 | $ pdudif,pdvdif,pdhdif,pdtsrf,pq2, |
---|
| 7 | $ pdqdif,pdqsdif,qsat_ch4,qsat_ch4_l1) |
---|
| 8 | |
---|
| 9 | use comgeomfi_h |
---|
| 10 | use datafile_mod, only: datadir |
---|
| 11 | implicit none |
---|
| 12 | |
---|
| 13 | c======================================================================= |
---|
| 14 | c |
---|
| 15 | c subject: |
---|
| 16 | c -------- |
---|
| 17 | c Turbulent diffusion (mixing) for potential T, U, V and tracer |
---|
| 18 | c |
---|
| 19 | c Shema implicite |
---|
| 20 | c On commence par rajouter au variables x la tendance physique |
---|
| 21 | c et on resoult en fait: |
---|
| 22 | c x(t+1) = x(t) + dt * (dx/dt)phys(t) + dt * (dx/dt)difv(t+1) |
---|
| 23 | c |
---|
| 24 | c author: |
---|
| 25 | c ------ |
---|
| 26 | c Hourdin/Forget/Fournier |
---|
| 27 | c======================================================================= |
---|
| 28 | |
---|
| 29 | c----------------------------------------------------------------------- |
---|
| 30 | c declarations: |
---|
| 31 | c ------------- |
---|
| 32 | |
---|
| 33 | #include "dimensions.h" |
---|
| 34 | #include "dimphys.h" |
---|
| 35 | #include "comcstfi.h" |
---|
| 36 | #include "callkeys.h" |
---|
| 37 | #include "surfdat.h" |
---|
| 38 | #include "tracer.h" |
---|
| 39 | |
---|
| 40 | c |
---|
| 41 | c arguments: |
---|
| 42 | c ---------- |
---|
| 43 | |
---|
| 44 | INTEGER ngrid,nlay |
---|
| 45 | REAL ptimestep |
---|
| 46 | REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 47 | REAL pzlay(ngrid,nlay),pzlev(ngrid,nlay+1) |
---|
| 48 | REAL pu(ngrid,nlay),pv(ngrid,nlay),ph(ngrid,nlay) |
---|
| 49 | REAL ptsrf(ngrid),pemis(ngrid) |
---|
| 50 | REAL pdufi(ngrid,nlay),pdvfi(ngrid,nlay),pdhfi(ngrid,nlay) |
---|
| 51 | REAL pdtfi(ngrid,nlay) |
---|
| 52 | REAL pt(ngrid,nlay) |
---|
| 53 | REAL pfluxsrf(ngrid) |
---|
| 54 | REAL pdudif(ngrid,nlay),pdvdif(ngrid,nlay),pdhdif(ngrid,nlay) |
---|
| 55 | REAL pdtsrf(ngrid),pcapcal(ngrid) |
---|
| 56 | REAL pq2(ngrid,nlay+1) |
---|
| 57 | REAL qsat_ch4(ngridmx) |
---|
| 58 | REAL qsat_co(ngridmx) |
---|
| 59 | REAL qsat_ch4_l1(ngridmx) |
---|
| 60 | REAL zq1temp_ch4(ngridmx) |
---|
| 61 | |
---|
| 62 | c Argument added for condensation: |
---|
| 63 | ! REAL n2ice (ngrid) |
---|
| 64 | REAL ppopsk(ngrid,nlay) |
---|
| 65 | logical lecrit |
---|
| 66 | REAL pz0 |
---|
| 67 | |
---|
| 68 | c Traceurs : |
---|
[3237] | 69 | integer nq |
---|
[3175] | 70 | REAL pqsurf(ngrid,nq) |
---|
[3237] | 71 | real pq(ngrid,nlay,nq), pdqfi(ngrid,nlay,nq) |
---|
| 72 | real pdqdif(ngrid,nlay,nq) |
---|
| 73 | real pdqdifeddy(ngrid,nlay,nq) |
---|
[3175] | 74 | real pdqsdif(ngrid,nq),pdqsdif1(ngrid,nq) |
---|
[3237] | 75 | |
---|
[3175] | 76 | c local: |
---|
| 77 | c ------ |
---|
| 78 | |
---|
| 79 | INTEGER ilev,ig,ilay,nlev |
---|
| 80 | |
---|
| 81 | REAL z4st,zdplanck(ngridmx) |
---|
| 82 | REAL zkv(ngridmx,nlayermx+1),zkh(ngridmx,nlayermx+1) |
---|
| 83 | REAL zcdv(ngridmx),zcdh(ngridmx),sat2(ngridmx) |
---|
| 84 | REAL zcdv_true(ngridmx),zcdh_true(ngridmx) |
---|
| 85 | REAL zu(ngridmx,nlayermx),zv(ngridmx,nlayermx) |
---|
| 86 | REAL zh(ngridmx,nlayermx),zt(ngridmx,nlayermx) |
---|
| 87 | REAL ztsrf2(ngridmx),sat(ngridmx),sat1(ngridmx) |
---|
| 88 | REAL z1(ngridmx),z2(ngridmx) |
---|
| 89 | REAL za(ngridmx,nlayermx),zb(ngridmx,nlayermx) |
---|
| 90 | REAL zb0(ngridmx,nlayermx) |
---|
| 91 | REAL zc(ngridmx,nlayermx),zd(ngridmx,nlayermx) |
---|
| 92 | REAL zcst1 |
---|
| 93 | REAL zu2 |
---|
| 94 | |
---|
| 95 | EXTERNAL SSUM,SCOPY |
---|
| 96 | REAL SSUM |
---|
| 97 | LOGICAL firstcall |
---|
| 98 | SAVE firstcall |
---|
| 99 | |
---|
| 100 | !!read fixed profile for kmix |
---|
| 101 | integer Nfine,ifine |
---|
| 102 | parameter(Nfine=701) |
---|
| 103 | character(len=100) :: file_path |
---|
