1 | SUBROUTINE GFLUXI(NLL,TLEV,NW,DW,DTAU,TAUCUM,W0,COSBAR,UBARI, |
---|
2 | * RSF,BTOP,BSURF,FTOPUP,FMIDP,FMIDM) |
---|
3 | |
---|
4 | C THIS SUBROUTINE TAKES THE OPTICAL CONSTANTS AND BOUNDARY CONDITIONS |
---|
5 | C FOR THE INFRARED FLUX AT ONE WAVELENGTH AND SOLVES FOR THE FLUXES AT |
---|
6 | C THE LEVELS. THIS VERSION IS SET UP TO WORK WITH LAYER OPTICAL DEPTHS |
---|
7 | C MEASURED FROM THE TOP OF EACH LAYER. THE TOP OF EACH LAYER HAS |
---|
8 | C OPTICAL DEPTH ZERO. IN THIS SUB LEVEL N IS ABOVE LAYER N. THAT IS LAYER N |
---|
9 | C HAS LEVEL N ON TOP AND LEVEL N+1 ON BOTTOM. OPTICAL DEPTH INCREASES |
---|
10 | C FROM TOP TO BOTTOM. SEE C.P. MCKAY, TGM NOTES. |
---|
11 | C THE TRI-DIAGONAL MATRIX SOLVER IS DSOLVER AND IS DOUBLE PRECISION SO MANY |
---|
12 | C VARIABLES ARE PASSED AS SINGLE THEN BECOME DOUBLE IN DSOLVER |
---|
13 | C |
---|
14 | C NLL = NUMBER OF LEVELS (NLAYERS + 1) MUST BE LESS THAT NL (101) |
---|
15 | C TLEV(L_LEVELS) = ARRAY OF TEMPERATURES AT GCM LEVELS |
---|
16 | C WAVEN = WAVELENGTH FOR THE COMPUTATION |
---|
17 | C DW = WAVENUMBER INTERVAL |
---|
18 | C DTAU(NLAYER) = ARRAY OPTICAL DEPTH OF THE LAYERS |
---|
19 | C W0(NLEVEL) = SINGLE SCATTERING ALBEDO |
---|
20 | C COSBAR(NLEVEL) = ASYMMETRY FACTORS, 0=ISOTROPIC |
---|
21 | C UBARI = AVERAGE ANGLE, MUST BE EQUAL TO 0.5 IN IR |
---|
22 | C RSF = SURFACE REFLECTANCE |
---|
23 | C BTOP = UPPER BOUNDARY CONDITION ON IR INTENSITY (NOT FLUX) |
---|
24 | C BSURF = SURFACE EMISSION = (1-RSFI)*PLANCK, INTENSITY (NOT FLUX) |
---|
25 | C FP(NLEVEL) = UPWARD FLUX AT LEVELS |
---|
26 | C FM(NLEVEL) = DOWNWARD FLUX AT LEVELS |
---|
27 | C FMIDP(NLAYER) = UPWARD FLUX AT LAYER MIDPOINTS |
---|
28 | C FMIDM(NLAYER) = DOWNWARD FLUX AT LAYER MIDPOINTS |
---|
29 | C |
---|
30 | C----------------------------------------------------------------------C |
---|
31 | |
---|
32 | use radinc_h |
---|
33 | use radcommon_h, only: planckir |
---|
34 | |
---|
35 | implicit none |
---|
36 | |
---|
37 | #include "comcstfi.h" |
---|
38 | |
---|
39 | INTEGER NLP |
---|
40 | PARAMETER (NLP=201) ! MUST BE LARGER THAN NLEVEL |
---|
41 | |
---|
42 | INTEGER NLL, NLAYER, L, NW, NT, NT2 |
---|
43 | REAL*8 TERM, CPMID, CMMID |
---|
44 | REAL*8 PLANCK |
---|
45 | REAL*8 EM,EP |
---|
46 | REAL*8 COSBAR(L_NLAYRAD), W0(L_NLAYRAD), DTAU(L_NLAYRAD) |
---|
47 | REAL*8 TAUCUM(L_LEVELS), DTAUK |
---|
48 | REAL*8 TLEV(L_LEVELS) |
---|
49 | REAL*8 WAVEN, DW, UBARI, RSF |
---|
50 | REAL*8 BTOP, BSURF, FMIDP(L_NLAYRAD), FMIDM(L_NLAYRAD) |
---|
51 | REAL*8 B0(NLP),B1(NLP),ALPHA(NLP),LAMDA(NLP),XK1(NLP),XK2(NLP) |
---|
52 | REAL*8 GAMA(NLP),CP(NLP),CM(NLP),CPM1(NLP),CMM1(NLP),E1(NLP) |
---|
53 | REAL*8 E2(NLP),E3(NLP),E4(NLP) |
---|
54 | |
---|
55 | REAL*8 FTOPUP, FLUXUP, FLUXDN |
---|
56 | |
---|
57 | real*8 :: TAUMAX = L_TAUMAX |