| 104 | real,save :: levdat(Nfine),kmixdat(Nfine) |
---|
| 105 | real :: kmix_z(nlayermx) ! kmix from kmix_proffix |
---|
| 106 | |
---|
| 107 | c variable added for N2 condensation: |
---|
[3237] | 108 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
[3175] | 109 | REAL hh , zhcond(ngridmx,nlayermx) |
---|
| 110 | c REAL latcond,tcond1p4Pa |
---|
| 111 | REAL tcond1p4Pa |
---|
| 112 | REAL acond,bcond |
---|
| 113 | SAVE acond,bcond |
---|
| 114 | c DATA latcond,tcond1p4Pa/2.5e5,38/ |
---|
| 115 | DATA tcond1p4Pa/38/ |
---|
| 116 | |
---|
| 117 | c Tracers : |
---|
[3237] | 118 | c ~~~~~~~ |
---|
[3175] | 119 | INTEGER iq |
---|
| 120 | REAL zq(ngridmx,nlayermx,nqmx) |
---|
| 121 | REAL zq1temp_co(ngridmx) |
---|
| 122 | REAL rho(ngridmx) ! near surface air density |
---|
| 123 | DATA firstcall/.true./ |
---|
| 124 | |
---|
| 125 | c ** un petit test de coherence |
---|
| 126 | c -------------------------- |
---|
| 127 | |
---|
| 128 | IF (firstcall) THEN |
---|
| 129 | IF(ngrid.NE.ngridmx) THEN |
---|
| 130 | PRINT*,'STOP dans vdifc' |
---|
| 131 | PRINT*,'probleme de dimensions :' |
---|
| 132 | PRINT*,'ngrid =',ngrid |
---|
| 133 | PRINT*,'ngridmx =',ngridmx |
---|
| 134 | STOP |
---|
| 135 | ENDIF |
---|
| 136 | c To compute: Tcond= 1./(bcond-acond*log(.7143*p)) (p in pascal) |
---|
| 137 | PRINT*,'In vdifc: Tcond(P=1.4Pa)=',tcond1p4Pa,' Lcond=',lw_n2 |
---|
| 138 | bcond=1./tcond1p4Pa |
---|
| 139 | acond=r/lw_n2 |
---|
| 140 | PRINT*,' acond,bcond',acond,bcond |
---|
| 141 | |
---|
| 142 | firstcall=.false. |
---|
| 143 | |
---|
| 144 | ! If fixed profile of kmix |
---|
| 145 | IF (kmix_proffix) then |
---|
| 146 | file_path=trim(datadir)//'/gas_prop/kmix.txt' |
---|
| 147 | open(114,file=file_path,form='formatted') |
---|
| 148 | do ifine=1,Nfine |
---|
| 149 | read(114,*) levdat(ifine), kmixdat(ifine) |
---|
| 150 | enddo |
---|
| 151 | close(114) |
---|
| 152 | ENDIF |
---|
| 153 | ENDIF |
---|
| 154 | |
---|
| 155 | c----------------------------------------------------------------------- |
---|
| 156 | c 1. initialisation |
---|
| 157 | c ----------------- |
---|
| 158 | |
---|
| 159 | nlev=nlay+1 |
---|
| 160 | |
---|
| 161 | c ** calcul de rho*dz et dt*rho/dz=dt*rho**2 g/dp |
---|
| 162 | c avec rho=p/RT=p/ (R Theta) (p/ps)**kappa |
---|
| 163 | c ---------------------------------------- |
---|
| 164 | |
---|
| 165 | DO ilay=1,nlay |
---|
| 166 | DO ig=1,ngrid |
---|
| 167 | za(ig,ilay)=(pplev(ig,ilay)-pplev(ig,ilay+1))/g |
---|
| 168 | ENDDO |
---|
| 169 | ENDDO |
---|
| 170 | |
---|
| 171 | zcst1=4.*g*ptimestep/(r*r) |
---|
| 172 | DO ilev=2,nlev-1 |
---|
| 173 | DO ig=1,ngrid |
---|
| 174 | zb0(ig,ilev)=pplev(ig,ilev)* |
---|
| 175 | s (pplev(ig,1)/pplev(ig,ilev))**rcp / |
---|
| 176 | s (ph(ig,ilev-1)+ph(ig,ilev)) |
---|
| 177 | zb0(ig,ilev)=zcst1*zb0(ig,ilev)*zb0(ig,ilev)/ |
---|
| 178 | s (pplay(ig,ilev-1)-pplay(ig,ilev)) |
---|
| 179 | c write(300,*)'zb0',zb0(ig,ilev) |
---|
| 180 | ENDDO |
---|
| 181 | ENDDO |
---|
| 182 | DO ig=1,ngrid |
---|
| 183 | zb0(ig,1)=ptimestep*pplev(ig,1)/(r*ptsrf(ig)) |
---|
| 184 | ENDDO |
---|
| 185 | |
---|
| 186 | c ** diagnostique pour l'initialisation |
---|
| 187 | c ---------------------------------- |
---|
| 188 | |
---|
| 189 | ** IF(lecrit) THEN |
---|
| 190 | ** ig=ngrid/2+1 |
---|
| 191 | ** PRINT*,'Pression (mbar) ,altitude (km),u,v,theta, rho dz' |
---|
| 192 | ** DO ilay=1,nlay |
---|
| 193 | ** WRITE(*,'(6f11.5)') |
---|
| 194 | ** s .01*pplay(ig,ilay),.001*pzlay(ig,ilay), |
---|
| 195 | ** s pu(ig,ilay),pv(ig,ilay),ph(ig,ilay),za(ig,ilay) |
---|
| 196 | ** ENDDO |
---|
| 197 | ** PRINT*,'Pression (mbar) ,altitude (km),zb' |
---|
| 198 | ** DO ilev=1,nlay |
---|
| 199 | ** WRITE(*,'(3f15.7)') |
---|
| 200 | ** s .01*pplev(ig,ilev),.001*pzlev(ig,ilev), |
---|
| 201 | ** s zb0(ig,ilev) |
---|
| 202 | ** ENDDO |
---|
| 203 | ** ENDIF |
---|
| 204 | |
---|
| 205 | c Potential Condensation temperature: |
---|
| 206 | c ----------------------------------- |
---|
| 207 | |
---|
[3237] | 208 | if (condensn2) then |
---|
[3175] | 209 | DO ilev=1,nlay |
---|
| 210 | DO ig=1,ngrid |
---|
| 211 | zhcond(ig,ilev) = |
---|
| 212 | & (1./(bcond-acond*log(.7143*pplay(ig,ilev))))/ppopsk(ig,ilev) |
---|
| 213 | END DO |
---|
| 214 | END DO |
---|
| 215 | else |
---|
| 216 | DO ilev=1,nlay |
---|
| 217 | DO ig=1,ngrid |
---|
[3237] | 218 | zhcond(ig,ilev) = 0. |
---|
[3175] | 219 | END DO |
---|
| 220 | END DO |
---|
| 221 | end if |
---|
| 222 | |
---|
| 223 | |
---|
| 224 | c----------------------------------------------------------------------- |
---|
| 225 | c 2. ajout des tendances physiques |
---|
| 226 | c ----------------------------- |
---|
| 227 | |
---|
| 228 | DO ilev=1,nlay |
---|
| 229 | DO ig=1,ngrid |
---|
| 230 | zt(ig,ilev)=pt(ig,ilev)+pdtfi(ig,ilev)*ptimestep |
---|
| 231 | zu(ig,ilev)=pu(ig,ilev)+pdufi(ig,ilev)*ptimestep |
---|
| 232 | zv(ig,ilev)=pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep |
---|
| 233 | zh(ig,ilev)=ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep |
---|
| 234 | zh(ig,ilev)=max(zh(ig,ilev),zhcond(ig,ilev)) |
---|
| 235 | ENDDO |
---|
| 236 | ENDDO |
---|
| 237 | if(tracer) then |
---|
| 238 | DO iq =1, nq |
---|
| 239 | DO ilev=1,nlay |
---|
| 240 | DO ig=1,ngrid |
---|
| 241 | zq(ig,ilev,iq)=pq(ig,ilev,iq)+pdqfi(ig,ilev,iq)*ptimestep |
---|
| 242 | ENDDO |
---|
| 243 | ENDDO |
---|
| 244 | ENDDO |
---|
| 245 | end if |
---|
| 246 | |
---|
| 247 | c----------------------------------------------------------------------- |
---|
| 248 | c 3. schema de turbulence |
---|
| 249 | c -------------------- |
---|
| 250 | |
---|
| 251 | c ** source d'energie cinetique turbulente a la surface |
---|
| 252 | c (condition aux limites du schema de diffusion turbulente |
---|
| 253 | c dans la couche limite |
---|
| 254 | c --------------------- |
---|
| 255 | CALL vdif_cd( ngrid,nlay,pz0,g,pzlay,pu,pv,ptsrf,ph |
---|
| 256 | & ,zcdv_true,zcdh_true) |
---|
| 257 | DO ig=1,ngrid |
---|
| 258 | zu2=pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) |
---|
| 259 | !TB16: GCM wind for flat hemisphere |
---|
| 260 | IF (phisfi(ig).eq.0.) zu2=max(2.,zu2) |
---|
[3237] | 261 | |
---|
[3175] | 262 | zcdv(ig)=zcdv_true(ig)*sqrt(zu2) |
---|
| 263 | zcdh(ig)=zcdh_true(ig)*sqrt(zu2) |
---|
| 264 | ENDDO |
---|
| 265 | |
---|
| 266 | c ** schema de diffusion turbulente dans la couche limite |
---|
[3237] | 267 | c ---------------------------------------------------- |
---|
[3175] | 268 | |
---|
| 269 | CALL vdif_kc(ptimestep,g,pzlev,pzlay |
---|
| 270 | & ,pu,pv,ph,zcdv_true |
---|
| 271 | & ,pq2,zkv,zkh) |
---|
| 272 | |
---|
| 273 | |
---|
| 274 | c Adding eddy mixing to mimic 3D general circulation in 1D |
---|
| 275 | c RW FF 2010 |
---|
| 276 | if ((ngrid.eq.1)) then |
---|
| 277 | !kmixmin is the minimum eddy mix coeff in 1D |
---|
| 278 | |
---|
| 279 | ! If fixed profile of kmix |
---|
| 280 | IF (kmix_proffix) then |
---|
| 281 | !! Interpolate on the model vertical grid |
---|
| 282 | CALL interp_line(levdat,kmixdat,Nfine, |
---|
| 283 | & pzlay(1,:)/1000.,kmix_z(:),nlayermx) |
---|
| 284 | |
---|
| 285 | do ilev=1,nlay |
---|
| 286 | zkh(1,ilev) = max(kmix_z(ilev),zkh(1,ilev)) |
---|
| 287 | zkv(1,ilev) = max(kmix_z(ilev),zkv(1,ilev)) |
---|
| 288 | !zkh(1,ilev) = kmixmin |
---|
| 289 | !zkv(1,ilev) = kmixmin |
---|
| 290 | end do |
---|
| 291 | ELSE |
---|
| 292 | do ilev=1,nlay |
---|
| 293 | zkh(1,ilev) = max(kmixmin,zkh(1,ilev)) |
---|
| 294 | zkv(1,ilev) = max(kmixmin,zkv(1,ilev)) |
---|
| 295 | !zkh(1,ilev) = kmixmin |
---|
| 296 | !zkv(1,ilev) = kmixmin |
---|
| 297 | end do |
---|
| 298 | ENDIF |
---|