---|
58 | |
---|
59 | C======================================================================C |
---|
60 | |
---|
61 | C WE GO WITH THE HEMISPHERIC CONSTANT APPROACH IN THE INFRARED |
---|
62 | |
---|
63 | |
---|
64 | IF (NLL .GT. NLP) STOP 'PARAMETER NL TOO SMALL IN GFLUXV' |
---|
65 | |
---|
66 | NLAYER = L_NLAYRAD |
---|
67 | |
---|
68 | DO L=1,L_NLAYRAD-1 |
---|
69 | ALPHA(L) = SQRT( (1.0-W0(L))/(1.0-W0(L)*COSBAR(L)) ) |
---|
70 | LAMDA(L) = ALPHA(L)*(1.0-W0(L)*COSBAR(L))/UBARI |
---|
71 | |
---|
72 | NT2 = int(TLEV(2*L+2)*10.0D0)-NTstar +1 |
---|
73 | NT = int(TLEV(2*L)*10.0D0)-NTstar + 1 |
---|
74 | ! if temperatures superior to 50K |
---|
75 | ! NT2 = TLEV(2*L+2)*10.0D0-499 |
---|
76 | ! NT = TLEV(2*L)*10.0D0-499 |
---|
77 | |
---|
78 | B1(L) = (PLANCKIR(NW,NT2)-PLANCKIR(NW,NT))/DTAU(L) |
---|
79 | B0(L) = PLANCKIR(NW,NT) |
---|
80 | END DO |
---|
81 | |
---|
82 | C Take care of special lower layer |
---|
83 | |
---|
84 | L = L_NLAYRAD |
---|
85 | ALPHA(L) = SQRT( (1.0-W0(L))/(1.0-W0(L)*COSBAR(L)) ) |
---|
86 | LAMDA(L) = ALPHA(L)*(1.0-W0(L)*COSBAR(L))/UBARI |
---|
87 | |
---|
88 | |
---|
89 | NT2 = TLEV(2*L+1)*10.0D0-NTstar +1 |
---|
90 | NT = TLEV(2*L)*10.0D0-NTstar + 1 |
---|
91 | ! if temperatures superior to 50K |
---|
92 | ! NT = TLEV(2*L+1)*10.0D0-499 |
---|
93 | ! NT2 = TLEV(2*L)*10.0D0-499 |
---|
94 | B1(L) = (PLANCKIR(NW,NT)-PLANCKIR(NW,NT2))/DTAU(L) |
---|
95 | B0(L) = PLANCKIR(NW,NT2) |
---|
96 | |
---|
97 | DO L=1,L_NLAYRAD |
---|
98 | GAMA(L) = (1.0-ALPHA(L))/(1.0+ALPHA(L)) |
---|
99 | TERM = UBARI/(1.0-W0(L)*COSBAR(L)) |
---|
100 | |
---|
101 | C CP AND CM ARE THE CPLUS AND CMINUS TERMS EVALUATED AT THE |
---|
102 | C BOTTOM OF THE LAYER. THAT IS AT DTAU OPTICAL DEPTH |
---|
103 | |
---|
104 | CP(L) = B0(L)+B1(L)*DTAU(L) +B1(L)*TERM |
---|
105 | CM(L) = B0(L)+B1(L)*DTAU(L) -B1(L)*TERM |
---|
106 | |
---|
107 | C CPM1 AND CMM1 ARE THE CPLUS AND CMINUS TERMS EVALUATED |
---|
108 | C AT THE TOP OF THE LAYER, THAT IS ZERO OPTICAL DEPTH |
---|
109 | |
---|
110 | CPM1(L) = B0(L)+B1(L)*TERM |
---|
111 | CMM1(L) = B0(L)-B1(L)*TERM |
---|
112 | END DO |
---|
113 | |
---|
114 | C NOW CALCULATE THE EXPONENTIAL TERMS NEEDED |
---|
115 | C FOR THE TRIDIAGONAL ROTATED LAYERED METHOD |
---|
116 | C WARNING IF DTAU(J) IS GREATER THAN ABOUT 35 (VAX) |
---|
117 | C WE CLIP IT TO AVOID OVERFLOW. |
---|
118 | |
---|
119 | DO L=1,L_NLAYRAD |
---|
120 | |
---|
121 | C CLIP THE EXPONENTIAL HERE. |
---|
122 | |
---|
123 | EP = EXP( MIN((LAMDA(L)*DTAU(L)),TAUMAX)) |
---|
124 | EM = 1.0/EP |
---|
125 | E1(L) = EP+GAMA(L)*EM |
---|
126 | E2(L) = EP-GAMA(L)*EM |
---|
127 | E3(L) = GAMA(L)*EP+EM |
---|
128 | E4(L) = GAMA(L)*EP-EM |
---|
129 | END DO |
---|
130 | |
---|
131 | c B81=BTOP ! RENAME BEFORE CALLING DSOLVER - used to be to set |
---|