| 299 | endif ! ngrid.eq.1 |
---|
| 300 | |
---|
| 301 | !! Temporary: |
---|
| 302 | ! zkh = zkh*0.1 |
---|
| 303 | ! zkv = zkv*0.1 |
---|
| 304 | |
---|
| 305 | c ** diagnostique pour le schema de turbulence |
---|
| 306 | c ----------------------------------------- |
---|
| 307 | |
---|
| 308 | ** IF(lecrit) THEN |
---|
| 309 | ** PRINT* |
---|
| 310 | ** PRINT*,'Diagnostic for the vertical turbulent mixing' |
---|
| 311 | ** PRINT*,'Cd for momentum and potential temperature' |
---|
| 312 | |
---|
| 313 | ** PRINT*,zcdv(ngrid/2+1),zcdh(ngrid/2+1) |
---|
| 314 | ** PRINT*,'Mixing coefficient for momentum and pot.temp.' |
---|
| 315 | ** DO ilev=1,nlay |
---|
| 316 | ** PRINT*,zkv(ngrid/2+1,ilev),zkh(ngrid/2+1,ilev) |
---|
| 317 | ** ENDDO |
---|
| 318 | ** ENDIF |
---|
| 319 | |
---|
| 320 | c----------------------------------------------------------------------- |
---|
| 321 | c 4. inversion pour l'implicite sur u |
---|
| 322 | c -------------------------------- |
---|
| 323 | |
---|
[3237] | 324 | c ** l'equation est |
---|
[3175] | 325 | c u(t+1) = u(t) + dt * {(du/dt)phys}(t) + dt * {(du/dt)difv}(t+1) |
---|
| 326 | c avec |
---|
| 327 | c /zu/ = u(t) + dt * {(du/dt)phys}(t) (voir paragraphe 2.) |
---|
| 328 | c et |
---|
| 329 | c dt * {(du/dt)difv}(t+1) = dt * {(d/dz)[ Ku (du/dz) ]}(t+1) |
---|
| 330 | c donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 331 | c et /zkv/ = Ku |
---|
[3237] | 332 | |
---|
[3175] | 333 | CALL multipl((nlay-1)*ngrid,zkv(1,2),zb0(1,2),zb(1,2)) |
---|
| 334 | CALL multipl(ngrid,zcdv,zb0,zb) |
---|
| 335 | |
---|
| 336 | DO ig=1,ngrid |
---|
| 337 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 338 | zc(ig,nlay)=za(ig,nlay)*zu(ig,nlay)*z1(ig) |
---|
| 339 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 340 | ENDDO |
---|
| 341 | |
---|
| 342 | DO ilay=nlay-1,1,-1 |
---|
| 343 | DO ig=1,ngrid |
---|
| 344 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 345 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 346 | zc(ig,ilay)=(za(ig,ilay)*zu(ig,ilay)+ |
---|
| 347 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 348 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 349 | ENDDO |
---|
| 350 | ENDDO |
---|
| 351 | |
---|
| 352 | DO ig=1,ngrid |
---|
| 353 | zu(ig,1)=zc(ig,1) |
---|
| 354 | ENDDO |
---|
| 355 | DO ilay=2,nlay |
---|
| 356 | DO ig=1,ngrid |
---|
| 357 | zu(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zu(ig,ilay-1) |
---|
| 358 | ENDDO |
---|
| 359 | ENDDO |
---|
| 360 | |
---|
| 361 | c----------------------------------------------------------------------- |
---|
| 362 | c 5. inversion pour l'implicite sur v |
---|
| 363 | c -------------------------------- |
---|
| 364 | |
---|
[3237] | 365 | c ** l'equation est |
---|
[3175] | 366 | c v(t+1) = v(t) + dt * {(dv/dt)phys}(t) + dt * {(dv/dt)difv}(t+1) |
---|
| 367 | c avec |
---|
| 368 | c /zv/ = v(t) + dt * {(dv/dt)phys}(t) (voir paragraphe 2.) |
---|
| 369 | c et |
---|
| 370 | c dt * {(dv/dt)difv}(t+1) = dt * {(d/dz)[ Kv (dv/dz) ]}(t+1) |
---|
| 371 | c donc les entrees sont /zcdv/ pour la condition a la limite sol |
---|
| 372 | c et /zkv/ = Kv |
---|
| 373 | |
---|
| 374 | DO ig=1,ngrid |
---|
| 375 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 376 | zc(ig,nlay)=za(ig,nlay)*zv(ig,nlay)*z1(ig) |
---|
| 377 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 378 | ENDDO |
---|
| 379 | |
---|
| 380 | DO ilay=nlay-1,1,-1 |
---|
| 381 | DO ig=1,ngrid |
---|
| 382 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 383 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 384 | zc(ig,ilay)=(za(ig,ilay)*zv(ig,ilay)+ |
---|
| 385 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 386 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 387 | ENDDO |
---|
| 388 | ENDDO |
---|
| 389 | |
---|
| 390 | DO ig=1,ngrid |
---|
| 391 | zv(ig,1)=zc(ig,1) |
---|
| 392 | ENDDO |
---|
| 393 | DO ilay=2,nlay |
---|
| 394 | DO ig=1,ngrid |
---|
| 395 | zv(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*zv(ig,ilay-1) |
---|
| 396 | ENDDO |
---|
| 397 | ENDDO |
---|
| 398 | |
---|
| 399 | c----------------------------------------------------------------------- |
---|
| 400 | c 6. inversion pour l'implicite sur h sans oublier le couplage |
---|
| 401 | c avec le sol (conduction) |
---|
| 402 | c ------------------------ |
---|
| 403 | |
---|
[3237] | 404 | c ** l'equation est |
---|
[3175] | 405 | c h(t+1) = h(t) + dt * {(dh/dt)phys}(t) + dt * {(dh/dt)difv}(t+1) |
---|
| 406 | c avec |
---|
| 407 | c /zh/ = h(t) + dt * {(dh/dt)phys}(t) (voir paragraphe 2.) |
---|
| 408 | c et |
---|
| 409 | c dt * {(dh/dt)difv}(t+1) = dt * {(d/dz)[ Kh (dh/dz) ]}(t+1) |
---|
| 410 | c donc les entrees sont /zcdh/ pour la condition de raccord au sol |
---|
| 411 | c et /zkh/ = Kh |
---|
| 412 | c ------------- |
---|
| 413 | |
---|
| 414 | CALL multipl((nlay-1)*ngrid,zkh(1,2),zb0(1,2),zb(1,2)) |
---|
| 415 | CALL multipl(ngrid,zcdh,zb0,zb) |
---|
| 416 | |
---|
| 417 | DO ig=1,ngrid |
---|
| 418 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 419 | zc(ig,nlay)=za(ig,nlay)*zh(ig,nlay)*z1(ig) |
---|
| 420 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
| 421 | ENDDO |
---|
| 422 | |
---|
| 423 | DO ilay=nlay-1,1,-1 |
---|
| 424 | DO ig=1,ngrid |
---|
| 425 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 426 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 427 | zc(ig,ilay)=(za(ig,ilay)*zh(ig,ilay)+ |
---|
| 428 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 429 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 430 | ENDDO |
---|
| 431 | ENDDO |
---|
| 432 | |
---|
| 433 | c ** calcul de (d Planck / dT) a la temperature d'interface |
---|
| 434 | c ------------------------------------------------------ |
---|
| 435 | |
---|
| 436 | z4st=4.*5.67e-8*ptimestep |
---|
| 437 | DO ig=1,ngrid |
---|
| 438 | zdplanck(ig)=z4st*pemis(ig)*ptsrf(ig)*ptsrf(ig)*ptsrf(ig) |
---|
| 439 | ENDDO |
---|
| 440 | |
---|
| 441 | c ** calcul de la temperature_d'interface et de sa tendance. |
---|
| 442 | c on ecrit que la somme des flux est nulle a l'interface |
---|
| 443 | c a t + \delta t, |
---|
| 444 | c c'est a dire le flux radiatif a {t + \delta t} |
---|
[3237] | 445 | c + le flux turbulent a {t + \delta t} |
---|
[3175] | 446 | c qui s'ecrit K (T1-Tsurf) avec T1 = d1 Tsurf + c1 |
---|
[3237] | 447 | c (notation K dt = /cpp*b/) |
---|
[3175] | 448 | c + le flux dans le sol a t |
---|
| 449 | c + l'evolution du flux dans le sol lorsque la temperature d'interface |
---|
| 450 | c passe de sa valeur a t a sa valeur a {t + \delta t}. |
---|
| 451 | c ---------------------------------------------------- |
---|
| 452 | |
---|
| 453 | DO ig=1,ngrid |
---|
| 454 | z1(ig)=pcapcal(ig)*ptsrf(ig)+cpp*zb(ig,1)*zc(ig,1) |
---|
| 455 | s +zdplanck(ig)*ptsrf(ig)+ pfluxsrf(ig)*ptimestep |
---|
| 456 | z2(ig)= pcapcal(ig)+cpp*zb(ig,1)*(1.-zd(ig,1))+zdplanck(ig) |
---|
| 457 | ztsrf2(ig)=z1(ig)/z2(ig) |
---|
| 458 | pdtsrf(ig)=(ztsrf2(ig)-ptsrf(ig))/ptimestep |
---|
| 459 | |
---|
| 460 | c Modif speciale N2 condensation: |
---|
| 461 | c tconds = 1./(bcond-acond*log(.7143*pplev(ig,1))) |
---|
| 462 | c if ((condensn2).and. |
---|
| 463 | c & ((n2ice(ig).ne.0).or.(ztsrf2(ig).lt.tconds)))then |
---|
| 464 | c zh(ig,1)=zc(ig,1)+zd(ig,1)*tconds |
---|
| 465 | c else |
---|
| 466 | zh(ig,1)=zc(ig,1)+zd(ig,1)*ztsrf2(ig) |
---|
| 467 | c end if |
---|
| 468 | ENDDO |
---|
[3237] | 469 | |
---|
| 470 | c ** et a partir de la temperature au sol on remonte |
---|
[3175] | 471 | c ----------------------------------------------- |
---|
| 472 | |
---|
| 473 | DO ilay=2,nlay |
---|