132 | c B82=BSURF ! them to real*8 - but now everything is real*8 |
---|
133 | c R81=RSF ! so this may not be necessary |
---|
134 | |
---|
135 | C Double precision tridiagonal solver |
---|
136 | |
---|
137 | CALL DSOLVER(NLAYER,GAMA,CP,CM,CPM1,CMM1,E1,E2,E3,E4,BTOP, |
---|
138 | * BSURF,RSF,XK1,XK2) |
---|
139 | |
---|
140 | |
---|
141 | C NOW WE CALCULATE THE FLUXES AT THE MIDPOINTS OF THE LAYERS. |
---|
142 | |
---|
143 | DO L=1,L_NLAYRAD-1 |
---|
144 | DTAUK = TAUCUM(2*L+1)-TAUCUM(2*L) |
---|
145 | EP = EXP(MIN(LAMDA(L)*DTAUK,TAUMAX)) ! CLIPPED EXPONENTIAL |
---|
146 | EM = 1.0/EP |
---|
147 | TERM = UBARI/(1.-W0(L)*COSBAR(L)) |
---|
148 | |
---|
149 | C CP AND CM ARE THE CPLUS AND CMINUS TERMS EVALUATED AT THE |
---|
150 | C BOTTOM OF THE LAYER. THAT IS AT DTAU OPTICAL DEPTH |
---|
151 | |
---|
152 | CPMID = B0(L)+B1(L)*DTAUK +B1(L)*TERM |
---|
153 | CMMID = B0(L)+B1(L)*DTAUK -B1(L)*TERM |
---|
154 | FMIDP(L) = XK1(L)*EP + GAMA(L)*XK2(L)*EM + CPMID |
---|
155 | FMIDM(L) = XK1(L)*EP*GAMA(L) + XK2(L)*EM + CMMID |
---|
156 | |
---|
157 | C FOR FLUX WE INTEGRATE OVER THE HEMISPHERE TREATING INTENSITY CONSTANT |
---|
158 | |
---|
159 | FMIDP(L) = FMIDP(L)*PI |
---|
160 | FMIDM(L) = FMIDM(L)*PI |
---|
161 | END DO |
---|
162 | |
---|
163 | C And now, for the special bottom layer |
---|
164 | |
---|
165 | L = L_NLAYRAD |
---|
166 | |
---|
167 | EP = EXP(MIN((LAMDA(L)*DTAU(L)),TAUMAX)) ! CLIPPED EXPONENTIAL |
---|
168 | EM = 1.0/EP |
---|
169 | TERM = UBARI/(1.-W0(L)*COSBAR(L)) |
---|
170 | |
---|
171 | C CP AND CM ARE THE CPLUS AND CMINUS TERMS EVALUATED AT THE |
---|
172 | C BOTTOM OF THE LAYER. THAT IS AT DTAU OPTICAL DEPTH |
---|
173 | |
---|
174 | CPMID = B0(L)+B1(L)*DTAU(L) +B1(L)*TERM |
---|
175 | CMMID = B0(L)+B1(L)*DTAU(L) -B1(L)*TERM |
---|
176 | FMIDP(L) = XK1(L)*EP + GAMA(L)*XK2(L)*EM + CPMID |
---|
177 | FMIDM(L) = XK1(L)*EP*GAMA(L) + XK2(L)*EM + CMMID |
---|
178 | |
---|
179 | C FOR FLUX WE INTEGRATE OVER THE HEMISPHERE TREATING INTENSITY CONSTANT |
---|
180 | |
---|
181 | FMIDP(L) = FMIDP(L)*PI |
---|
182 | FMIDM(L) = FMIDM(L)*PI |
---|
183 | |
---|
184 | C FLUX AT THE PTOP LEVEL |
---|
185 | |
---|
186 | EP = 1.0 |
---|
187 | EM = 1.0 |
---|
188 | TERM = UBARI/(1.0-W0(1)*COSBAR(1)) |
---|
189 | |
---|
190 | C CP AND CM ARE THE CPLUS AND CMINUS TERMS EVALUATED AT THE |
---|
191 | C BOTTOM OF THE LAYER. THAT IS AT DTAU OPTICAL DEPTH |
---|
192 | |
---|
193 | CPMID = B0(1)+B1(1)*TERM |
---|
194 | CMMID = B0(1)-B1(1)*TERM |
---|
195 | |
---|
196 | FLUXUP = XK1(1)*EP + GAMA(1)*XK2(1)*EM + CPMID |
---|
197 | FLUXDN = XK1(1)*EP*GAMA(1) + XK2(1)*EM + CMMID |
---|
198 | |
---|
199 | C FOR FLUX WE INTEGRATE OVER THE HEMISPHERE TREATING INTENSITY CONSTANT |
---|
200 | |
---|
201 | FTOPUP = (FLUXUP-FLUXDN)*PI |
---|
202 | |
---|
203 | |
---|
204 | RETURN |
---|
205 | END |
---|