| 474 | DO ig=1,ngrid |
---|
| 475 | hh = max( zh(ig,ilay-1) , zhcond(ig,ilay-1) ) ! modif n2cond |
---|
| 476 | zh(ig,ilay)=zc(ig,ilay)+zd(ig,ilay)*hh |
---|
| 477 | ENDDO |
---|
| 478 | ENDDO |
---|
| 479 | |
---|
[3237] | 480 | |
---|
[3175] | 481 | c----------------------------------------------------------------------- |
---|
| 482 | c TRACERS |
---|
| 483 | c ------- |
---|
| 484 | |
---|
| 485 | if(tracer) then |
---|
| 486 | |
---|
| 487 | c Using the wind modified by friction for lifting and sublimation |
---|
| 488 | c ---------------------------------------------------------------- |
---|
[3237] | 489 | ! This is computed above |
---|
[3175] | 490 | |
---|
| 491 | ! DO ig=1,ngrid |
---|
| 492 | ! zu2=zu(ig,1)*zu(ig,1)+zv(ig,1)*zv(ig,1) |
---|
| 493 | ! zcdv(ig)=zcdv_true(ig)*sqrt(zu2) |
---|
| 494 | ! zcdh(ig)=zcdh_true(ig)*sqrt(zu2) |
---|
| 495 | ! ENDDO |
---|
| 496 | |
---|
[3237] | 497 | c Calcul flux vertical au bas de la premiere couche (cf dust on Mars) |
---|
[3175] | 498 | c ----------------------------------------------------------- |
---|
[3237] | 499 | do ig=1,ngridmx |
---|
[3175] | 500 | rho(ig) = zb0(ig,1) /ptimestep |
---|
| 501 | ! zb(ig,1) = 0. |
---|
| 502 | end do |
---|
| 503 | |
---|
| 504 | call zerophys(ngrid*nq,pdqsdif) |
---|
[3237] | 505 | pdqdif(:,:,:)=0. |
---|
[3175] | 506 | |
---|
| 507 | |
---|
| 508 | c TB: Eddy lifting of tracers : |
---|
| 509 | c **************************************************************** |
---|
| 510 | ! DO ig=1,ngrid |
---|
| 511 | !c option : injection only on an equatorial band |
---|
| 512 | !c if (abs(lati(ig))*180./pi.le.25.) then |
---|
| 513 | ! pdqsdif(ig,igcm_eddy1e6) =-1.e-12 |
---|
| 514 | ! pdqsdif(ig,igcm_eddy1e7) =-1.e-12 |
---|
| 515 | ! pdqsdif(ig,igcm_eddy5e7) =-1.e-12 |
---|
| 516 | ! pdqsdif(ig,igcm_eddy1e8) =-1.e-12 |
---|
| 517 | ! pdqsdif(ig,igcm_eddy5e8) =-1.e-12 |
---|
| 518 | c endif |
---|
| 519 | ! ENDDO |
---|
| 520 | |
---|
[3237] | 521 | c pdqdifeddy(:,:,:)=0. |
---|
[3175] | 522 | cc injection a 50 km |
---|
| 523 | c DO ig=1,ngrid |
---|
| 524 | c pdqdifeddy(ig,17,igcm_eddy1e6)=1e-12 |
---|
| 525 | c pdqdifeddy(ig,17,igcm_eddy1e7)=1e-12 |
---|
| 526 | c pdqdifeddy(ig,17,igcm_eddy5e7)=1e-12 |
---|
| 527 | c pdqdifeddy(ig,17,igcm_eddy1e8)=1e-12 |
---|
| 528 | c pdqdifeddy(ig,17,igcm_eddy5e8)=1e-12 |
---|
| 529 | c ENDDO |
---|
| 530 | |
---|
[3237] | 531 | c Inversion pour l'implicite sur q |
---|
[3175] | 532 | c -------------------------------- |
---|
[3237] | 533 | do iq=1,nq |
---|
| 534 | CALL multipl((nlay-1)*ngrid,zkh(1,2),zb0(1,2),zb(1,2)) |
---|
[3175] | 535 | |
---|
| 536 | if ((methane).and.(iq.eq.igcm_ch4_gas)) then |
---|
[3237] | 537 | c This line is required to account for turbulent transport |
---|
[3175] | 538 | c from surface (e.g. ice) to mid-layer of atmosphere: |
---|
| 539 | CALL multipl(ngrid,zcdv,zb0,zb(1,1)) |
---|
| 540 | else if ((carbox).and.(iq.eq.igcm_co_gas)) then |
---|
| 541 | CALL multipl(ngrid,zcdv,zb0,zb(1,1)) |
---|
| 542 | else ! (re)-initialize zb(:,1) |
---|
| 543 | zb(1:ngrid,1)=0 |
---|
| 544 | end if |
---|
| 545 | |
---|
| 546 | DO ig=1,ngrid |
---|
| 547 | z1(ig)=1./(za(ig,nlay)+zb(ig,nlay)) |
---|
| 548 | zc(ig,nlay)=za(ig,nlay)*zq(ig,nlay,iq)*z1(ig) |
---|
| 549 | zd(ig,nlay)=zb(ig,nlay)*z1(ig) |
---|
[3237] | 550 | ENDDO |
---|
| 551 | |
---|
[3175] | 552 | DO ilay=nlay-1,2,-1 |
---|
| 553 | DO ig=1,ngrid |
---|
| 554 | z1(ig)=1./(za(ig,ilay)+zb(ig,ilay)+ |
---|
| 555 | $ zb(ig,ilay+1)*(1.-zd(ig,ilay+1))) |
---|
| 556 | zc(ig,ilay)=(za(ig,ilay)*zq(ig,ilay,iq)+ |
---|
| 557 | $ zb(ig,ilay+1)*zc(ig,ilay+1))*z1(ig) |
---|
| 558 | zd(ig,ilay)=zb(ig,ilay)*z1(ig) |
---|
| 559 | ENDDO |
---|
| 560 | ENDDO |
---|
[3237] | 561 | |
---|
[3175] | 562 | ! special case for methane and CO ice tracer: do not include |
---|
| 563 | ! ice tracer from surface (which is set when handling |
---|
| 564 | ! vapour case (see further down). |
---|
| 565 | if (methane.and.(iq.eq.igcm_ch4_ice)) then |
---|
| 566 | DO ig=1,ngrid |
---|
| 567 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
| 568 | $ zb(ig,2)*(1.-zd(ig,2))) |
---|
| 569 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
| 570 | $ zb(ig,2)*zc(ig,2)) *z1(ig) |
---|
| 571 | ENDDO |
---|
| 572 | else if (carbox.and.(iq.eq.igcm_co_ice)) then |
---|
| 573 | DO ig=1,ngrid |
---|
| 574 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
| 575 | $ zb(ig,2)*(1.-zd(ig,2))) |
---|
| 576 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
| 577 | $ zb(ig,2)*zc(ig,2)) *z1(ig) |
---|
| 578 | ENDDO |
---|
| 579 | |
---|
| 580 | else ! general case |
---|
| 581 | DO ig=1,ngrid |
---|
| 582 | z1(ig)=1./(za(ig,1)+zb(ig,1)+ |
---|
| 583 | $ zb(ig,2)*(1.-zd(ig,2))) |
---|
| 584 | zc(ig,1)=(za(ig,1)*zq(ig,1,iq)+ |
---|
| 585 | $ zb(ig,2)*zc(ig,2) + |
---|
| 586 | $ (-pdqsdif(ig,iq)) *ptimestep) *z1(ig) !tracer flux from surface |
---|
| 587 | ENDDO |
---|
| 588 | endif ! of if (methane.and.(iq.eq.igcm_ch4_ice)) |
---|
[3237] | 589 | |
---|
[3175] | 590 | c Calculation for turbulent exchange with the surface (for ice) |
---|
[3237] | 591 | IF (methane.and.(iq.eq.igcm_ch4_gas)) then |
---|
[3175] | 592 | |
---|
| 593 | !! calcul de la valeur de q a la surface : |
---|
| 594 | call methanesat(ngridmx,ptsrf,pplev(1,1), |
---|
| 595 | & qsat_ch4(:),pqsurf(:,igcm_n2)) |
---|
| 596 | |
---|
| 597 | !! For output: |
---|
| 598 | call methanesat(ngridmx,zt(:,1),pplev(1,1), |
---|
| 599 | & qsat_ch4_l1(:),pqsurf(:,igcm_n2)) |
---|
| 600 | |
---|
| 601 | !! Prevent CH4 condensation at the surface |
---|
| 602 | if (.not.condmetsurf) then |
---|
[3237] | 603 | qsat_ch4=qsat_ch4*1.e6 |
---|
[3175] | 604 | endif |
---|
| 605 | |
---|
| 606 | DO ig=1,ngrid |
---|
| 607 | zd(ig,1)=zb(ig,1)*z1(ig) |
---|
| 608 | zq1temp_ch4(ig)=zc(ig,1)+ zd(ig,1)*qsat_ch4(ig) |
---|
| 609 | pdqsdif(ig,igcm_ch4_ice)=rho(ig)*zcdv(ig) |
---|
| 610 | & *(zq1temp_ch4(ig)-qsat_ch4(ig)) |
---|
| 611 | END DO |
---|
| 612 | |
---|
| 613 | DO ig=1,ngrid |
---|
| 614 | if ((-pdqsdif(ig,igcm_ch4_ice)*ptimestep) |
---|
| 615 | & .gt.(pqsurf(ig,igcm_ch4_ice))) then |
---|
| 616 | |
---|
| 617 | pdqsdif(ig,igcm_ch4_ice)= |
---|
| 618 | & -pqsurf(ig,igcm_ch4_ice)/ptimestep |
---|
| 619 | |
---|
| 620 | z1(ig)=1./(za(ig,1)+ zb(ig,2)*(1.-zd(ig,2))) |
---|
| 621 | |
---|
| 622 | zc(ig,1)=(za(ig,1)*zq(ig,1,igcm_ch4_gas)+ |
---|
| 623 | $ zb(ig,2)*zc(ig,2) + |
---|
| 624 | $ (-pdqsdif(ig,igcm_ch4_ice)) *ptimestep) *z1(ig) |
---|
| 625 | |
---|
| 626 | zq1temp_ch4(ig)=zc(ig,1) |
---|
[3237] | 627 | endif |
---|
[3175] | 628 | |
---|
| 629 | zq(ig,1,igcm_ch4_gas)=zq1temp_ch4(ig) |
---|
| 630 | |
---|
[3237] | 631 | c TB: MODIF speciale pour CH4 |
---|
[3175] | 632 | pdtsrf(ig)=pdtsrf(ig)+ |
---|
| 633 | & lw_ch4*pdqsdif(ig,igcm_ch4_ice)/pcapcal(ig) |
---|
| 634 | |
---|
| 635 | |
---|
| 636 | ENDDO ! of DO ig=1,ngrid |
---|
| 637 | |
---|
| 638 | ELSE IF (carbox.and.(iq.eq.igcm_co_gas)) then |
---|
| 639 | |
---|
| 640 | ! calcul de la valeur de q a la surface : |
---|
| 641 | call cosat(ngridmx,ptsrf,pplev(1,1),qsat_co, |
---|
| 642 | & pqsurf(:,igcm_n2),pqsurf(:,igcm_ch4_ice)) |
---|
| 643 | |
---|
| 644 | !! Prevent CO condensation at the surface |
---|
| 645 | if (.not.condcosurf) then |
---|
[3237] | 646 | qsat_co=qsat_co*1.e6 |
---|
[3175] | 647 | endif |
---|
| 648 | |
---|
| 649 | DO ig=1,ngrid |
---|
| 650 | zd(ig,1)=zb(ig,1)*z1(ig) |
---|
| 651 | zq1temp_co(ig)=zc(ig,1)+ zd(ig,1)*qsat_co(ig) |
---|
| 652 | pdqsdif(ig,igcm_co_ice)=rho(ig)*zcdv(ig) |
---|
| 653 | & *(zq1temp_co(ig)-qsat_co(ig)) |
---|
| 654 | END DO |
---|
| 655 | |
---|
[3237] | 656 | |
---|
[3175] | 657 | DO ig=1,ngrid |
---|
| 658 | c ------------------------------------------------------------- |
---|
| 659 | c TEMPORAIRE : pour initialiser CO si glacier N2 |
---|
| 660 | c meme si il n'y a pas de CO disponible |
---|
[3237] | 661 | c if (pqsurf(ig,igcm_n2).le.10.) then |
---|
[3175] | 662 | c ------------------------------------------------------------- |
---|
[3237] | 663 | c |
---|
[3175] | 664 | if ((-pdqsdif(ig,igcm_co_ice)*ptimestep) |
---|
| 665 | & .gt.(pqsurf(ig,igcm_co_ice))) then |
---|
| 666 | pdqsdif(ig,igcm_co_ice)= |
---|
| 667 | & -pqsurf(ig,igcm_co_ice)/ptimestep |
---|
| 668 | z1(ig)=1./(za(ig,1)+ zb(ig,2)*(1.-zd(ig,2))) |
---|
| 669 | zc(ig,1)=(za(ig,1)*zq(ig,1,igcm_co_gas)+ |
---|
| 670 | $ zb(ig,2)*zc(ig,2) + |
---|
| 671 | $ (-pdqsdif(ig,igcm_co_ice)) *ptimestep) *z1(ig) |
---|
| 672 | zq1temp_co(ig)=zc(ig,1) |
---|
[3237] | 673 | endif |
---|
| 674 | c endif |
---|
[3175] | 675 | |
---|
| 676 | zq(ig,1,igcm_co_gas)=zq1temp_co(ig) |
---|
| 677 | |
---|
| 678 | c MODIF speciale pour CO / corrected by FF 2016 |
---|
| 679 | pdtsrf(ig)=pdtsrf(ig)+ |
---|
| 680 | & lw_co*pdqsdif(ig,igcm_co_ice)/pcapcal(ig) |
---|
| 681 | |
---|
| 682 | ENDDO ! of DO ig=1,ngrid |
---|
| 683 | |
---|
| 684 | ELSE ! if (methane) |
---|
| 685 | |
---|
| 686 | DO ig=1,ngrid |
---|
| 687 | zq(ig,1,iq)=zc(ig,1) |
---|
| 688 | ENDDO |
---|
| 689 | |
---|
| 690 | END IF ! of IF ((methane).and.(iq.eq.igcm_ch4_vap)) |
---|
| 691 | |
---|
| 692 | !! Diffusion verticale : shut down vertical transport of vertdiff = false |
---|
| 693 | if (vertdiff) then |
---|
| 694 | DO ilay=2,nlay |
---|
| 695 | DO ig=1,ngrid |
---|
| 696 | zq(ig,ilay,iq)=zc(ig,ilay)+zd(ig,ilay)*zq(ig,ilay-1,iq) |
---|
| 697 | ENDDO |
---|
| 698 | ENDDO |
---|
| 699 | endif |
---|
| 700 | |
---|
| 701 | enddo ! of do iq=1,nq |
---|
| 702 | end if ! of if(tracer) |
---|
| 703 | |
---|
| 704 | c----------------------------------------------------------------------- |
---|
| 705 | c 8. calcul final des tendances de la diffusion verticale |
---|
| 706 | c ---------------------------------------------------- |
---|
| 707 | DO ilev = 1, nlay |
---|
| 708 | DO ig=1,ngrid |
---|
| 709 | pdudif(ig,ilev)=( zu(ig,ilev)- |
---|
| 710 | $ (pu(ig,ilev)+pdufi(ig,ilev)*ptimestep) )/ptimestep |
---|
| 711 | pdvdif(ig,ilev)=( zv(ig,ilev)- |
---|
| 712 | $ (pv(ig,ilev)+pdvfi(ig,ilev)*ptimestep) )/ptimestep |
---|
| 713 | hh = max(ph(ig,ilev)+pdhfi(ig,ilev)*ptimestep , |
---|
| 714 | $ zhcond(ig,ilev)) ! modif n2cond |
---|
| 715 | pdhdif(ig,ilev)=( zh(ig,ilev)- hh )/ptimestep |
---|
| 716 | ENDDO |
---|
| 717 | ENDDO |
---|
| 718 | |
---|
[3237] | 719 | if (tracer) then |
---|
[3175] | 720 | DO iq = 1, nq |
---|
| 721 | DO ilev = 1, nlay |
---|
| 722 | DO ig=1,ngrid |
---|
| 723 | pdqdif(ig,ilev,iq)=(zq(ig,ilev,iq)- |
---|
| 724 | $ (pq(ig,ilev,iq) + pdqfi(ig,ilev,iq)*ptimestep))/ptimestep |
---|
| 725 | c pdqdif(ig,ilev,iq)=pdqdifeddy(ig,ilev,iq)+(zq(ig,ilev,iq)- |
---|
| 726 | c $ (pq(ig,ilev,iq) + pdqfi(ig,ilev,iq)*ptimestep))/ptimestep |
---|
| 727 | ENDDO |
---|
| 728 | ENDDO |
---|
| 729 | ENDDO |
---|
| 730 | end if |
---|
| 731 | |
---|
[3237] | 732 | c ** diagnostique final |
---|
[3175] | 733 | c ------------------ |
---|
| 734 | |
---|
| 735 | IF(lecrit) THEN |
---|
| 736 | PRINT*,'In vdif' |
---|
| 737 | PRINT*,'Ts (t) and Ts (t+st)' |
---|
| 738 | WRITE(*,'(a10,3a15)') |
---|
| 739 | s 'theta(t)','theta(t+dt)','u(t)','u(t+dt)' |
---|
| 740 | PRINT*,ptsrf(ngrid/2+1),ztsrf2(ngrid/2+1) |
---|
| 741 | DO ilev=1,nlay |
---|
| 742 | WRITE(*,'(4f15.7)') |
---|
| 743 | s ph(ngrid/2+1,ilev),zh(ngrid/2+1,ilev), |
---|
| 744 | s pu(ngrid/2+1,ilev),zu(ngrid/2+1,ilev) |
---|
| 745 | |
---|
| 746 | ENDDO |
---|
| 747 | ENDIF |
---|
| 748 | |
---|
| 749 | RETURN |
---|
| 750 | END |
---|